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A mathematical model of amyloid fiber formation is
described that is able to simply specify different rates of
fiber breakage at internal versus end regions. This Note
presents the derivation of the relevant equations and
provides results showing the dramatic effects of position
biased fiber breakage on the kinetics of amyloid growth.
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Introduction
Protein helical polymerization reactions, such as those

constituted by actin and tubulin assembly, have been a
much studied topic in biophysics [1,2]. Amyloid, a fibril-
like homopolymer capable of being formed from many dif‐
ferent protein monomer building blocks, has been shown to
exhibit both helical polymerization kinetics and steady state
behavior capable of quantitative description using helical
polymerization models of Oosawa and colleagues [3–6]. A
number of important extensions to these models been
developed over the last twenty years to better describe
amyloid formation [7–14]. These extensions are based on a
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consensus chemical schema (Fig. 1) featuring the following
three general processes, (i.) Reversible fiber nucleation; (ii.)
Fiber growth and dissolution via monomer addition and
loss; and (iii.) Fiber breakage and joining. A simple kinetic
description containing some aspects of the consensus
mechanism was developed by Smith, J. F., et al. [15] who
employed an approach cast in terms of average quantities.
Although providing less information about the time depen‐
dent evolution of the polymer distribution, this reduced
model proved particularly simple to code and produced
easily interpretable output. However, due to the approxima‐
tions involved in its derivation, the Smith, J. F., et al. [15]
model lacked the flexibility to treat biologically relevant
limiting cases of amyloid fiber growth. One such important
case, described by Hall and Edskes [9], was that relating to
differential rates of amyloid fiber breakage from the fiber
ends (to release a monomer), versus that occurring inter‐
nally (to produce two shorter amyloid fibers). A recent
approach based on the method of moments [16], developed
a relatively complex solution to the simulation of this dif‐
ferential end versus internal breakage problem by approxi‐
mating the evolving amyloid polymer distribution through
the use of a large number (>100) of Gaussian functions. In
this Letter, I derive a simpler approximate solution to the
case of position dependent fiber breakage based on the
assumption of a single distribution characterizing the fibril

A kinetic model of amyloid formation is presented based on two inter-related ordinary differential equations. The model can simply account for
different rates of breakage at the fiber ends vs. internal regions. In the former case, breakage releases a monomer unable to maintain its amyloid
structure. In the latter case, breakage produces two smaller fibers each able to act as ‘seeds’ able to facilitate amyloid growth. Thus position
dependent susceptibility to breakage could determine whether breakage encourages or discourages amyloid growth. These outcomes are
crucial when considering the role amyloid growth plays in disease aetiology, such as for Alzheimer’s disease.
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population. The current approach retains the relative sim‐
plicity of the earlier Smith, J. F., et al. [15] model without
having to resort to the complex function approach adopted
by Nicoud, L., et al. [16]. The method has the added benefit
that it can also simply treat cases relating to differential
rates of fiber end-to-end joining.

Theory
In developing a model of amyloid formation featuring

position related breakage propensities, the following
simplifying assumptions are made.

Figure 1 Consensus amyloid formation mechanism featuring
position dependent bias in fiber breakage: (A) Nucleation—modeled
as the interaction of two monomers to form a dimer nucleus with the
process regulated by a second-order nucleation rate constant, fN, (units
of M–1s–1) and a reverse unimolecular process governed by a first-
order breakage rate constant, bS1 (units of s–1). (B) Growth and disso‐
lution—in which fibrils can increase in size via monomer addition,
regulated by a second-order growth rate constant, fG (units of M–1s–1)
and decrease in size via breakage at the end of the fiber that results in
monomer loss and is regulated by a first-order breakage rate constant,
bS1 (units of s–1). (C) Fiber joining and breakage—fiber growth may
also occur between any two fibers at a rate determined by the second-
order rate constant, fJ (units of M–1s–1) and fiber internal breakage
specified by a set of common site-specific intrinsic breakage rate con‐
stants, bS2 (units of s–1). End sites for breakage (characterized by
breakage rate constant, bS1) are shown by a red arrow. Internal sites
for breakage (characterized by breakage rate constant, bS2) are shown
using a black arrow.

