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Abstract
Objectives: Implicit bias perpetuates health care inequities and manifests in patient–provider interactions, particularly nonverbal social cues like 
dominance. We investigated the use of artificial intelligence (AI) for automated communication assessment and feedback during primary care 
visits to raise clinician awareness of bias in patient interactions.
Materials and Methods: (1) Assessed the technical performance of our AI models by building a machine-learning pipeline that automatically 
detects social signals in patient–provider interactions from 145 primary care visits. (2) Engaged 24 clinicians to design usable AI-generated com-
munication feedback for their workflow. (3) Evaluated the impact of our AI-based approach in a prospective cohort of 108 primary care visits.
Results: Findings demonstrate the feasibility of AI models to identify social signals, such as dominance, warmth, engagement, and interactivity, 
in nonverbal patient–provider communication. Although engaged clinicians preferred feedback delivered in personalized dashboards, they found 
nonverbal cues difficult to interpret, motivating social signals as an alternative feedback mechanism. Impact evaluation demonstrated fairness 
in all AI models with better generalizability of provider dominance, provider engagement, and patient warmth. Stronger clinician implicit race 
bias was associated with less provider dominance and warmth. Although clinicians expressed overall interest in our AI approach, they recom-
mended improvements to enhance acceptability, feasibility, and implementation in telehealth and medical education contexts.
Discussion and Conclusion: Findings demonstrate promise for AI-driven communication assessment and feedback systems focused on social 
signals. Future work should improve the performance of this approach, personalize models, and contextualize feedback, and investigate system 
implementation in educational workflows. This work exemplifies a systematic, multistage approach for evaluating AI tools designed to raise 
clinician awareness of implicit bias and promote patient-centered, equitable health care interactions.

Lay Summary
Although effective communication between patients and clinicians improves the quality of health care, implicit bias in clinicians worsens com-
munication and perpetuates inequities. Clinician implicit bias based on a patient’s race manifests in nonverbal signals in their communication 
with patients, such as dominating the interaction. Through a 3-stage approach, we used artificial intelligence (AI) to automatically detect such 
nonverbal signals and deliver feedback to clinicians to raise their awareness of implicit bias and opportunities to improve their communication 
with patients. First, we built an AI pipeline that feasibly detected nonverbal signals, such as dominance, warmth, engagement, and interactivity, 
in patient–provider communication during primary care visits. Second, we engaged clinicians to design personalized feedback dashboards that 
visualize patterns in those signals across visits. Third, we evaluated the impact of our AI-based communication assessment and feedback sys-
tem in a new set of visits. The AI demonstrated fairness with respect to patient race and was better able to detect health care provider domi-
nance, provider engagement, and patient warmth. Stronger clinician implicit race bias was associated with less provider dominance and 
warmth. Overall, clinicians were interested in this promising AI approach, but suggested improvements to make it more acceptable and feasible 
in clinical practice and medical education.
Key words: nonverbal communication; social interaction; interpersonal relations; primary health care/patient-centered care, artificial intelligence;  
“prejudice/bias, implicit.”. 
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Background and significance
Patient-centered communication that reflects a strong rap-
port/trust and empathy during patient–provider interactions 
is linked with care quality and outcomes.1 In contrast, clini-
cian implicit bias—based on a person’s gender, race, ethnic-
ity, socioeconomic status and other aspects of a person’s 
physical characteristics and perceived identity—is associated 
with adverse outcomes and poor quality of care, particularly 
among patients from historically marginalized groups.2,3

Implicit bias is often expressed through nonverbal patient– 
provider communication, such as vocal patterns and body 
language.4 For example, Cooper et al.5 found that clinicians 
with stronger implicit race attitudes favoring White people 
over Black people express greater verbal dominance (ie, 
greater conversational control reflected by the ratio of clini-
cian to patient statements) with Black patients compared to 
White patients. Yet, assessing such nuances in the quality of 
clinical interactions is complex. With advances in ambient 
clinical intelligence, such speech-to-text translation of 
patient–provider interactions into clinical notes,6,7 there is a 
critical opportunity to build artificial intelligence (AI) systems 
that extract signals associated with implicit bias from those 
interactions.

