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ABSTRACT

Extensive studies have shown that breast milk is the best source of nutrition for infants, 
especially during the first six months, because it fulfills almost all of their nutritional needs. 
Among the many functional building blocks in breast milk, human milk oligosaccharides 
(HMOs) have been receiving more attention recently. Furthermore, it is the third most 
common group of compounds in human milk, and studies have demonstrated the health 
benefits it provides for infants, including improved nutritional status. HMOs were previously 
known as the ‘bifidus factor’ due to their ‘bifidogenic’ or prebiotic effects, which enabled 
the nourishment of the gastrointestinal microbiota. Healthy gastrointestinal microbiota are 
intestinal health substrates that increase nutrient absorption and reduce the incidence of 
diarrhea. In addition, HMOs, directly and indirectly, protect infants against infections and 
strengthen their immune system, leading to a positive energy balance and promoting normal 
growth. Non-modifiable factors, such as genetics, and modifiable factors (e.g., maternal 
health, diet, nutritional status, environment) can influence the HMO profile. This review 
provides an overview of the current understanding of how HMOs can contribute to the 
prevention and treatment of nutritional issues during exclusive breastfeeding.
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INTRODUCTION

For infants up to six months of age, the best nutrition is exclusive breastfeeding. This 
practice is recommended by the World Health Organization (WHO) for up to one to two 
years [1]. Breastfeeding protects the infants against infections and malocclusion, increases 
intelligence, and reduces the risk of being overweight and diabetes [2]. According to the 
WHO, the overall rate of exclusive breastfeeding for infants under six months of age is only 
40% [3].
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Human breast milk contains macronutrients, micronutrients, digestive enzymes, hormones, 
immune cells, and many bioactive molecules. Human milk oligosaccharides (HMOs) are the 
third most abundant group of bioactive substrates in breast milk, following lactose (70 g/L) 
and lipids (40 g/L) [4]. This means that approximately 100 HMOs are fully characterized; 
therefore, it is assumed that more than 200 HMOs exist [5]. Oligosaccharides are only found 
in trace amounts in the mature milk of animals [6].

The quantity, quality, and balance in intestinal microbiota are essential to an infant's health 
and directly and indirectly affect nutritional status [7]. The disruption of the composition 
and function of the gut microbiome influence the nutritional status of infants, leading to 
undernutrition and obesity [8]. Wasting, stunting, and obesity in infants are associated with 
dysbiosis [9]. Originally, HMOs were identified as the ‘bifidus factor’ in breast milk with their 
‘bifidogenic’ or prebiotic effects [4]. The presence of HMOs determines the development of 
the infant's gastrointestinal (GI) microbiota [10].

Genetic profile influences the HMO profile [4]; the α-1-2-fucosyltransferase (FUT-2) and α-1-
3-4-fucosyltransferase (FUT-3) genes, in particular, specify the HMO profile. Furthermore, 
FUT-2 is responsible for the Se gene and categorizes mothers as secretors (Se+) or non-
secretors (Se–), while the FUT-3 gene is responsible for the Lewis Group gene and categorizes 
mothers as Lewis+ or Lewis– [4]. Higher concentrations and more complex profiles of HMOs 
are found in Se+ Le+ mothers than in Se− Le− mothers [11]. The secretor status is influenced 
by geographic and racial differences, and almost 20% of the population is estimated to be 
composed of non-secretors [12].

This review explores how HMOs can contribute to the prevention and treatment of 
nutritional issues during exclusive breastfeeding.

HUMAN MILK OLIGOSACCHARIDES

The structure of HMOs consist of 3 to 14 monosaccharides [13]. Specifically, D-glucose 
(Glc), D-galactose, N-acetylglucosamine (GlcNAc), L-fucose, and sialic acid (Sia; N-acetyl 
neuraminic acid) are the five monosaccharide building blocks of HMOs [14]. There are three 
classifications of HMOs [7]; (a) 35-50% of the HMOs are neutral (fucosylated) HMOs (e.g., 
2′FL, 3′FL, lacto-N-fucopentaose (LNFP) I, LNFP II, and LNFP III) and contain fucose at the 
terminal position; (b) 42-55% are nitrogen-containing neutral (non-fucosylated) and contain 
GlcNAc at the terminal position (e.g., lacto-N-neotetraose [LNnT] and lacto-N-tetraose 
[LNT]); and (c) the remaining 12-14% are acidic (sialylated; e.g., 3′SL and 6′SL) and contain Sia 
at the terminal position. The type, structure, and size of the HMOs are listed in Table 1 [15].