(i.) Amyloid growth follows a minimal mechanism
(identical to that shown in Fig. 1), featuring fiber nucle‐
ation, fiber growth and dissolution via monomer addition/
loss and fiber joining and breakage.

(ii.) The mechanism is characterized by a phenomenolog‐
ical fixed nucleus size set at 2 monomers along with speci‐
fication of a single structural isomer type (per polymer
degree) for all amyloid aggregates. Here, “phenomeno‐
logical” refers to the fact that we do not seek to determine
the correct ‘critical nucleus size’ but rather just specify
forward and reverse nucleation rates which, through their
variation, can empirically accommodate experimentally
observed time courses of amyloid formation whilst keeping
the nucleus size set at 2.

(iii.) There are two general first-order intrinsic breakage
rates: bS1 (the end scission rate operating at terminal
monomer bonds) and bS2 (the internal scission rate operating
at internalized monomer to monomer bonds) (Fig. 1).

To further develop the model three averaged quantities
are defined; (CE)TOT—the total number concentration of
ends for amyloid growth assuming uni-directional growth
[17,18] (Eq. 1—where z describes the degree of the longest
amyloid polymer in solution at that particular time);
(CP)TOT—the total concentration of monomer existing
within amyloid extendable form (Eq. 2), and i —the
average amyloid polymer degree (Eq. 3).

(CE)TOT = C2 + ∑i = 3
z Ci (1)

(CP)TOT = 2C2 + ∑i = 3
z i Ci (2)

i = CP TOT

CE TOT
(3)

Chemical rate equations describing the total concentration
of amyloid ends and the total concentration of polymeric
amyloid species can be specified as shown in Eq. 4 and 5
(with a derivation shown in Appendix 1).

d CE TOT

dt = fNC1
2 + C2 bS2 − bS1 + bS2 CP TOT

−3bS2 CE TOT − fJ CE TOT
2

(4)

d CP TOT

dt = 2fNC1
2 − 2bS1 CE TOT + fG CE TOTC1 (5)

Depending upon the nature of the simulated system the free
monomer concentration, C1, may be considered as a con‐
stant [19] or else evaluated at each time point by difference
between total protein and polymerized forms based on con‐
servation of mass principles [19]. From inspection we note
that Eq. 4 requires specification of the concentration of the
phenomenological nucleus, C2. To provide a running time-
dependent estimate for C2 (alongside the time-dependent
estimates of (CE)TOT, (CP)TOT and i ), we proceed as follows.
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(i.) The amyloid number concentration distribution (at
any particular time) is set to follow an exponential distribu‐
tion defined by a time-dependent (and phenomenological)
decay constant, k (Eq. 6) such that k≥0.

(ii.) The average polymer degree i  (determined by Eq.
3) can be related to the decay constant k using Eq. 7
(derivation shown in Appendix 2). At each time interval of
the numerical integration cycle, the decay constant k is
evaluated afresh using the approximation shown in Eq. 7.

(iii.) Once determined, the value of the dynamic decay
constant, k, is used to provide an estimate of C2 upon inser‐
tion of the relevant quantities back into Eq. 6.

Ci = CE TOT  e −k . i

∑j = 2
z e −k . j (6)

k ≅  1
i − 2     (for i  >  2) (7)

By adopting this process for the determination of C2, Eq.
4 and 5, together with Eq. 3, can be used to evaluate the
time dependence of the formation of the total concentration
of protein in the form of amyloid, (CP)TOT, the concentration
of extendable ends, (CE)TOT, and the average polymer
degree i . Within this work we define a useful quantity, θ,
that represents the ratio of internal to end intrinsic scission
rates such that θ=bS2/bS1. Figure 2 describes the simulated
time dependence of the three quantities, (CP)TOT, (CE)TOT
and i , evaluated for different values of θ across the range
θ=[0, ∞).

Results and Discussion
The described approach provides an extraordinarily

simple means for incorporating differential fiber breakage
susceptibilities occurring either internally, thereby creating
two new fibers, or at the fiber ends, thereby releasing a
monomer unable to maintain the amyloid structure. From
Figure 2 we note that as θ increases from zero, the rate of
total amyloid formation, d CP TOT

dt , increases (Fig. 2a) as a
result of an increased rate of production of fiber ends,
d CE TOT

dt  (Fig. 2b), with a necessarily concomitant decrease
in the average amyloid degree, i  (Fig. 2c). As discussed
previously [9,19] and again more recently in Nicoud, L.,
et al. [16], such position dependent breakage suscepti‐
bilities may produce dramatic consequences for the devel‐
opment of biological or pharmaceutical agents designed to
either promote fiber dissolution [20,21] or fiber stabiliza‐
tion [21]. Deeper appreciation of this point can be gotten
when interpreting the situation through the lens of the fiber
breakage model of amyloidosis disease advanced by Hall
and Edskes [19,22].

