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Observation of reflectionless absorption due to
spatial Kramers–Kronig profile
Dexin Ye 1, Cheng Cao1, Tianyi Zhou1, Jiangtao Huangfu1, Guoan Zheng2,3 & Lixin Ran1

As a fundamental phenomenon in electromagnetics and optics, material absorption has been

extensively investigated for centuries. However, omnidirectional, reflectionless absorption in

inhomogeneous media has yet to be observed. Previous research on transformation optics

indicated that such absorption cannot easily be implemented without involving gain media.

A recent theory on wave propagation, however, implies the feasibility to implement such

absorption requiring no gain, provided that the permittivity profile of this medium can satisfy

the spatial Kramers–Kronig relations. In this work, we implement such a profile over a broad

frequency band based on a novel idea of space–frequency Lorentz dispersion. A wideband,

omnidirectionally reflectionless absorption is then experimentally observed in the gigahertz

range, and is in good agreement with theoretical analysis and full-wave simulations. The

proposed method based on the space–frequency dispersion implies the practicability to

construct gain-free omnidirectionally non-reflecting absorbers.
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As a fundamental phenomenon in electromagnetics and
optics, material absorption has been an important topic
for centuries. In recent years, research efforts have been

focused on the design of inhomogeneous materials that absorb
electromagnetic waves in all directions without any reflection1.
One example is the use of transformation optics technique,
which can produce non-reflecting anisotropic materials with
arbitrary coordinate transformation2, 3. By introducing complex
coordinates in the transform, one can design omnidirectionally
reflectionless materials that absorb electromagnetic waves
incident from all angles4, 5. In fact, the perfectly matched layers
(PMLs), previously defined mathematically in computational
electromagnetics6, 7, can also be considered as absorptive
transformation-optics media8. However, during any complex

coordinate transform, the generation of a gain region is
inevitable9. Constrained by the intrinsic causality/stability issue,
the physical implementation of an absorptive transformation
optics medium together with a gain medium satisfying a strict
anisotropic dispersion is challenging. Similarly, non-reflecting
absorptive media designed by the parity-time symmetric property
have the same requirement of gain regions10–12.

Different from these methods, a recent research has suggested
that a class of isotropic, inhomogeneous one-dimensional (1D)
susceptibility profile (permittivity ε(x) or permeability μ(x) along
the x direction) can be used to design a non-reflecting absorptive
material that requires no gain13. The only criterion is that this
complex susceptibility profile is analytical in the upper or lower
half of the complex plane, which consequently satisfies the spatial
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Fig. 1 Wave propagation in an inhomogeneous, dispersive medium. The permittivity profile ε(ω, x) of this medium obeys the Kramers–Kronig (K–K)
relations in both the frequency domain and the space domain, and its real (a) and imaginary (b) parts are given by Eq. (2) with parameters ωp= 0.4ω0,
γ= 0.03ω0, and q= 0.5ω0. c–f Plots of the x-dependent complex permittivity at different frequencies (0.6ω0, 0.8ω0, ω0, and 1.2ω0, respectively).
g–j Simulated z-polarized electric field radiated by a line source placed at x= −8λ0. Note that the same absolute color scale is used for all figures. While no
reflection (standing wave) is seen, the waves are eventually dissipated in different resonance regions of the spatial K–K profiles for different frequencies.
k–n The intensity drops in dB scale along the x axis for y = 0
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Kramers–Kronig (K–K) relations. The design of such profiles
initiates a new research direction for non-reflecting wave
absorption14–18. Without the necessity of using gain media, all
functions of PMLs can be implemented in a physical setting.

Based on the space–frequency Lorentzian dispersion proposed
in this work, we experimentally implement a permittivity profile
that obeys the spatial K–K relations over a broad band by con-
structing a passive gradient mesoscopic structure. We further
demonstrate a wideband, omnidirectionally non-reflecting
absorption that is in good agreement with theoretical analysis
and full-wave simulation. Based on the concept of dispersion
engineering19, 20, our approach is expected to realize gain-free
omnidirectionally reflectionless absorbers.