The basic blueprints of HMO synthesis are generally applicable to all HMOs, although inter-and 
intra-personal alterations affect the variations [16]. These factors are further categorized into 
modifiable and non-modifiable factors. Genetic factors are non-modifiable factors determined 
by the FUT-2 and FUT-3 genes. The maternal secretor status has a more significant influence on 
HMO variations than does the Lewis blood type status, as described in Table 2 [17,18]. However, 
only 60% of Asian mothers are secretors, compared to 74% of Caucasian mothers who are 
secretors [12]. The modifiable factors include maternal health and nutritional status, diet [19], 
duration of pregnancy [4], course of lactation [12], duration of breastfeeding [12], infant-
related factors (e.g., sex, birth weight) [12], and the environment [11].
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HMO biosynthesis is an extension of lactose biosynthesis, as all HMOs carry lactose at their 
reducing ends. This occurs in the Golgi apparatus of cells lining the alveoli and smaller 
ductules and begins with Glc [20]. Most of the effects of HMOs occur on cells in lymphoid 
tissues associated with mucous membranes because of the natural resistance of these cells 
to GI and duodenal digestion. These effects can also transit through the GI tract [21]. HMOs 
can also perform at the systemic level since approximately 1% of HMOs are absorbed and 
enter the systemic circulation [7].

ADVANTAGES OF HMOS

Maintenance of gut health
The proposed theories of how HMOs help combat malnutrition are based on the modulation 
of the gut microbiome [22]. The quantity and quality of the gut microbiome are related to 
malnutrition and obesity in infants [23]. The composition of the neonatal gut microbiota 
is known to be associated with HMOs [24]. The bifidogenic and prebiotic effects of HMOs 
promote the sustenance of the microbiome in infants [4].

Although the mechanisms are not clear, it is stipulated that the microbiome regulates the 
somatotropic axis, growth hormone, and insulin-like growth factor-1 activity to stimulate 
infant growth [23]. HMOs also influence appetite-regulating hormones, including ghrelin, 
glucagon-like peptide-1, and leptin [8]. Moreover, the microbiome influences metabolism 
and the nutritional status by affecting digestion, absorption, and energy storage [23].
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Table 1. Highly abundant HMOs in human breast milk
Oligosaccharide (abbreviation) Structure Type and size
2'-fucosyllactose (2'-FL) Fucα1,2Galβ1,4Glc Fucosylated, neutral, triose
Lacto-N-fucopentaose I (LNFP I) Fucα1,2Galβ1,3GlcNAcβ1,3Galβ1,4Glc Fucosylated, neutral, tetraose
Lacto-N-difucohexose I (LNDFH I) Fucα1,2Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc Difucosylated, neutral, hexaose
Lacto-N-fucopentaose II (LNFP II) Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc Fucosylated, neutral, pentose
3'-fucosyllactose (3-FL) Galβ1,4(Fucα1,3)Glc Fucosylated, neutral
Lactodifucotetraose (LDFT) Fucα1-2Galβ1-4(Fucα1-3)Glc Difucosylated, neutral, tetraose
Disialyllacto-N-tetraose (DSLNT) Neu5Acα2,3-Galβ1,3-(Neu5Acα2,6)-GlcNAcβ1,3-Galβ1,4-Glc Difucosylated, acidic, hexaose
3'-sialyl lactose (3'-SL) NeuAcα2,3Galβ1,4Glc Sialyl, acidic, triose
6'-sialyl lactose (6'-SL) NeuAcα2,6Galβ1,4Glc Sialylated, acidic, triose
Monofucosylmonosialyllacto-N-hexaose 
(MFMSLNH)

Neu5Acα2,6-(Galβ1,3)-GlcNAcβ1,3-(Galβ1,4-[Fucα1,3-]GlcNAcβ1,6-)Galβ1,4-Glc Sialylated and fucosylated, acidic, octaose

Lacto-N-tetraose (LNT) Galβ1,3GlcNAcβ1,3Galβ1,4Glc Nonfucosylated, neutral, tetraose
Lacto-N-neotetraose (LNnT) Galβ1,4GlcNAcβ1,3Galβ1,4Glc Nonfucosylated, neutral, tetraose
Glc: D-glucose, Gal: D-galactose, GlcNAc: N-acetylglucosamine, Fuc: L-fucose, Neu5Ac: N-acetyl neuraminic acid.
Adapted from Gastroenterology and Nutrition: Neonatology Questions and Controversies. 3rd ed. Philadelphia: Elsevier Saunders, 2019:43-58 [15].