Although simulation results are dependent upon the
values of the parameters adopted, confidence can be placed
in the general trends shown in Figure 2 for the following

three reasons. (i) Chosen parameters conform to a kineti‐
cally nucleated system (i.e. fG>>fN) thereby producing the
classical sigmoidal kinetic curve that is a characteristic
hallmark of amyloid growth [3–10]. (ii) Adopted parameters
describe a thermodynamically nucleated system (helical
polymerization) in which the total monomer concentration
is much greater than the characteristic critical concentration

Figure 2 Effect on amyloid growth rate due to differences in
internal (bS2) and end (bS1) breakage rates: Amyloid formation kinetics
are simulated via numerical integration of Eq. 4 and 5 (utilizing the
approximations derived in Eq. 6 and 7) for three relative cases
reflecting a different ratio, θ, of the internal to end breakage rates such
that θ=bS2/bS1. The simulations were carried out for a system where
fiber joining does not occur using the following common values for
additional parameter values, fN=0.001 M–1s–1, fG=200 M–1s–1, fJ=0
M–1s–1 and (C1)TOT=0.1 mM. The figure panels describe the formation
of (A) (CP)TOT, (B) (CE)TOT and (C) i . The three different cases corre‐
sponding to differences in internal versus end breakage rates are spec‐
ified as followed—solid lines (–) θ=1 (bS1=bS2=0.0025 s–1); dashed
lines (- -) θ→∞ (bS1=0 s–1, bS2=0.0025 s–1); dotted lines (···) θ=0
(bS1=0.0025 s–1s–1, bS2=0 s–1).

32 Biophysics and Physicobiology Vol. 17



i.e. (C1)TOT>>bS1/fG (when bS2=0) or (C1)TOT>>bS2/fG (when
bS1=0) [1–4,19,21]. (iii) Simulations transition from one
extreme limiting case of relative breakage to the other i.e. θ
is examined over the range [0, ∞). In the present instance
although different parameters will change absolute behavior
(i.e. different time scale and extents) they will not change
the relative behavior—the exposition of which is the chief
interest in this Note.
The principle assumption within the paper involves the

method for estimation of C2. To gain an appreciation as to
why the adopted approach is valid we first note that the
amyloid kinetic model is founded in the numerical integra‐
tion of just two differential equations (Eq. 4 and 5) with the
dependent variables describing the concentration of amy‐
loid ends, (CE)TOT, and total monomer in amyloid, (CP)TOT
(Eq.1 and 2). Due to its presence as a vanishing term in Eq.
4 and 5, error in the estimation of C2 will be virtually
insignificant as the polymer distribution increases in size
(i.e. C2/(CE)TOT→0; 2C2/(CP)TOT→0) thereby making the
need for its accurate evaluation under these conditions
unimportant [14,23]. At the other extreme, when C2 consti‐
tutes all of the amyloid fiber (i.e. C2/(CE)TOT=1; 2C2/
(CP)TOT=1), its evaluation is exact (see Appendix 2). Within
the intermediate region (as these fractions decrease from 1)
the exponential assumption will essentially be a linear
approximation, especially so for low average degree of
polymerization e.g. [2 < i  < 2.5]. Beyond the initial inter‐
mediate region (as i  > 2.5) the correctness of the expo‐
nential distribution assumption will become less exact but
not dramatically so, as due to its physical origin (as the
result of a sequential indefinite polymerization reaction) the
amyloid fiber number concentration distribution will be
exponential in character, especially at early times when
(CP)TOT is increasing [23,24]. As such, the simple model
described in the present paper will be sufficient to assist
with (i) simulation of the early time course of amyloid for‐
mation featuring differential fiber breakage related to posi‐
tion of the bond within the fiber, and (ii) characterization of
experimental kinetics via its use in non-linear regression
based fitting analysis. (Note—By early time course I am
referring to the vastly different time scales in fiber polymer‐
ization identified for attainment of (i) the monomer/poly‐
mer mass pseudo-equilibrium, and (ii) the polymer length
distribution [19,24,25]. The assumption of an exponential
distribution is expected to be less correct for prediction of
this second ‘later’ time scale than for prediction of the first
‘early’ time scale).