Social signals are expressions of one’s attitude toward a 
social situation manifested through nonverbal cues, such as 
turn-taking, eye contact, and interruptions.8,9 Social signals 
in patient–provider interactions, such as warmth and domi-
nance, have traditionally been assessed using manual coding 
systems like Roter Interaction Analysis System (RIAS).10

Roter Interaction Analysis System is a widely used manual 
coding scheme to characterize patient-centered interactions 
during medical encounters. The RIAS Global Affect Rating 
codes for signals associated with affect, such as warmth, 
dominance, interactivity, and engagement, on a scale from 
low (1) to high (6). Although RIAS is one of the most com-
mon systems for studying social signals in patient–provider 
interactions, its application to annotate patient visits is labor- 
intensive. Annotation requires trained human observers to 
code visits for each social signal manually. This process can 
require hours to analyze visits, which limits scalability.

In contrast to traditional manual assessment, automated 
social signals processing (SSP) methods9 show promise for 
understanding social interactions through machine analysis 
of nonverbal behavior.11–14 Outside of health care, SSP has 
been used to assess conversational dynamics in several con-
texts,8 ranging from hiring negotiations15 to team cohe-
sion.16 Automated assessment of clinical conversations can 
ensure that clinicians receive efficient feedback about the 
quality of communication without manual assessment. 
Advances in SSP have created opportunities to raise clinician 
awareness of communication patterns with patients. For 
example, prior work on the “EQClinic”12,13 and 
“ReflectLive”14 systems describe the use of SSP to assess and 
improve nonverbal communication with patients during clini-
cal consultations. Prior work on “Entendre” demonstrated 
clinician acceptance of the use of social signals as a communi-
cation feedback mechanism based on nonverbal cues.17 How-
ever, the feasibility of SSP for detecting signals associated 
with implicit bias in patient–provider communication has not 
been explored. There is an opportunity for AI to automate 
this assessment and facilitate research on implicit bias in 
health care.

There is a need to explore the use of AI to develop SSP 
tools that automatically assess and deliver feedback to clini-
cians about their communication with patients. Potential gen-
eralizability of such models could help to demonstrate the 
potential for improving clinician awareness of implicit bias in 
their communication and fostering health care equity. We 
describe our approach and the opportunity for equity- 
focused AI in the context of ambient clinical computing.

Objective
We report on the 3-staged investigation of our AI-generated 
communication assessment and feedback system to: (1) assess 
technical AI performance, (2) design usable AI-generated 
communication feedback for clinicians’ workflow, and (3) 
evaluate the impact of our AI approach.

Stage 1: Technical performance of AI
In Stage 1, we annotated social signals in audio-recorded pri-
mary care visits and used the annotations to build and test 
the performance of a machine-learning pipeline that auto-
matically predict social signals from patient–provider interac-
tions. By investigating the capability of AI models, we 
addressed the following research question (RQ): RQ1: Can 
meaningful social signals that reflect patient-centered care 
and potential implicit bias be feasibly extracted from audio- 
recorded nonverbal patient–provider interactions? Prelimi-
nary results were reported as a Stage 1 AMIA AI showcase 
presentation.18 Our previous work18,19 focused on a smaller 
subset of signals in a reduced dataset.

Methods
We built an SSP pipeline by annotating 12 social signals in 
patient–provider interactions in the secondary use of 145 
recorded primary care visits from the “Establishing Focus” 
(EF) study.20 The EF study investigated the impact of a col-
laborative agenda setting intervention on the quality of pri-
mary care encounters. Although the intervention was found 
not to impact visit content or time use,21 the study generated 
data from 2002 to 2006 from audio-recorded study visits and 
post-visit questionnaires from patients and providers we used 
for secondary analysis. See Supplementary material S1 for 
details on social signals and participant demographics from 
that study. Study procedures were approved by the University 
of Washington (UW) Institutional Review Board (IRB) 
#00005436. The 12 social signals were labeled by 3 trained 
coders based on RIAS Global Affect Ratings10: dominance, 
attentiveness, warmth, engagement, empathy, respect, inter-
activity, irritation, nervousness, �hurriedness, ��sadness, and 
��emotional distress (�provider only, ��patient only).

