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Abstract: Serpentine soils are rich in heavy metals and poor in nutrients, limiting plant species’ per-
formance and survival. Nevertheless, specificities of such limitations as well as adaptability features
required for thriving in serpentine environments are barely known. The Barberton Greenstone Belt
in South Africa is an example of an area containing serpentine soil with adapted vegetation. In this
study, a pot experiment was performed to compare development features (i.e., germination rates,
leaf count, leaf length, biomass and photosynthetic capacity) during the early development of the
non-serpentine species Berkheya radula, a genus consisting of known metal hyperaccumulators from
serpentine areas in South Africa. B. radula was grown in serpentine soils taken from the Barberton
region. B. radula leaves had heavy metals in concentrations that confirmed the species as a phytoex-
tractor. There were trends for enhanced productivity and photosynthesis in the serpentine treatments
compared to the control. Leaf count, leaf length, electron transport efficiency (ψEo/(1 − ψEo), density
of reaction centers and PIABS,total were significantly and positively correlated with at least one of the
heavy metals in the leaves. Germination rates were positively influenced by K, whereas biomass and
the density of reaction centers were negatively affected by Ca and P, and only Ca, respectively. The
heavy metals Zn, Ni and Co were positively correlated with each other, whereas they were negatively
correlated with the macronutrients K, Ca and P. The latter correlated positively with each other,
confirming higher fertility of the control soil. Our study suggests that B. radula exhibits metallophyte
characteristics (i.e., preadapted), despite not naturally occurring on metal-enriched soil, and this
provides evidence that the potential for bioaccumulation and phytoremediation is shared between
serpentine and non-serpentine species in this genus.

Keywords: bioaccumulation; development; heavy metals; metallophyte; photosynthetic efficiency

1. Introduction

South Africa has regions with ultramafic-derived soil known as ‘serpentine soil’.
These soils can be broadly characterised by increased levels of heavy metals and lack of
plant nutrients, such as P, N and K [1,2]. The soil is often rich in Ni, Cr and Mg at levels
considered toxic to most plant species [1,3,4]. It also has a greater Mg:Ca ratio than other
soils, making nutrient uptake problematic for species that are not adapted to metal rich
soils [2]. The increased levels of Mg, for instance, increases the competition between this
and other elements for receptors on plant roots and inhibits or decreases the ability to
effectively take up nutrients. Such soil conditions have promoted habitat specialisation and
edaphic endemism within serpentine environments [3–5].

The influence of serpentine soil on the development of plants is yet to be fully under-
stood, as there are many discrepancies regarding its effects on the growth and development
of serpentine adapted and non-adapted species [5–7]. Serpentine soils are characterised by
plant species (i.e., metallophytes) adapted to toxic concentrations of heavy metals in the
soil, including hyperaccumulators, such as Berkheya coddii and B. nivea [8]. Berkheya is one
of only two genera (the other being Senecio) in Southern Africa that hyperaccumulate Ni
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(>1000 ppm in dry leaf tissue), and it might be possible that this trait is phylogenetically
shared [9].

Metalliferous soils create extremely harsh environments for plants to grow in; therefore,
these plants need to be specifically adapted [7,10]. These soils are characterised by high
phytotoxicity, with metallophytes presenting metal tolerance, exclusion or accumulation of
heavy metals [11]. A metallophyte is defined as a plant that holds a bioaccumulation factor
greater than one [11] and can occur as one of two types, namely obligate or facultative [12].

This study aimed to determine the effects of serpentine soils on the growth and
development of a non-serpentine species, B. radula, to study their growth capabilities on
metal rich soil in comparison to serpentine species currently utilized for phytoremediation.
This species is common in alluvial black soils, which are not characterised by high heavy
metal content [13,14]. We hypothesised that serpentine soils will negatively affect the
growth and vitality of B. radula as it is not adapted to metalliferous soil. Understanding
the effects of serpentine soils on non-adapted species may improve our knowledge of the
effects of metal-rich soils on plant development in stressed environments.