Two other notable assumptions made within the present
work are (i) the use of a phenomenological nucleus of a
size set at two monomers, and (ii) set equivalence of the
nucleus dissociation rate and terminal monomer dissocia‐
tion rate from the amyloid fibril. The first of these addi‐
tional assumptions was made due to concerns based on
partly practical and partly scientific reasons. The practical
concerns are due to vagaries associated with classification

of aggregate identity. If the nucleus size were to be appre‐
ciable (say 10 monomers) and formed in a stepwise fashion,
then aggregate species between size 2 and 10 may be either
amyloid or non-amyloid pre-nucleus in character. Determi‐
nation of the nature of these species is experimentally diffi‐
cult and further complicated by distinguishing whether or
not they are associated with on, off or parallel pathways
[14,26,27]. Scientific concerns relate to the way the nucleus
size has been previously asserted via model based kinetic
fitting. Results shown in Figure 2a clearly belie (or at least
should raise a warning flag) any estimate of nucleus size
based on use of fitting models featuring uniform breakage
rates or size-independent growth rates [16,19,28]. As such,
I would suggest that a minimal assumption of a nucleus
size of 2 is suitable for the development of the current low
parameter minimal model. Justification for the second of
these additional assumptions (an assumed common rate of
monomer dissociation from amyloid and nucleus i.e. both
characterized by bS1) is harder to provide due to the fact
that such information could only be supplied by isolated
time-dependent observations made at the nanometer level
of resolution (at present impossible). However, following an
Occam’s razor type argument (in which models involving
less parameters have greater scientific utility until proven
inadequate) a judgement on this question should only be
made on the basis of data analysis—for which no such suit‐
able data currently exist.

Conclusions
Due to the fact that the method developed here does not

describe an exact geometric dependence the current
approach is likely applicable to the description of other
systems involving one, two and three-dimensional poly‐
merization processes. Like the model introduced by Smith,
J. F., et al. [15] the current set of equations are simple
enough that it can be easily incorporated into more com‐
plex simulation routines describing amyloidosis disease
models [19,29,30], complex mixture models [14,26,31],
signal identification and processing [13,27,32–34], polymer
statistics based approaches involving amyloid formation
from the unfolded protein state [8,28,35], or in ‘meta-
models’ describing the transmission of prions in larger
scale, more complex studies, involving organism level
analysis of yeast, worms and flies [36–38]. Indeed use of
Eq. 2 may help to cast light on the molecular mechanisms
of candidates identified in ‘Anti-Prion’ screens [39].

Acknowledgements
I would like to thank (the now) Dr. Jeffrey Smith for a

number of interesting discussions related to the present
topic conducted during the course of his (JS’s) PhD.
I acknowledge thoughtful comments from the two Reviewers
who provided an exceptionally high quality review of the

Hall: Kinetic model of position biased amyloid breakage 33



manuscript. I thank Dr. H.K. Edskes for helpful discussion
and a highly enjoyable 15 years of collaborative work. I
thank the Institute for Protein Research at Osaka University
for the support they have provided over the last 5 years. I
gratefully acknowledge the US Government for funds pro‐
vided in the form of an ORISE Established Scientist Posi‐
tion. This research was supported in part by an appointment
to the National Library of Medicine (NLM) Research Par‐
ticipation Program. This program is administered by the
Oak Ridge Institute for Science and Education through an
interagency agreement between the U.S. Department of
Energy (DOE) and the National Library of Medicine
(NLM). ORISE is managed by ORAU under DOE contract
number DE-SC0014664. All opinions expressed in this
paper are the author’s and do not necessarily reflect the
policies and views of NLM, DOE, or ORAU/ORISE.

Conflicts of Interest
The author declares no conflict of interest.

Author Contribution
D.H. developed the theory and wrote the manuscript.