To capture the granularity of nonverbal communication 
behaviors throughout visits, we used the “thin slice” 
approach. A thin slice refers to “a brief excerpt of expressive 
behavior sampled from the behavioral stream”.22 When 
applied to thin 1-minute slices of recorded medical encoun-
ters, RIAS was shown to be an efficient predictor of visit out-
comes while capturing local variation in communication 
quality.23 Informed by this approach, we annotated social 
signals in thin slices of recorded visits. We split each visit into 
successive thin slices of 3-minute intervals, resulting in 690 
slices across the 145 visits, each locally annotated by 3 
trained coders. Informed by domains of RIAS Global Affect 
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Ratings,10 coders rated each slice across the 12 social signals 
on a scale from 1 (low) to 6 (high). For irritation, nervous-
ness, sadness, and emotional distress, a rating of 1 was 
assigned when there were no signs of the affect. Because these 
4 social signals were rarely rated with a score other than 1, 
we excluded all 4 from our models. For the remaining 8 
social signals, a rating of 3 was considered average affect. 
Because few slices deviated significantly from the average 
(score of 3), we observed extreme class imbalance where 
most slices fell near the mean score for each signal. To 
improve granularity in our modeling, we clustered ratings for 
each social signal into a 3-class system: “low” (rating below 
3), “average” (rating of 3), and “high” (rating above 3).

Since vocalic nonverbal cues have been empirically associ-
ated with social signals observed in patient–provider interac-
tions,17 we investigated their use as features in our AI 
models. Given prior work linking verbal dominance with 
implicit bias5 and patient-centered communication,17 we 
explored audio features, such as talk-time, interruptions, and 
conversational turn-taking.19 These audio features rely on 
knowing who spoke when, so we first distinguished speakers 
with speech diarization using diart.24 We then extracted stat-
istical features, such as mean, min, max, and SD of turns; 
interruptions; and pauses, to drive our AI model. We cor-
rected the class imbalance by oversampling the minority 
labels to equal the number of majority class labels using 
SMOTE.25 We then evaluated all models using leave-one- 
subject-out cross-validation. Figure 1 shows our social signal 
extraction pipeline.

Results
Despite the clustering with respect to average (rating of 3), 
we found that for most social signals there were few of the 
690 slices annotated with ratings below 3. Thus, we excluded 
the “low” class from modeling. This exclusion transformed 
our task into a binary classification that can distinguish 
between “average” and “high” ratings. For this classification 
task, we trained different machine-learning models, namely 
logistic regression (LR), support vector machine (SVM), deci-
sion tree classifier (DTC), random forests (RF), and gradient 
boosted trees (GBDT). We compared the performance with a 
majority label (baseline) predicting a dummy classifier. Since 
our labels were extremely imbalanced (the ratio of minority 
to majority class samples had a mean¼ 0.192 and 
SD¼0.178), we evaluated all models based on F1 scores, 
given their robustness to class imbalance.26 We chose the 
macro-F1 score since it considers performance on both 
classes equally important.

Table 1 shows the performance averaged over all splits of 
our cross-validation. Seven signals beat the baseline classifier: 
provider dominance, provider warmth, patient warmth, pro-
vider engagement, patient engagement, provider interactivity, 
and patient interactivity. For the remaining signals, the 
majority classifier either had scores higher than 0.5, which 
may be attributed to the small number of or no samples from 
the minority class in the held-out sets. Despite the class imbal-
ance with few slices deviating from average in the coded data-
set, our models demonstrate it is feasible to identify social 
signals in nonverbal patient–provider communication, such 
as dominance, warmth, engagement, and interactivity.

Stage 2: Usability and workflow of AI
In Stage 2, we engaged 24 primary care providers in design 
sessions to investigate the usability and workflow integration 
of AI-generated feedback on patient–provider communica-
tion. Through this work, we addressed RQ2: What are pri-
mary care providers’ design preferences to improve the 
usefulness and usability of tools that provide AI-generated 
feedback about patient–provider communication during or 
after clinical encounters? Preliminary results were reported as 
a Stage 2 AMIA AI showcase presentation.27

Methods
Based on prior work,28,29 we depicted 3 design concepts as 
wireframes for participant feedback on implicit patient–pro-
vider communication biases during design critique sessions: 
data-driven feedback (eg, via traditional dashboards), real- 
time digital nudge (eg, alerts and ambient feedback), and 
guided reflection (eg, via conversational agents and human 
mediation) (Figure 2). The wireframes visualize nonverbal 
communication features between patients and providers dur-
ing clinical interactions, such as body language, eye contact, 
and speech patterns, with the goal of raising clinician aware-
ness of potential implicit bias in their communication with 
patients.