2. Results and Discussion
2.1. Heavy Metals and Macronutrients

The serpentine soil contained the expected heavy metal and macronutrient levels for
this type of ultramafic substrate (Appendix A) [15,16]. With the exception of Zn, heavy
metals were all significantly higher in the serpentine soil treatments (Figure 1). Cr, Ni
and Mn were the main contributors to the distribution and grouping of the soil samples
among treatments (Table 1; Figure 2). These metals usually result from metasomatised
and hydrothermally altered ultramafic rocks, from which serpentine soils derive [15,17].
The macronutrient Mg was significantly higher in the serpentine soils, whereas K was
higher in the control. The pH was neutral in the control and near neutral in the serpentine
soils, as expected [16]. Heavy metal concentrations in B. radula leaves differed regarding
Ni, Sr and Zn—all higher in plants grown in the serpentine soils. The distribution of the
concentrations was similar to that of the soils, with Ni, Mn and Zn as the main elements
driving the grouping. Macronutrients Ca, K and P were higher in the control treatment,
which reflected their lower availability in serpentine soil.

The similarities found in type and concentrations of heavy metals and macronutrients
in soils and leaves were in accordance with previous studies on the uptake of elements
by plants in South Africa [11]. Unexpectedly, B. radula, a non-serpentine species, was able
to take up these elements from the serpentine soils, and even showed a trend of higher
productivity and photosynthetic capacity.

Individuals of B. radula grown in S1 and S2, with a higher Mg:Ca ratio in the soil, takes
up more Mg in the leaves. The reason for this is possibly due to ion exchange between the
plant root and the soil particles [17]. Soil particles are negatively charged, which facilitates
the binding of Ca and Mg ions [17,18]. These ions compete for the same cation exchange
sites on soil particles and ion transporters on the plasma membrane. When there is limited
Ca and increased Mg (as with serpentine soil), Mg can outcompete Ca on the uptake sites
on the plasma membrane. Plants on serpentine soil deal with low Ca and high Mg either
through Mg exclusion (high affinity for Ca transport) or Mg tolerance once in the leaf such
is possibly the case here.

In a similar fashion, an increased level of K in the soil will increase the bioavailability
of Mn [17], and this could be verified throughout all three treatments. The difference of
pH ranges may allow for the easier movement of metals in and out of the soils [19,20], as
well as for a high Ca content which may be increasing the availability of other nutrients in
the soil.
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Figure 1. Trace metals and macronutrient concentrations (mean ± std) in soil (orange) and B. radula 
leaves (green) under the study treatments. Different letters indicate significant treatment differences 
(Tukey, p < 0.05). 
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Figure 1. Trace metals and macronutrient concentrations (mean ± std) in soil (orange) and B. radula
leaves (green) under the study treatments. Different letters indicate significant treatment differences
(Tukey, p < 0.05).

Table 1. Principal component analysis results are based on the heavy metals for the soil treatments.

Heavy Metal PC1 PC2

Soils

Ni −0.874 0.350
Cr −0.364 −0.469
Mn −0.313 −0.245
Co −0.075 −0.769
Cu −0.009 −0.044
Zn 0.008 −0.041
Sr 0.000 −0.047
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Table 1. Cont.

Heavy Metal PC1 PC2

Leaves

Ni 0.812 0.112
Zn 0.570 0.046
Mn −0.121 0.982
Cr 0.021 −0.006
Cu 0.014 0.040
Sr −0.009 −0.138
Co 0.003 0.002
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Figure 2. Principal component analysis of heavy metals in soil (left) and B. radula leaves (right), for
the study treatments.

2.2. Early Development and Photosynthetic Capacity

Germination rates, biomass, leaf count and leaf length were similar among treatments
(Table 2). Productivity was generally higher on the serpentine treatments, but not signifi-
cantly (p > 0.05; Figure 3). Increases in morphological parameters (e.g., leaf length) have
been observed in plants growing in nutrient-deficient soil, as a mechanism to improve the
photosynthetic area for instance [21]. Here, however, biomass was negatively correlated
(p < 0.05) with the macronutrients P and Ca (higher in the control soil), whereas leaf count
was positively correlated (p < 0.05) with Ni and Co, and leaf length positively correlated
with Zn and Co (Table 3). A decrease in biomass was observed in P-sensitive plants under
high Ca content [22]; however, the biochemical steps involved are still unknown, and there
are no records of such a process in Berkheya.
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Table 2. Values (means ± std) of developmental and photosynthetic variables assessed in plants of B. radula under the study treatments. Different letters in the same
column indicate significant differences among treatments.