References
 [1] Oosawa, F. & Kasai, M. A theory of linear and helical aggre‐

gations of macromolecules. J. Mol. Biol. 4, 10–21 (1962).
DOI: 10.1016/S0022-2836(62)80112-0

 [2] Oosawa, F. & Asakura, S. Thermodynamics of the
Polymerization of Protein (Academic Press, New York,
1975).

 [3] Naiki, H., Higuchi, K., Nakakuki, K. & Takeda, T. Kinetic
analysis of amyloid fibril polymerization in vitro. Lab.
Invest. J. Tech. Meth. Path. 65, 104–110 (1991).

 [4] Naiki, H., Hashimoto, N., Suzuki, S., Kimura, H., Nakakuki,
K. & Gejyo, F. Establishment of a kinetic model of dialysis-
related amyloid fibril extension in vitro. Amyloid 4, 223–232
(1997). DOI: 10.3109/13506129709003833

 [5] Khan, M. A., Islam, M. M. & Kuroda, Y. Analysis of protein
aggregation kinetics using short amino acid peptide tags.
Biochim. Biophys. Acta Proteins Proteom. 1834, 2107–2115
(2013). DOI: 10.1016/j.bbapap.2013.06.013

 [6] Kuroda, Y. Biophysical studies of protein solubility and
amorphous aggregation by systematic mutational analysis
and a helical polymerization model. Biophys. Rev. 10, 473–
480 (2018). DOI: 10.1007/s12551-017-0342-y

 [7] Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the
kinetic parameters of prion replication. Biophys. Chem. 77,
139–152 (1999). DOI: 10.1016/s0301-4622(99)00016-2

 [8] Pallitto, M. M. & Murphy, R. M. A mathematical model of
the kinetics of β-amyloid fibril growth from the denatured
state. Biophys. J. 81, 1805–1822 (2001). DOI: 10.1016/
S0006-3495(01)75831-6

 [9] Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit
model of prion/amyloid formation and infection. J. Mol. Biol.
336, 775–786 (2004). DOI: 10.1016/j.jmb.2003.12.004

[10] Binger, K. J., Pham, C. L., Wilson, L. M., Bailey, M. F.,
Lawrence, L. J., Schuck, P., et al. Apolipoprotein C-II

amyloid fibrils assemble via a reversible pathway that
includes fibril breaking and rejoining. J. Mol. Biol. 376,
1116–1129 (2008). DOI: 10.1016/j.jmb.2007.12.055

[11] Andrews, J. M. & Roberts, C. J. A Lumry− Eyring nucleated
polymerization model of protein aggregation kinetics: 1.
Aggregation with pre-equilibrated unfolding. J. Phys. Chem.
B 111, 7897–7913 (2007). DOI: 10.1021/jp070212j

[12] Kashchiev, D. Protein polymerization into fibrils from the
viewpoint of nucleation theory. Biophys. J. 109, 2126–2136
(2015). DOI: 10.1016/j.bpj.2015.10.010

[13] Zhao, R., So, M., Maat, H., Ray, N., Arisaka, F., Goto, Y.,
et al. Measurement of amyloid formation by turbidity assay
—seeing through the cloud. Biophys. Rev. 8, 445–471
(2016). DOI: 10.1007/s12551-016-0233-7

[14] Hirota, N., Edskes, H. & Hall, D. Unified theoretical descrip‐
tion of the kinetics of protein aggregation. Biophys. Rev. 11,
191–208 (2019). DOI: 10.1007/s12551-019-00506-5

[15] Smith, J. F., Knowles, T. P., Dobson, C. M., MacPhee, C. E.
& Welland, M. E. Characterization of the nanoscale proper‐
ties of individual amyloid fibrils. Proc. Nat. Acad. Sci. USA
103, 15806–15811 (2006). DOI: 10.1073/pnas.0604035103

[16] Nicoud, L., Lazzari, S., Barragán, D. D. & Morbidelli, M.
Fragmentation of amyloid fibrils occurs in preferential posi‐
tions depending on the environmental conditions. J. Phys.
Chem. B 119, 4644–4652 (2015). DOI: 10.1021/
acs.jpcb.5b01160

[17] Han, W. & Schulten, K. Fibril elongation by Aβ(17–42):
kinetic network analysis of hybrid-resolution molecular
dynamics simulations. J. Am. Chem. Soc. 136, 12450–12460
(2014). DOI: 10.1021/ja507002p