Each design critique session was conducted remotely via 
Zoom by 2 researchers, lasted 45-60 minutes, and consisted 
of participants discussing desired wireframe features, how 
the depicted tools might fit into their clinical workflow with 
a focus on how to make the feedback most usable, and antici-
pated personal and institutional barriers for implementing 
tools like the ones depicted in the wireframes. Sessions were 
analyzed using qualitative content analysis to characterize 
and compare participants’ relative preferences among the 3 
design concepts. Study procedures were reviewed by UW IRB 
and determined exempt (#00008252).

Figure 1. Social signal processing pipeline to predict levels of social signals based on audio-recorded patient–provider interaction.
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Results
Table 2 summarizes the characteristics of the 24 participants. 
From our content analysis regarding the 3 design concepts of 
data-driven dashboards, real-time nudges, and guided reflec-
tions, we found that participants preferred seeing personal-
ized communication patterns depicted in data-driven 
dashboards that included in-depth patient demographics and 
trends across time, rather than digital nudges or guided 
reflection. Fifteen participants (63%) found it insufficient to 
only display raw nonverbal cues (eg, eye contact, interrup-
tions) when describing their communication with patients 
because this presentation disregards the context in which the 
conversation occurred. PCP02 elaborates, stating, “Not all 
interruptions are bad. The reality of the visit is that I’ve got 
15 minutes. . . sometimes [interruptions] are what you do to 
get the information.” Participants desired educational materi-
als and further context about why raw nonverbal communi-
cation behaviors matter, indicating that social signals may be 
a more effective way of providing this feedback. They also 
expressed a desire to improve the tool’s usability with quick- 
tip resources presented in a way that encourages clinicians 
wellness and helps them improve their communication. Par-
ticipants also described personal and institutional barriers 
they anticipated for implementing AI-driven feedback on 
communication. Twenty participants (83%) were worried 
about having enough time to meaningfully engage with the 
tool, especially if clinicians are not incentivized or compen-
sated for this time as continuing education or diversity, 
equity, and inclusion training. While these findings are high-
lights that prompted our design choices, Bascom et al.30 dis-
cuss Stage 2 results in depth.

Stage 3: Evaluation of AI impact
In Stage 3, we assessed our AI models on a new cohort of 108 
primary care visits that we prospectively collected from 15 
clinicians across 4 primary care clinics at UW Medicine and 
University of California San Diego (UCSD) Health. We 
answered 2 RQs—RQ3.1 How well do the AI models gener-
alize from the dataset they were trained on? and RQ3.2 What 
are clinicians’ perspectives on the acceptability, feasibility, 

and barriers to implementing the AI-based approach in clini-
cal practice? Preliminary results were reported as a Stage 3 
AMIA AI showcase presentation.31

Methods
To evaluate how the developed AI models from Stage 1 gen-
eralize, we tested our algorithms against a new dataset com-
prising a new cohort of primary care visits. This test dataset 
consists of recorded patient–provider interactions. For this 
study, we chose clinics with diverse patient populations who 
historically experience discrimination in health care, Black, 
Indigenous, and people of color (BIPOC) and lesbian, gay, 
bisexual, transgender, and queer people (LGBTQþ). Clini-
cians were recruited through convenience sampling at UW 
Medicine and UCSD Health. Patients of enrolled clinicians 
were recruited in advance of scheduled visits. After obtaining 
consent from the patient and clinician, each visit was 
recorded for analysis. We characterized implicit bias in clini-
cian participants with the Implicit Association Test (IAT). 
The IAT is a widely used indirect measure of implicit social 
cognition measuring the relative strength of positive and neg-
ative associations toward one social group compared to 
another.32 It produces a score that identifies the strength of 
implicit bias.33 We used 2 IATs, the race (Black/White) IAT 
and sexuality (gay/straight) IAT. We chose to do our analysis 
using the race IAT because we found a moderate pro-White 
bias among our sample and little to no implicit gay–straight 
bias.