Development
Germination (%) Leaf Count Leaf Length (mm) Biomass (mg)

D.a.p. 180 90 180 90 180 90 180
Control 80.0 ± 8.2 a 3.7 ± 1.2 a 5.0 ± 1.0 a 53.7 ±15.9 a 78.6 ± 27.6 a 136.7 ± 49.3 a 503.3 ± 275.4 a
Serpentine 1 62.5 ± 20.6 a 5.0 ± 1.0 a 6.0 ± 1.0 a 68.4 ± 13.1 a 108.4 ± 26.1 a 206.7 ± 75.7 a 1416.7 ± 877.8 a
Serpentine 2 65.0 ± 12.9 a 5.0 ± 1.0 a 6.7 ± 1.2 a 39.6 ± 20.2 a 117.2 ± 23.1 a 165.0 ± 206.1 a 1750.0 ± 791.6 a

Photosynthetic efficiency
φPo/(1 − φPo) ψEo/(1 − ψEo) δRo/(1 − δRo) γRC/((1 − γRC)) PIABS,total

D.a.p. 90 180 90 180 90 180 90 180 90 180
Control 4.2 ± 0.4 a 3.9 ± 0.3 a 1.3 ± 02 a 1.2 ± 0.1 a 0.3 ± 0.0 a 1.2 ± 0.1 a 0.4 ± 0.0 a 0.4 ± 0.0 a 0.5 ± 0.1 a 0.6 ± 0.2
Serpentine 1 3.1 ± 1.8 a 4.0 ± 0.3 a 1.3 ± 0.4 a 1.3 ± 0.2 a 0.5 ± 0.3 a 1.3 ± 0.2 a 0.6 ± 0.2 a 0.4 ± 0.0 a 0.9 ± 0.3 ab 0.7 ± 0.1
Serpentine 2 4.2 ± 1.7 a 4.1 ± 0.2 a 1.5 ± 0.5 a 1.5 ± 0.2 a 0.5 ± 0.2 a 1.5 ± 0.6 a 0.5 ± 0.2 a 0.4 ± 0.0 a 1.6 ± 0.6 b 1.0 ± 0.3
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Figure 3. B. radula seedlings (90 d.a.p.) from Serpentine 2 (left) and control (right).

Table 3. Correlation coefficients among developmental parameters, photosynthetic efficiency and
heavy metals and macronutrients in B. radula leaves, with significant relations among each other.
GR = growth rate, LC = leaf count, LL = leaf length, BM = biomass. * Significant (p < 0.05).

GR LC LL BM ψEo/(1 −
ψEo) RC/ABS PITOTAL Zn Ni Co K Ca

Zn −0.534 0.780 0.800 * 0.460 0.650 0.786 * 0.704 * - - - - -
Ni −0.510 0.830 * 0.660 0.580 0.664 * 0.930 * 0.842 * 0.884 * - - - -
Co −0.428 0.780 * 0.780 * 0.380 0.688 * 0.854 * 0.847 * 0.903 * 0.863 * - - -
K 0.778 * −0.470 −0.560 −0.590 −0.670 −0.660 −0.565 −0.790 * −0.770 * −0.650 - -

Ca 0.586 −0.590 −0.650 −0.680 * −0.511 −0.825 * −0.663 −0.790 * −0.860 * −0.670 0.899
* -