Table 2. Milk oligosaccharide groups and the related genotypes
Milk group Genotypes Phenotypes Fucosyl-Oligosaccharides*

Secretor Lewis Secretor Lewis
1 Se/– Le/– Secretor Lewis positive 2'-FL, LNDFH I+II, LNFP I+II+III, 3FL, LDFT, LNnT, LNT, LNH, MFLNH II
2 se/se Le/– Non-secretor Lewis positive LNDFH I+II, 3FL, LNFP II+III, LNnT, LNT, LNH, MFLNH II
3 Se/– le/le Secretor Lewis negative 3FL, LNFP I+III, LDFT, 2'-FL, LNnT, LNT, LNH, MFLNH II
4 se/se le/le Non-secretor Lewis negative 3FL, LNFP III, MFLNH II, LNnT, LNT, LNH
2′-FL: 2′-fucosyllactose, LNDFH: lacto-N-difucohexose, LNFP: lacto-N-fucopentaose, 3FL: 3′-fucosyllactose, LDFT: lactodifu-cotetraose, LNnT: lacto-N-
neotetraose, LNT: lacto-N-tetraose, LNH: lacto-N-hexaose, MFLNH: monofucosyllacto-N-hexaose, DSLNT: disialyllacto-N-tetraose, LST: sialyllacto-N-tetraose, 
3′SL: 3′-sialyl lactose, 6′SL: 6′-sialyl lactose.
*All sialyl-oligosaccharides, including DSLNT, LST, 3′SL, and 6′SL, are present in all milk groups.
Adapted from Bering (Nutrients 2018;10:1461) [18].
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Abnormalities and immaturity of the microbiome disrupt the intestinal barrier, resulting in 
the deterioration and dullness of mucus, intestinal permeability, and immune dysfunction, 
affecting the health and growth of infants [23]. The essential amino acids, one of the vital 
nutrients for normal growth, are also influenced by microbiome dysbiosis [23]. Recent 
studies found that the normal composition pattern of the microbiota in the malnourished 
infants they examined was disrupted, suggesting that disrupted microbiota development 
impairs healthy postnatal growth [24].

Protection against infection
Infants are more vulnerable to infection by opportunistic pathogens because of their 
immature intestinal immune system [25]. To achieve good nutritional status, an infant 
must receive optimal energy intake; however, infections can negatively affect nutritional 
status. Frequent infection in infants causes deficits in calories, resulting in a negative energy 
balance, failure in weight gain, and eventually impaired linear growth [26].

The first line of defense against innate immunity is intestinal health and intestinal barrier 
function. Several mechanisms have been suggested for the anti-infection property of HMOs, 
mainly in that they (i) are believed to be the preferred substrate for the growth of certain 
“good” bacteria in the GI tract; (ii) prevent bacterial binding by acting as decoy molecules 
bound by pathogenic bacteria; and (iii) modulate the immune system through direct 
interaction [27].

Alkaline phosphatase is an important molecule for the maintenance of gut barrier function. 
The increased expression of alkaline phosphatase indicates the differentiation and growth 
of human intestinal epithelial cells, and alkaline phosphatase is known to be promoted by 
siallylactose [28]. Relatively high amounts of LNFP I and III and relatively low amounts of 
LNT are found in breast milk received by infants without sick days (e.g., diarrhea, fever, 
rash, coughing). The increased LNFP 1 levels are believed to help infants fight infection 
and maintain normal growth [29]. The incidence of diarrhea after two years is reduced by 
a relatively high abundance of fucosyl oligosaccharides. A high concentration of LNFP II in 
uninfected infants exposed to human immunodeficiency virus (HIV) results in a decrease in 
gastroenteritis and respiratory infections after 6 and 12 weeks, which also reduces the risk of 
HIV transmission and mortality [30].

Few studies have demonstrated the role of HMOs in respiratory viral infections. The viral 
load of the respiratory syncytial virus (RSV) has been shown to decrease in the presence of 
2′FL, while the influenza viral load decreases due to the action of LNnT and 6′SL. Siallylated 
HMOs, 3-′SL, and 6-SL, can block the hemagglutinin of the influenza virus, thereby 
preventing influenza virus infection [31]. Subsequently, other additional Sia-containing 
HMOs have been identified to bind the influenza virus. The influenza viral load in airway 
epithelial cells has been shown to decrease in the presence of 6′SL and LNnT, while 2-FL 
influences RSV infection [32]. Infants have been found to experience mild respiratory and 
enteric problems by 6 and 12 weeks, which were observed to be associated with LNF II levels 
in breast milk and infant feces at two weeks postpartum [33]. The theory for this mechanism 
is still unknown. It is believed that absorbed HMOs enter the bloodstream and airways to 
protect infants against pathogens. Milk reflux coats the mucosal respiratory airways with 
oligosaccharides [34].