Four coders trained by the trained coders followed the 
same procedure as Stage 1 to manually code visits for social 
signals. Mean social signal ratings computed for each pro-
vider were correlated with race IAT scores using Kendall’s 
Tau-b, a nonparametric method.

Each visit was then processed with our SSP pipeline for the 
4 social signals that beat baseline (Table 1). Since the pipeline 
is audio-based, we used the audio component of these 
recorded visits for evaluation. We evaluated model perform-
ance with macro-F1, which is a strict metric toward class 
imbalance. Given the association of communication meas-
ured by RIAS with implicit race bias,5 we also analyzed social 
signal prediction for fairness with respect to patient race. 

Table 1. Model performance outputs averaged over leave-one-subject-out cross-validation.

Social signal Rating< 3 Rating of 3 Rating> 3
Majority  
(baseline) LR SVM DTC RF GBDT

Provider dominance 0 231 459 0.230 0.516 0.491 0.449 0.489 0.489
Patient dominance 7 614 69 0.686 0.452 0.556 0.427 0.438 0.450
Provider attentiveness 0 607 83 0.640 0.450 0.451 0.405 0.415 0.431
Patient attentiveness 0 633 57 0.689 0.472 0.494 0.437 0.440 0.446
Provider warmth 4 450 236 0.397 0.492 0.492 0.486 0.486 0.519
Patient warmth 0 472 218 0.406 0.453 0.441 0.427 0.495 0.451
Provider engagement 0 128 562 0.116 0.436 0.477 0.433 0.470 0.470
Patient engagement 2 88 600 0.097 0.453 0.469 0.456 0.469 0.469
Provider empathy 2 649 39 0.571 0.490 0.482 0.432 0.458 0.457
Patient empathy 0 688 2 0.916 0.916 0.916 0.916 0.916 0.916
Provider respect 5 673 12 0.831 0.831 0.831 0.831 0.831 0.831
Patient respect 0 686 4 0.873 0.873 0.873 0.873 0.873 0.873
Provider interactivity 0 536 154 0.438 0.444 0.435 0.406 0.474 0.461
Patient interactivity 0 532 158 0.435 0.466 0.450 0.465 0.493 0.490
Provider hurry 0 686 4 0.831 0.831 0.831 0.831 0.831 0.831

Bold indicates models that beat the majority baseline classification model.
Abbreviations: DTC, decision tree classifier; GBDT, gradient boosted trees; LR, logistic regression; RF, random forests; SVM, support vector machine.
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We calculated the demographic parity ratio across patients 
who reported White race compared to those who reported 
race other than White.

After recording at least 7 visits, we invited each clinician 
for a 1-hour Zoom interview to receive visual feedback on 
their communication in a personalized feedback report (Fig-
ure 3). During the interview, participants reviewed the report 
for feedback about its acceptability and shared their percep-
tions about the feasibility of our approach to automated com-
munication assessment and feedback into their workflow, 
considering potential barriers to implementing in clinical 
practice. The data was analyzed deductively to explore the 3 
a priori dimensions: acceptability, feasibility, and 

implementation considerations. Study procedures were 
approved by IRBs at UW (#00012188) and UCSD 
(#210932).

Results
Cohort description
The cohort included 15 providers and 108 patients. See 
Supplementary material S1 for participant demographics.  
Figure 4 shows the distribution of the 12 social signals rated 
by trained coders when observing patients and providers 
across visits. Except for provider hurriedness, social signals 
associated with less patient-centeredness (ie, irritation, nerv-
ousness, patient sadness, and distress) were low with mean 

Figure 2. Wireframes for clinician feedback on implicit patient–provider communication biases during design critique sessions: (A) Data-driven feedback 
delivered via quantitative metrics on a dashboard. (B) Real-time digital nudge feedback delivered via smartwatch alerts or changes in ambient room 
lighting. (C) Guided reflection feedback delivered via clips of recorded interactions that prompt self-reflection with conversational agents or human 
mediation.
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ratings ranging from 1.0 to 1.1. In contrast, the remaining 
social signals are moderate, with mean ratings for patients 
ranging from 3.1 to 3.5 and mean ratings for providers 
slightly higher ranging from 3.3 to 3.8.