P 0.560 −0.400 −0.350 −0.770 * −0.500 −0.770 −0.598 −0.604 −0.738 * −0.592 0.827
*

0.862
*

In terms of photosynthetic capacity, plants from the serpentine treatments generally
outperformed those from the control treatment. The chlorophyll a fluorescence transients
of plants of all treatments were similar at 90 d.a.p.; however, they became significantly
distinct at 180 d.a.p. (Figure 4). This became particularly evident in the multiple turnover
steps, between the I and P inclination points (Figure 4). The PItotal performance index was
also higher in the serpentine treatments after 90 d.a.p. (Table 2). The PItotal and its partial
parameters were positively correlated with heavy metals in the leaves (Table 3), whereas
the density of the active reaction centres [γ(RC)/(1 − γ(RC))] was negatively correlated
with Ca. The influence of Ca on the photosynthetic machinery involves multi-step events
specifically related to the control of the pH in the thylakoid lumen, through bindings with
calcium sensor proteins [23]. However, how a decrease in the density of reaction centres in
B. radula could occur remains to be investigated.
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Figure 4. Chlorophyll a fluorescence transients (mean ± std) of B. radula leaves for the study
treatments. Different lowercase letters indicate significant difference among treatment curves.
* significantly different turnover steps among treatments (Tukey; p < 0.05).
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The role of heavy metals in plant development cannot be understood without con-
sidering substrate concentrations, bioavailability and species-specificities which together
determine the uptake, translocation and effects on plant morphology and physiology [15,19].
The three heavy metals Co, Ni and Zn showed positive and significant correlation to leaf
length and PItotal. Co and Ni are indirectly involved in photosynthetic activity, mainly
through transpiration influence and N metabolism, respectively [24,25], whereas Zn is
an important factor on the chloroplast development and the repair of photodamaged D1
proteins in the photosystem II [26]. At the same time, Co, Ni and Zn are also well known
for their toxicity to plants [27–29]. The three metals are taken up by Fe transporters [30,31]
and their hyperaccumulation and translocation are dependent on Fe concentrations in the
plant [32]—in this study, uptake in serpentine soils was increased, although not significantly.
Co and Ni concentrations were higher in serpentine soils when compared to that of the
control substrate, but B. radula was able to cope with and seemingly benefit from elevated
concentrations. This is characteristic of metallophytes—plants that can tolerate and make
use of metals in enriched edaphic environments [33]. This makes such species ideal for
green technologies such as phytoremediation of contaminated soils [34].

Berkheya has three known hyperaccumulators in South Africa [14]. It is possible that
the results observed for B. radula reflected shared metallophyte traits within the genus
lineage—not necessarily the hyperaccumulation feature (e.g., bioaccumulation > 1000 ppm
Ni), but mostly metal tolerance and good performance in metal-toxic/nutrient-poor soils.
This preadaptation has been demonstrated for edaphic specialists that may encompass
variation that could serve as the raw material for speciation on atypical, harsh habitats [35].
Serpentine and non-serpentine populations of a species may be constitutively adapted to
serpentine [36], and our study of B. radula shows that this type of preadaptation may also
hold for non-serpentine species of a genus comprising many serpentine-tolerant species.

Another possible explanation would be an occasional inadvertent uptake of heavy
metals as a consequence of efficient nutrient scavenging mechanisms [37]. Co, Ni and Zn
were positively correlated with each other and negatively correlated with the macronutri-
ents Ca and P (although not always significantly) in the plant leaves (Table 3). This means
that they could have all been translocated within the plant by the same process. Inadvertent
uptake can be observed in plants growing in nutrient-deficient soil [37], but this would still
not clarify why these metals improved the photosynthetic performance of B. radula.

3. Materials and Methods
3.1. Sampling Sites

Two sampling sites were chosen along the Barberton Greenstone Belt in South Africa.
The first sampling site (S 25◦49.501′ E 30◦48.430′), referred to as ‘serpentine 1′, was situated
in grassland surrounded by pine plantations and was rich in moist red laterite soil (Figure 5).
The second sampling site (S 25◦40.021′ E 31◦02.584′), referred to as ‘serpentine 2′, and was
located in a savanna surrounded by mines on dry, rocky, grey soil. Soil was collected at a
depth of 20 cm and 40 kg was collected from each site.
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3.2. Pot Experiment

Seeds of B. radula were collected from non-serpentine areas within the urban perime-
ter of Potchefstroom (South Africa) and sowed in three different treatments: control,
serpentine 1 and serpentine 2 soil. The control treatment was composed of a commercially
available gardening mix which comprised a mixture of soil, sand, compost, coir, perlite and
vermiculite. Four 4L pots were used per treatment (i.e., replicates) and each pot received
10 seeds (∑n seeds = 10 seeds per pot × 4 pots × 3 treatments = 120 seeds). The pots
were arranged in a completely randomised design in a greenhouse. The day and night
temperatures were set to 25 ◦C, under photosynthetic active radiation that ranged between
600 and 800 µmol m−2 s−1. The plants were watered once a day for 60 s by an irrigation
system of sprayers. The seedlings were assessed 90 days after planting (d.a.p.) and again at
180 d.a.p.