Results
Theoretical analysis. We begin with the classical Lorentz model
describing the dispersion of naturally occurring atomic materials.
For a relative permittivity with only one resonance in the positive
frequency region, it takes the form of

εðωÞ ¼ ε1 � ω2
p

ω2 þ iγω� ω2
0
; ð1Þ

where ω0, ωp, and γ are the resonance, plasma and damping
frequencies, respectively, ε∞ is the static permittivity at infinite
frequency, which is generally unity21. Such a complex dispersive
permittivity is analytical in the upper half of the complex
frequency plane, and thus satisfies the K–K relations in the
frequency domain22.

Next, we propose a spatial x-coordinate dependence into Eq.
(1) by

εðω; xÞ ¼ ε1 � ω2
p

ω2 þ iγω� ðω0 � qxÞ2 ; ð2Þ

Compared with the fixed resonance frequency ω0 in Eq. (1),
ω0−qx can be considered as an x-dependent resonance frequency,

where the constant q determines the change rate of ω0−qx with
respect to x. Obviously, at any location x, this profile satisfies the
K–K relations in the frequency domain. In the meantime, at any
given frequency ω, it also satisfies the K–K relations in the space
domain. In the following, this characteristic will be used in
implementing a spatial K–K profile with resonance elements
satisfying the proposed space–frequency K–K relations. Note that
the spatial K–K profile implemented according to Eq. (2) is
broadband by nature.

To demonstrate this relationship between the space- and
frequency-domain K–K relations, we show a space–frequency
K–K profile in Fig. 1. With parameters ε∞= 1, ωp= 0.4ω0,
γ= 0.03ω0, and q= 0.5ω0, the real and imaginary parts of
permittivity profile ε(ω, x) are shown in Fig. 1a and b, where λ0 is
the wavelength in free space for frequency ω0. We see that for a
given frequency ω, ε(ω, x) exhibits an x-dependent
spatial Lorentzian dispersion. With increasing frequency, the
corresponding resonance region linearly moves to the left. For
illustration, Fig. 1c–f shows the x-dependent permittivity profiles
calculated by Eq. (2) at 0.6ω0, 0.8ω0, ω0, and 1.2ω0, respectively.
It indicates that the strongest absorption would occur at places
with different x values for different frequencies.

As discussed in ref. 13, a medium with such a permittivity
profile is always reflectionless when probed from one side13. To
validate this, we perform a full-wave simulation using COMSOL
Multiphysics by placing a line source inside the inhomogeneous
medium. For the permittivity profiles shown in Fig. 1c–f, the
simulated propagation of electric fields is shown in Fig. 1g–j,
respectively, where all the line sources radiating z-polarized
electric fields are placed at the location x= −8λ0. To facilitate the
analysis and comparison, we also show in Fig. 1k–n the intensity
drop in dB scale along the x direction at y= 0 simulated for the
K–K profile medium (solid line) and free space (dashed line),
respectively. We see that the resonance region acts as a matched
absorbing boundary that dissipates the energy of omnidirectional
incidences, and thus no visible standing wave effect can be
observed on the left side of this region. Compared with the
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Fig. 2 Simulations with different locations of Gaussian beam sources. In the simulation, parameters ωp, γ, and q in the permittivity profile ε(ω, x) described
by Eq. (2) are set as ωp= 0.4ω0, γ= 0.03ω0, and q= 0.5ω0, respectively. Simulations at the frequency of 0.6ω0 (a, b) and 1.2ω0 (c, d) are performed,
respectively. In a and c, the Gaussian beam source is located at (−10λ0, 0), and the incident angle of the Gaussian beam with respect to the x axis is 0º.
In b and d, the Gaussian beam source is located at (−10λ0, −10λ0), and the incident angle is 45º. e–h The intensity drops along the propagation directions in
dB scale are provided, respectively. In all figures, the Gaussian beams are continuously dissipated and eventually absorbed in the resonance region without
any observable reflection
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transmission decay in free space, the absorption due to the
resonance region is larger than 120 dB. These results imply a
broadband, reflectionless propagation for all angles of incidence.
For different frequencies, the propagating waves are finally
dissipated in different resonance regions of the spatial K–K
profiles, which is in accordance with our theoretical prediction.