Performance of AI models
Evaluation of our AI models on the test dataset showed 
potential in using nonverbal vocal cues to generate social sig-
nal predictions. Table 3 shows the performance of our mod-
els. Since our models are binary classifiers and the F1 scores 
are computed in a class weighted manner, we use 0.5 as a 
threshold. Three models show stronger potential to general-
ize outside the distribution they were trained: provider domi-
nance, provider engagement, and patient warmth. Based on 
balanced accuracy threshold of 0.5, 5 of 7 models performed 
better than chance. All models show a demographic parity 
ratio higher than 0.8 in prediction performance between peo-
ple who identified as White versus race other than White, sat-
isfying the “rule of four-fifths” threshold for fairness.34

However, further feature-level analysis is warranted for sig-
nals where the models could not generalize.

Association of social signals with implicit bias
On average, provider implicit race attitudes showed a slight 
preference for White over Black people (D¼ 0.29, SD¼ 0.42, 
range -−0.56 to 0.98) that was significantly different from 0 
(ie, no race bias) (P¼ .02). Table 4 shows the correlations 
between social signals and provider IAT scores. Although cor-
relations were not statistically significant, some were moderate 
in strength with medium to large effect sizes for Kendall’s Tau. 
In particular, provider implicit race bias was moderately 

associated with greater patient sadness and distress, and less 
provider dominance, attentiveness, warmth, engagement, and 
interactivity. Among these signals, our AI models can capture 
changes in provider dominance and warmth.

Exit interviews
We describe themes related to the acceptability and feasibility 
of integrating our AI-based communication assessment and 
feedback approach that surfaced in exit interviews with 14 of 
the 15 clinicians who contributed to the cohort for our study 
in Stage 3.

Acceptability
Most participants expressed interest in our approach to 
understand their communication behavior since opportuni-
ties for feedback were rare after residency. However, 
participants suggested several design enhancements to make 
AI-driven communication feedback more acceptable. For 
example, participants suggested embedding clips from 
recorded visits into the line graphs to help them remember 
the context of visits. Some participants suggested adding 
comparison with peers to feedback, but others had varied 
opinions. One participant proposed friendly competition as a 
motivating factor for improving communication skills, while 
another participant thought that feedback might be “scary” 
for clinicians who are vulnerable to peer pressure and may 
befit from a “safety context” and “strengths-based lens” for 
feedback.

Feasibility
Participants suggested that willingness to record visits may 
depend on clinician preference and organizational policy. To 
some participants, the recording setup in exam rooms felt 
unnatural and lacked portability requiring successive visits in 
the same exam room, hampering scalability. Although some 
participants initially worried about the “Hawthorne 
effect,”38 others reflected that their behavior did not change, 
and they quickly forgot about the recording. Another barrier 
to recording was privacy and consent. Some participants 
were worried that patients might not consent to be recorded, 
fearing a lack of privacy. Even among those who would con-
sent, one participant expressed concern that recording might 
inhibit patients from discussing issues freely. Clinician time 
spent reviewing feedback was a common concern. One par-
ticipant mentioned that they might only look at feedback 
once or twice a month since reviewing a visit could be a sig-
nificant time burden. They recommended selecting specific 
visits to record (eg, “challenging visits”) as opposed to 
recording all visits, for example.

Implementation barriers
Several participants described barriers to implementing our 
AI approach in clinical practice. Given the challenges with 
recording in exam rooms, some participants also suggested 
telehealth as a context that might facilitate implementation. 
Four participants suggested medical education as an alterna-
tive use case to clinical practice implementation. For exam-
ple, they proposed using standardized patients with whom 
clinicians could interact to improve communication skills and 
get feedback within a safe training context. A couple of par-
ticipants suggested using our AI approach early in medical 
training, such as incorporating into Observed Structured 

Table 2. Design session participant characteristics, including 
demographics and clinical experience.