504https://pghn.org https://doi.org/10.5223/pghn.2021.24.6.501

Human Milk Oligosaccharides as a Missing Piece in Combating Nutritional Issues 
during Exclusive Breastfeeding

https://pghn.org


Boosting of the immune system
The shifting of T cell responses to balanced Th1/Th2 cytokine production is the method 
used by HMOs to alter the immune response [35]. The Th17, Th22, and γδ T cells play an 
important role in the production of interleukin (IL)-22. This complex maintains the integrity 
of the epithelial barrier and regulates the composition of the microbiota [36]. The anti-
inflammatory activity of 3′SL works by reducing the expression of IL-12 and IL-8 in Caco-2 
cells while being mediated by nuclear factor kappa-light-chain-enhancer of activated B cells 
and stimulates the anti-inflammatory nuclear receptor peroxisome proliferator activated 
receptor gamma [37]. A study on in vitro inflammatory models showed the anti-inflammatory 
effects of neutral HMOs on the intestinal epithelium [38]. These effects were later studied 
in an infant receiving infant formula supplemented with 2′FL by measuring inflammatory 
cytokines in the infant's systemic circulation [39]. This study revealed lower levels of Tumour 
necrosis factor α, IL-1a, IL-1b, and IL-6 resembling 2′FL found in breastfed infants. Previous 
studies on LNFP III and LNnT also demonstrated their immunosuppressive effects [40], and 
LNFP III was found to induce IL-10 production in macrophages [41].

Infant growth
Infant growth is not related to the maternal secretor and Lewis group statuses [42]. However, 
the contents of HMOs that are influenced by the maternal secretor status (2′-FL and LNFP I) 
has been associated with infant growth and anthropometry. Specific HMOs found in secretor 
mothers, such as 2′-FL and LNFP I, have been associated with infant growth. This increases 
the consideration of supplementing infant formulas with 2′FL and LNnT as a part of infant 
nutrition [43].

A previous study found that the concentration of total HMOs in the colostrum was not 
particularly high and was associated more with the blood characteristics of the mother. High 
amounts of 1,2 fucosylated HMOs were found in secretor mothers, while only non-detectable 
or very low concentrations were found in non-secretor mothers [44]. These differences have 
biological consequences for infants. The incidence of diarrhea caused by the enterotoxigenic 
Escherichia coli, Campylobacter jejuni, or caliciviruses was significantly reduced in the presence 
of 1,2 fucosylated HMOs [45]. Furthermore, a low level of FUT-2 oligosaccharides reduced 
the diversity, richness, and abundance of Bifidobacterium. Although the secretory enzymes 
transferring 1,2-fucose were low, 1,3- and 1,4-fucosylated HMOs and the non-fucosylated 
residue were detected at high levels in the milk of non-secretor mothers [46]. Sprenger et al. 
[42] defined the level of 2′FL as a marker of secretor status correlated with a lower incidence 
of eczema and allergies mediated by immunoglobulin E.

In a group of Gambian infants, 3SL was positively correlated with the weight-for-age Z-score 
(WAZ). The higher production of 3′SL from 4 to 20 weeks was associated with a higher WAZ 
score of the infant at 20 weeks. In contrast, the same study showed a negative association 
between sialyllacto-N-neotetraose and WAZ scores [47].

A weight velocity at zero to five months of age and a fat mass index (FMI) at five months 
of age were positively associated with 2′-FL. Conversely, a negative association was found 
between height-for-age Z-scores (p=0.008), weight velocity at zero to five months of age 
(p=0.009), and FMI (p=0.033) with LNnT. In other words, a lower LNnT can lead to a high 
weight gain (HW group) (p=0.012). Certain HMOs, including 2′FL added to infant formula, 
are suspected to be the cause of excessive weight gain [48].
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Severely stunted infants at six months in the Malawian group previously received milk from 
mothers that produced significantly less sialylated HMOs than that of mothers with healthy 
infants. This showed a positive association between growth and sialylated HMOs. This 
finding was supported by another Malawian group that showed a significantly low level 
of total and sialylated HMO content in stunted infants [49]. At six months, each 1-mg/mL 
increase in disialyllacto-N-tetraose was associated with a 0.01 cm increase in the six-months 
length (β=0.01, p=0.04) [50].

In contrast, in a follow-up study of infants up to four months of age, there were no significant 
differences in body weight, body length, body mass index (BMI), and head circumference 
between infants receiving low or high FUT-2 associated HMOs. Although the data did not 
show a statistically significant result, male infants receiving milk with low 2′-FL were likely 
to have a slightly higher BMI at one month, though this was no longer observed after four 
months when they had a lower BMI and body weight gain [42].

CONCLUSION

HMOs play a crucial role in infants' nutritional status. Until recently, only a few studies 
carried out on humans have examined the association between HMOs and the nutritional 
status of infants, some of which possibly only had a small study population and limited study 
period. The results of these studies were also contradictory due to mixed interpretations. 
More data from large and longitudinal studies are needed to clarify the functions of HMOs.
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