Figure 2 further shows the propagation and absorption of
Gaussian beams at two different frequencies when the sources are
placed at different positions. We see that in all cases, the Gaussian
beams are continuously dissipated and finally absorbed in
corresponding resonance regions without any observable reflec-
tion, and all the intensity drops in such resonance regions are
larger than 100 dB.

Design. According to the above discussion, the spatial K–K
profile can be implemented with different resonance elements

satisfying the frequency-domain K–K relations. Such resonance
elements should be at deep-subwavelength scale to obtain a quasi-
continuous space–frequency Lorentzian dispersion described by
Eq. (2) along the x direction.

In this work, we use a rolled-up metallic wire (0.018-mm-thick
copper with a conductance of 5.986 × 107 S/m) to obtain the
desired sub-wavelength electric resonance, as shown in the left of
Fig. 3a. These wires are printed on a 1-mm-thick dielectric
substrate (F4 with a dielectric constant of 2.55 and a loss tangent
of 0.003). Under a z-polarized incidence, an electric resonance
would occur when the electric length of the rolled-up wires is
around half wavelength. Four such unit cells are rotated to the x,
−y, −x, and y directions, respectively, to form an element
rotationally symmetric in the y–z and x–z planes, as shown in the
right of Fig. 3a.

Next, we perform full-wave simulations to retrieve the
constitutive parameters of the artificial medium consisting of

2a

a

b
c

d

e

a

Re (�rx=�ry)
Im (�rx=�ry)

Frequency (GHz)

R
et

rie
ve

d 
pa

ra
m

et
er

s

2.4 2.82.0 2.2 2.6
–2

0

2

4

8

6

b

–2

10

2

6

R
e 

(�
rz

)

2

0

8

0

4

Frequency (GHz)

Im
 (
� r

z)

2.8
2.4

2.2
2.6

30a

90a

60a

d e

c

x

y z

y
x

z

E

0 90a45a
x

R
e 

(�
rz

)

0

6

0 90a45a
x

Im
 (
� r

z)

0

6

10

–2

4

10

0

5

Re (�rz)
Im (�rz)

x

2

0

Frequency (GHz)

2.8
2.4

2.2
2.6

30a

90a

60ax

f g

Fig. 3 Design of the inhomogeneous media with a one-dimensional spatial Kramers–Kronig profile. a Geometry of the printed rolled-up wires and the
formed two-dimensional (2D) artificial medium. These rolled-up metallic wires (0.018-mm-thick copper with a conductance of 5.986 × 107 S/m) are
printed on a 1-mm-thick dielectric substrate (F4 with a dielectric constant of 2.55 and loss tangent of 0.003). The dimensions a and 2a denote the side
lengths of the unit cell, b denotes the width of metallic wires, c denotes the distance between metallic wires, d denotes the length of the metallic segment in
the center area, and e denotes the distance between the metallic pattern and the upper and lower edges of the unit cell. b The retrieved effective
constitutive parameters with a= 6mm, b= c= 0.4mm, d= 0.35mm, and e= 1.11 mm. The permittivity exhibits the Lorentz resonance model around
2.4 GHz and the permeability is approaching unity. c The strip-shaped structure composed of 91 unit cells along the x-axis with different geometric
parameter e, which changes linearly from 1.6 mm to 0.7 mm with a step of 0.01 mm. d, e The retrieved real part and imaginary part of permittivity with
respect to frequencies and spatial coordinate x, respectively. f, g The x-dependent real and imaginary parts of permittivity at 2.4 GHz, which satisfies the
spatial Kramers–Kronig relations
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such elements based on the simulation setup and the retrieval
algorithm used in reference23. The simulation is based on a
commercial Maxwell-equations solver, CST Microwave Studio. In
the simulation, one unit cell is placed in a parallel-plate
waveguide, and the periodic boundaries are used to extend the
single unit cell into an infinite slab. The geometric dimensions
related to the rolled-up wires were optimized to a= 6 mm, b= c
= 0.4 mm, d= 0.35 mm, and e= 1.1 mm, so that the electric
resonance locates in the design frequency band of 2–3 GHz. The
size of this cell is about 1/20 wavelength, which is sufficiently
small for constructing a quasi-continuous spatial K–K profile, as
shown in the following.