24 (100%)

Age—mean (SD), range 45 (11), 31–68
Gender

Woman 12 (50.0%)
Man 12 (50.0%)

Race—count (%)
White 16 (66.7%)
Black or African American 2 (8.3%)
Asian: Chinese, Asian Indian 2 (8.3)%
Another race (self-described): “Mixed,” 
“Latina”

2 (8.3%)

Decline to state 2 (8.3%)
Ethnicity—count (%)

Hispanic or Latino/a/x/e 2 (8.3%)
Not Hispanic or Latino/a/x/e 20 (83.3%)
Decline to state 2 (8.3%)

Self-selected identity—count (%)
BIPOC: Black, Indigenous, and people of color 5 (20.8%)
LGBTQþ: lesbian, gay, bisexual, trans, queer, 
and other identities

3 (12.5%)

LATINX 2 (8.3%)
None of these 13 (54.2%)
Decline to state 1 (4.2%)

Clinical role—count (%)
Nurse practitioner (NP) 2 (8.3%)
Doctor of osteopathic medicine (DO) 1 (4.2%)
Medical doctor (MD) 21 (87.5%)

Number of years in role—mean (SD), range 16 (12), 2–42
Approximate panel size (number of patients)— 

mean (SD), range
369 (457), 0–2000
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Clinical Examination (OSCE) exams39 during medical 
school.

Discussion
Principal findings
Through a 3-stage approach, we explored the potential of AI- 
generated communication assessment and feedback in pri-
mary care. Through our technical performance study (Stage 
1), our AI models demonstrate it is feasible to identify social 
signals in nonverbal patient–provider communication, such 
as dominance, warmth, engagement, and interactivity. 
Through our design sessions with clinicians to visualize AI- 
generated communication feedback (Stage 2), AI-generated 

communication feedback delivered in personalized dash-
boards was preferred over digital nudges and guided reple-
tion. A key learning was that raw nonverbal cues (eg, counts 
of interruptions, gaze drifts, etc.) were difficult for clinicians 
to interpret and that social signals may be an effective alter-
native feedback mechanism in data-driven dashboards. 
Finally, through our impact evaluation in a new cohort (Stage 
3), we found 3 AI models to show stronger potential to gener-
alize, namely provider dominance, provider engagement, and 
patient warmth. While all AI models demonstrated fairness 
through demographic parity, provider dominance and pro-
vider warmth were negatively associated with stronger clini-
cian implicit race bias. Although participants expressed 
interest in the approach, they recommend design 

Figure 3. Example of personalized feedback report visualizing social signals across a provider’s visit with line graphs (top) and bar charts (bottom). The 
line graph shows the average of all social signal ratings for every 3-minute slice of the visit for patients and providers. The bar chart shows the average 
rating for each social signal across the entire visit. Dominance, hurry, irritation, nervousness, sadness, and emotional distress were considered 
“undesired” communication behaviors and the remaining social signals were considered “desired” behaviors. The vertical separator distinguishes the 
desired (bar chart, left) and undesired (bar chart, right) communication behaviors.
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improvements to enhance acceptability, feasibility, and 
implementation in alternative contexts, such as telehealth 
and medical education.

Limitations and future work
Our work is an early attempt to envision a functional AI- 
based communication assessment and feedback system and 
has limitations, selection bias among patients and clinicians 
who consented to have visits recorded could have resulted in 
capturing more effective communicators. Although our mod-
els suggest it is possible to identify certain social signals, fur-
ther work is necessary to identify these signals reliably. 
Another limitation was the lack of variability in social signal 
ratings which limited the granularity of the SSP pipeline. 
Future work should also expand on classical machine- 
learning models to more advanced approaches, leveraging 
audio transformers40 or foundation models.41,42

In our design sessions, most participating clinicians were 
non-Hispanic White cisgender individuals, which could have 
resulted in overlooking barriers or design ideas that clinicians 
who are part of marginalized racial, ethnic, or gender groups 
find important when receiving feedback about communica-
tion. Future work should explore how the perceptions and 

design suggestions of participants from diverse demographic 
backgrounds, clinic types, and patient populations served 
might vary to provide a deeper contextual lens. This lens is 
essential for ensuring effective interventions that promote 
equity and benefit clinicians and patients from all 
backgrounds.

Finally, through our impact evaluation, we found that 
while some of our models performed better than a baseline 
on a new cohort (test dataset), several social signals did not 
generalize. This could be due to differences in the distribution 
of features and labels. Future work should focus on develop-
ing novel features that can generalize out of distribution. Fur-
ther, future work should investigate implementation in 
contexts that might enhance feasibility and acceptability to 
clinicians, such as telehealth and medical education.