[18] Heldt, C. L., Zhang, S. & Belfort, G. Asymmetric amyloid
fibril elongation: A new perspective on a symmetric world.
Proteins 79, 92–98 (2011). DOI: 10.1002/prot.22861

[19] Hall, D. & Edskes, H. A model of amyloid’s role in disease
based on fibril fracture. Biophys. Chem. 145, 17–28 (2009).
DOI: 10.1016/j.bpc.2009.08.004

[20] Doig, A. J., del Castillo-Frias, M. P., Berthoumieu, O., Tarus,
B., Nasica-Labouze, J., Sterpone, F., et al. Why is research
on amyloid-β failing to give new drugs for Alzheimer’s dis‐
ease? ACS Chem. Neurosci. 8, 1435–1437 (2017). DOI:
10.1021/acschemneuro.7b00188

[21] Panza, F., Seripa, D., Solfrizzi, V., Imbimbo, B. P.,
Lozupone, M., Leo, A., et al. Emerging drugs to reduce
abnormal β-amyloid protein in Alzheimer’s disease patients.
Expert. Opin. Emerg. Drugs 21, 377–391 (2016). DOI:
10.1080/14728214.2016.1241232

[22] Hall, D. & Edskes, H. Computational modeling of the rela‐
tionship between amyloid and disease. Biophys. Rev. 4, 205–
222 (2012). DOI: 10.1007/s12551-012-0091-x

[23] Elimelech, M., Gregory, J., Jia, X. & Williams, R. A. in
Particle Deposition & Aggregation: Measurement, Modelling
and Simulation (Williams, R. A. ed.) Colloid and Surface
Engineering, Chapter 6 Modelling of Aggregation Processes
(Butterworth-Heinemann, 1998).

[24] Hall, D. & Minton, A. P. Effects of inert volume-excluding
macromolecules on protein fiber formation. (II.) Kinetic
models for nucleated fiber growth. Biophys. Chem. 107, 299–
316 (2004). DOI: 10.1016/j.bpc.2003.09.016

[25] Hall, D. The effects of denaturation of tubulin on the charac‐
terization of its polymerization behavior. Biophys. Chem.
104, 655–682 (2003). DOI: 10.1016/s0301-4622(03)00040-1

[26] Hall, D., Kardos, J., Edskes, H., Carver, J. A. & Goto, Y. A
Multi-Pathway Perspective on Protein Aggregation: Implica‐
tions for the Rate and Extent of Amyloid Formation. FEBS
Lett. 589, 672–679 (2015). DOI: 10.1016/j.febslet.2015.
01.032

34 Biophysics and Physicobiology Vol. 17



[27] Hall, D., Zhao, R., Dehlsen, I., Bloomfield, N., Williams,
S. R., Arisaka, F., et al. Protein aggregate turbidity: Simula‐
tion of turbidity profiles for mixed-aggregation reactions.
Anal. Biochem. 498, 78–94 (2016). DOI: 10.1016/j.ab.
2015.11.021

[28] Hall, D. & Hirota, N. Multi-scale modelling of amyloid for‐
mation from unfolded proteins using a set of theory derived
rate constants. Biophys. Chem. 140, 122–128 (2009). DOI:
10.1016/j.bpc.2008.11.013

[29] Craft, D. L., Wein, L. M. & Selkoe, D .J. A Mathematical
Model of the Impact of Novel Treatments on the Aβ-Burden
in the Alzheimer’s Brain, CSF and Plasma. Bull. Math. Biol.
64, 1011–1031 (2002). DOI: 10.1006/bulm.2002.0304

[30] Weickenmeier, J., Kuhl, E. & Goriely, A. Multiphysics of
prionlike diseases: Progression and atrophy. Phys. Rev. Lett.
121, 158101-1–158101-6 (2018). DOI: 10.1103/PhysRevLett.
121.158101

[31] Nitani, A., Muta, H., Adachi, M., So, M., Sasahara, K.,
Sakurai, K., et al. Heparin-dependent aggregation of hen egg
white lysozyme reveals two distinct mechanisms of amyloid
fibrillation. J. Biol. Chem. 292, 21219–21230 (2017). DOI:
10.1074/jbc.M117.813097