3.3. Heavy Metal Analysis

Soil samples (∑nsoil = 3 samples × 3 treatments = 9) were dried, ground and analysed
for the following heavy metals: Cr, Cu, Fe, Mn, Ni, Sr, Zn, and the macronutrients Ca, K, Mg
and P, using a Thermo Scientific Niton XL3t GOLDD+ handheld X-ray fluorescence instru-
ment. Each sample was analysed three times to ensure the accuracy of the measurements.
The pH was estimated via 1:2.5 extraction.

Plant leaf samples (∑n leaves = 3 samples × 3 treatments = 9) were washed with
deionised water, dried, ground and weighed to approximately 50 mg per sample. This was
followed by acid-digestion with HNO3 (9 mL, 65%) and HCl (3 mL, 32%), and micro-waved
digestion at 200 ◦C (Milestone, Ethos UP, Maxi 44) for 15 min. Samples were analysed with
an ICP-MS (Agilent 7500 series) for the determination of the same elements as the soil.

3.4. Early Development and Photosynthetic Capacity

Developmental features were measured as follows: (1) germination rate—proportion
of germinated seeds per pot for each treatment (seed germination recorded when hypocotyl
breaks though the soil surface); (2) leaf count; (3) leaf length—measured from the base to
the apex of the leaves; and (4) plant biomass—plants were harvested and dried in an oven
at 60 ◦C for 72 h and then weighed on a precision scale.

The photosynthetic capacity of the plants was quantified by measuring the efficiency
of photosystem II by means of chlorophyll a fluorescence. Measurements were taken with
a Handy PEA fluorimeter on 1 h dark-adapted leaves. The OJIP transients were analysed
using the PEA Plus V1.10 software (Hansatech Instruments Ltd., King’s Lynn, UK). Leaves
(∑nleaves = 3 leaves × 3 plants × 3 treatments = 27 leaves) were illuminated by red light
(650 nm peak) of 3000 µmol photons m−2 s−1 and recorded for 1 s with a 12-bit resolution.
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The performance indicator, PIABS,total, and the four partial parameters it comprises were
used to assess the photosynthetic capacity of the plants: the maximum yield of primary
photochemistry, [φP0/(1 − φP0)]; the probability of moving an electron further than the
primary quinone acceptor (QA

−) into the electron transport chain, [ψE0/(1 − ψE0)]; the
probability of electron transfer from the intersystem electron carrier to the electron acceptors
at the PSI acceptor side, [δR0/(1 − δR0)] and the density of the active reaction centres,
[γRC/(1 − γRC)].

3.5. Data Analysis

Heavy metals, macronutrients, and developmental and photosynthetic parameters
were evaluated individually among the treatment groups by means of one-way ANOVA or
Kruskal–Wallis tests, depending on the distribution of the data (Shapiro–Wilks, α = 0.05).
Differences among turnover steps and curves on the OJIP tests were evaluated through
ANOVAs with repeated measurements (α = 0.05). Tukey tests (for ANOVAs) and multiple
comparisons of p-values (for Kruskal–Wallis) were applied in the presence of significant
differences as a posthoc method (α = 0.05). Principal component analyses were also applied
to soil and leaf data to identify the main heavy metals contributing to the differences among
treatments. Correlations (Pearson, α = 0.05) were investigated among heavy metals and
macronutrients in leaves, as well as among these and the developmental and photosynthetic
parameters, in the search for possible causations of the observed results.

4. Conclusions

Berkheya radula is a non-hyperaccumulator; however, this study provides evidence of
its ability to uptake, tolerate and beneficially use heavy metals, allowing it to be categorised
as a metallophyte. Furthermore, B. radula showed trends of better developmental and pho-
tosynthetic performance in serpentine soils compared with plants in the control. B. radula
offers proof of inherent preadaptation to soil rich in heavy metals. It highlights the sharing
of traits between serpentine and non-serpentine species within the genus Berkheya. Hence,
further studies are needed to investigate the developmental characteristics of the genus in
metal-contaminated soils to explore its potential for future use in phytoremediation.