Communication assessment and feedback in 
medical education
Participants across study stages recommended the use of 
communication assessment and feedback in medical educa-
tion from medical school to residency to midcareer professio-
nals. Since feedback may be more common during medical 
school and residency, clinical communication skills training 

Figure 4. Distribution of mean ratings (1 “low” to 6 “high”) across visits. Error bars show SE. For each visit, we calculated the mean rating for each 
social signal across slices for patients and providers. We used this distribution to calculate the mean rating for each social signal across the 108 visits.

Table 3. Performance of AI models trained on the EF study dataset when evaluated on the test dataset.

Social signal F1 score (macro) (") Balanced accuracy Demographic parity ratio (�1)

Provider dominance 0.54 0.577 0.995
Provider engagement 0.51 0.513 0.959
Patient engagement 0.32 0.496 0.941
Provider interactivity 0.43 0.511 0.881
Patient interactivity 0.36 0.517 0.918
Provider warmth 0.31 0.448 0.994
Patient warmth 0.51 0.512 0.911

Based on F1 scores higher than 0.5, the three models in bold show the potential to generalize. Balanced accuracy scores higher than 0.5 show that models 
perform better than chance. A demographic parity ratio higher than 0.8 is treated as the model being fair toward the sensitive attributes, here patient race.
Abbreviations: AI, artificial intelligence; EF, establishing focus.
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could be an avenue to introduce AI-based communication 
assessment and feedback. For example, AI tools could be 
used with standardized patients to practice communication 
skills over time. For example, these simulated environments 
can mimic cognitive stressors that may trigger implicit race 
bias.43 Integrating AI-based assessment and feedback tools 
into simulated training could advance implicit bias recogni-
tion and management systems.44,45

Toward personalization in modeling and feedback
Our models tend to fare well within the data distribution 
they were trained on. Recent work in activity sensing pro-
poses that injecting small amounts of data from an individual 
can greatly improve the accuracy of predictions for that indi-
vidual.46 Future research should explore whether injecting 
slices of manual coding can improve performance. Further, 
participants sought more context and personalized insights 
on their communication behavior for self-reflection. Prior 
work has shown utility12–14 and acceptability47 to visualize 
raw nonverbal cues, such as counts of interruptions and turn- 
taking, as means for communication feedback for clinicians. 
Personalized dashboards with more context on these cues 
should be further explored.

Conclusion
We investigated how AI can be used to understand patient– 
provider interactions in primary care visits using social sig-
nals and how such systems can be designed to provide visual 

feedback for integration into clinical workflows. Using a pri-
mary care dataset, we demonstrated the feasibility of AI to 
predict changes in social signal levels from nonverbal com-
munication during visits. We then designed social signal feed-
back for provider-facing tools that visualize those 
communication patterns in personalized dashboards. Finally, 
we evaluated the impact of our AI-based system on a new 
cohort of visits, garnering formative feedback from clinicians 
who experienced the approach. This work is an example of 
systematic and multistaged methods for evaluating AI tools 
and a jumping-off point for using equity-focused AI to 
develop SSP tools that deliver clinicians feedback on improv-
ing communication with patients.
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Table 4. Kendall’s Tau correlation (τb) between social signals and provider 
race IAT scores.

Dominance 0.16
Patient −0.26*
Provider

Attentiveness −0.05
Patient −0.24
Provider

Warmth −0.09
Patient −0.28*
Provider

Engagement −0.07
Patient −0.28
Provider

Empathy −0.01
Patient 0.01
Provider

Respect −0.08
Patient −0.03
Provider

Interactivity −0.03
Patient −0.22
Provider

Patient irritation 0.11
Patient nervousness 0.19
Provider hurriedness −0.07
Patient sadness 0.20
Patient distress 0.27

Because the nonverbal cues and social signals were not normally distributed 
(ie, data was skewed), we used Kendall’s Tau (τb) correlation for its 
performance advantage over Spearman correlation.35 Interpretation of 
Kendall’s Tau (τb) correlation: correlation strength—weak (0.1-0.19), 
moderate (0.20-0.29), strong (0.30 and greater)36; effect size—small (0.06), 
medium (0.15), large (0.24).37 Bold indicates moderate Kendall’s Tau 
correlations with medium to large effect sizes. Asterisks indicate social 
signals predicted by AI models in Stage 3.
Abbreviations: AI, artificial intelligence; IAT, implicit association test.
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