[32] Hall, D. & Huang, L. On the use of size-exclusion chro‐
matography for the resolution of mixed amyloid aggregate
distributions (I) Equilibrium partition models. Anal.
Biochem. 426, 69–85 (2012). DOI: 10.1016/j.ab.2012.04.001

[33] Hall, D. Semi-automated methods for simulation and mea‐
surement of amyloid fiber distributions obtained from trans‐
mission electron microscopy experiments. Anal. Biochem.
421, 262–277 (2012). DOI: 10.1016/j.ab.2011.10.012

[34] Hall, D., Zhao, R., So, M., Adachi, M., Rivas, G., Carver,
J. A., et al. Recognizing and analyzing variability in amyloid
formation kinetics. Anal. Biochem. 510, 56–71 (2016). DOI:

10.1016/j.ab.2016.07.013
[35] Hall, D., Kinjo, A. R. & Goto, Y. A new look at an old view

of denaturant induced protein unfolding. Anal. Biochem. 542,
40–57 (2018). DOI: 10.1016/j.ab.2017.11.011

[36] Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S.
The physical basis of how prion conformations determine
strain phenotypes. Nature 442, 585–589 (2006). DOI:
10.1038/nature04922

[37] Bieschke, J., Cohen, E., Murray, A., Dillin, A. & Kelly, J. W.
A kinetic assessment of the C. elegans amyloid disaggrega‐
tion activity enables uncoupling of disassembly and proteoly‐
sis. Protein Sci. 18, 2231–2241 (2009). DOI: 10.1002/
pro.234

[38] Pokrzywa, M., Pawełek, K., Kucia, W. E., Sarbak, S.,
Chorell, E., Almqvist, F., et al. Effects of small-molecule
amyloid modulators on a Drosophila model of Parkinson’s
disease. PLoS ONE 12, e0184117 (2017). DOI: 10.1371/
journal.pone.0184117

[39] Wickner, R. B., Son, M. & Edskes, H. K. Prion Variants of
Yeast are Numerous, Mutable, and Segregate on Growth,
Affecting Prion Pathogenesis, Transmission Barriers, and
Sensitivity to Anti-Prion Systems. Viruses 11, 238 (2019).
DOI: 10.3390/v11030238

(Edited by Haruki Nakamura)

This article is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 Inter‐
national License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/.

Appendix
Appendix 1: Complete derivation of Eq. 4 and 5

To derive Eq. 4 we begin by writing out the rate equation
that corresponds to the actual set of allowable elementary
steps.

d CE TOT
dt = fNC1

2 + ∑i = 4
z bS2Ci i − 3 − bS1C2

−fJ∑m = 2
z Cm∑n = 2

z Cn

(A1)

By noting (i) when i=2, bS2 C2+bS2 Ci(i–3)=0, and (ii) when
i=3, bS2 Ci(i–3)=0, we can rewrite Eq. A1 as A2.

d CE TOT
dt = fNC1

2 + ∑i = 2
z bS2Ci i − 3 + bS2 C2

−bS1C2 − fJ CE TOT
2

(A2)

Based on Eq. 1 and 2 we can rewrite Eq. A2 as Eq. 4.
With regard to Eq. 5 we similarly begin by writing out

rate equation from allowable elementary steps (Eq. A3).

d CP TOT
dt = 2fNC1

2 − 2bS1∑i = 2
z Ci + fG ∑i = 2

z Ci C1 (A3)

Substitution of the identities shown in Eq. 1 allow Eq. A3
to be re-expressed as Eq. 5.

Appendix 2: Derivation of an analytical approximant
for C2

To obtain Eq. 7 we approximate the two discrete
summations in the left-hand side of Eq. A4 with two
separate integrals.

i =
∑i = 2

z i . e −k . i

∑i = 2
z e −k . i ≈  ∫i =  2

i =  ∞i . e −k . i di
∫i =  2
i =  ∞e −k . i di

 =  2 +  1
 k (A4)

With the value of i  determined at each step of the
numerical integration cycle by Eq. 3 a value for k can be
determined by solving Eq. 7 for the case of i  > 2 and then
substituting this value for k into Eq. 6 solving for i = 2. For
the case of i  = 2 we set C2 = (CE)TOT.
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