Author Contributions: Conceptualization, J.M.-S. and S.J.S.; methodology: J.M.-S., J.M.B.; software:
C.J.R., J.M.-S. and J.M.B.; validation: J.M.-S., S.J.S. and J.M.B.; formal analysis: J.M.-S.; investigation:
C.J.R.; resources: S.J.S. and J.M.B.; data curation: J.M.-S.; writing—original draft preparation: C.J.R.
and J.M.-S.; writing—review and editing: C.J.R., J.M.-S., S.J.S. and J.M.B.; visualization: J.M.-S. and
C.J.R.; supervision: J.M.-S. and S.J.S.; project administration: J.M.-S. and S.J.S.; funding acquisition:
S.J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research and its article processing charges were funded by the Unit of Environmental
Sciences and Management, North-West University, Potchefstroom, South Africa. Research funds
were provided by North-West university.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset containing concentrations of all evaluated elements in soil and
plants are available at figshare.com. DOI: 10.6084/m9.figshare.21026137.

Acknowledgments: We would like to acknowledge Sarina Claassens, North-West University, and
Nishanta Rajakaruna, California Polytechnic State University, for language and scientific editing.

Conflicts of Interest: The authors declare that they have no conflicting financial interest or personal
relationships that could have influenced the research reported in this paper.

figshare.com


Plants 2022, 11, 2360 10 of 11

Appendix A

Table A1. Trace metals and macronutrient concentrations (Mean ± Std) in soil and B. radula leaves
under the study treatments. Values in bold are above permissible limits [38]. Different letters in the
same line indicate significant differences among treatments.

Control Serpentine 1 Serpentine 2

Soil
Sr 15.04 ± 0.46 a 37.64 ± 13.31 b 13.27 ± 1.13 a
Zn 107.37 ± 12.19 a 101.14 ± 2.75 b 61.84 ± 1.24 c
Cu 1.60 ± 2.78 a 48.24 ± 2.60 b 44.82 ± 9.32 b
Ni 0.00 ± 0.00 a 2048.14 ± 65.46 b 4114.77 ± 25.09 c
Co 0.00 ± 0.00 a 567.63 ± 107.21 b 330.40 ± 64.59 c
Mn 262.40 ± 63.24 a 1184.58 ± 21.23 b 1727.32 ± 63.67 c
Cr 117.50 ± 4.11 a 1280.66 ± 79.55 b 1814.90 ± 42.63 c
Mg 2670.51 ± 349.96 a 19,525.26 ± 670.22 b 44,614.42 ± 6224.40 c
K 8763.92 ± 478.66 a 1290.55 ± 17.19 b 650.55 ± 75.16 b
Ca 8602.78 ± 818.77 3419.61 ± 463.49 3179.94 ± 133.12
P 2159.81 ± 62.81 595.18 ± 39.91 474.78 ± 152.93
Fe 19,916.33 ± 1263.6 a 78,109.90 ± 1783.22 b 111,242.45 ± 1780.36 c
pH 7.24 ± 0.03 6.33 ± 0.01 6.43 ± 0.03

B. radula leaves
Sr 15.73 ± 2.55 a 19.79 ± 1.95 b 12.59 ± 1.93 a
Zn 67.81 ± 5.55 a 99.80 ± 6.31 ab 102.20 ± 20.99 b
Cu 16.26 ± 0.91 16.20 ± 6.90 17.79 ± 5.56
Ni 2.21 ± 0.49 a 36.45 ± 17.44 ab 55.91 ± 22.51 b
Co 0.09 ± 0.02 0.18 ± 0.01 0.27 ± 0.14
Mn 55.15 ± 17.70 31.60 ± 7.37 50.90 ± 11.31
Cr 3.32 ± 1.62 3.75 ± 2.81 2.93 ± 1.90
Mg 6776.00 ± 664.18 a 21,840.00 ± 3571.99 b 21,996.67 ± 4056.51 b
K 61,373.33 ± 10705.05 a 24,443.33 ± 5969.00 b 18,530 ± 1286.90 b
Ca 32,470.00 ± 3707.88a 12,434.67 ± 2512.00 b 9406.67 ± 2049.05 b
P 3234.00 ± 967.40 a 1881.00 ± 472.27 ab 1449.67 ± 115.63 b
Fe 162.50 ± 50.19 114.31 ± 20.91 229.57 ± 112.49
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