For periodic structures consisting of such unit cells, the
effective permittivity and permeability retrieved from the
simulated scattering data are plotted in Fig. 3b. As expected, a
Lorentz resonance region is observed at 2.4 GHz for the retrieved
permittivity. In the meantime, a weak “parasitic” resonance for
the retrieved permeability is observed in the same region due to
the coupling of the electric and magnetic fields in the same unit
cell. It follows an inverse Lorentz resonance model24, 25.
Therefore, both the effective permittivity and permeability satisfy
K–K relations in the frequency domain.

In our design, the dimension e can be tuned to change the
location of the resonance region. As such, a series of resonance
elements can be achieved at different resonance regions. We line
up 91 such elements along the x-axis from x= 0 to x = 90a with a
uniform periodicity of a= 6 mm. From the 1st to the 91st cells,
the dimension e of each element linearly decreases from 1.6 mm
to 0.7 mm, so that the resonance frequency of each element also
linearly decreases along the x direction. Such 91 elements are then

duplicated along the y direction with the same periodicity of a,
constructing a two-dimensional (2D) plate. In this case, the
obtained space–frequency Lorentzian dispersion can be consid-
ered as:

εðω; xÞ ¼ 3� ð0:57 ´ 109Þ2
ω2þiω´ ð1:8 ´ 107Þ�½2:657 ´ 109�ð0:5 ´ 107=aÞ ´ x�2 ; ð3Þ

where x and ω range from 0 to 90a and 2 to 2.8 GHz, respectively.
Figure 3d and e shows the real and imaginary parts of this
permittivity profile with respect to the frequency ω and location
x, respectively. We see that the permittivity of this inhomoge-
neous plate exhibits 1D K–K profiles in both the space and
frequency domain, in good agreement with the analytical results
shown in Fig. 1. Note that the 1D spatial profile of the plate
consisting of discrete elements is also discrete. For 2.4-GHz
frequency, the discrete profiles are shown in Fig. 3f and g. Since
the periodicity of the elements is around λ0/20, the macroscopic
spatial dispersion would be very close to a continuous one, as
shown in the following. It should be noted that the K–K profile
medium consisting of such elements would only work for electric
fields polarized along the z direction.

Full-wave simulation. In order to observe the wave propagation
in the designed plate, we performed a full-wave simulation
whose results are presented in Fig. 4. In the simulation model, a
rectangular plate consisting of 46 identical 91-element strips in
the y direction is truncated with PML, and a line source is placed
in the bottom left corner.
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First, the discrete spatial K–K profiles retrieved at the 2.3-, 2.4-,
and 2.5-GHz frequencies are shown in Fig. 4a–c (dotted lines),
respectively. For comparison, the fitted continuous profiles are
also shown in Fig. 4a–c (solid lines). To examine the effect due to
the discrete K–K profile, two simulations were performed for
discrete and continuous profiles, respectively.

Figure 4d–f and 4g–i show the wave propagation in the
designed plate with the discrete and continuous profiles,
respectively. Figure 4j–l shows the intensity drops in dB scale
along the x direction at y= 0 for both the discrete and fitted K–K
permittivity profiles. We see that with the 1/20 λ0 spatial
sampling, the simulated results based on the discrete profile are
almost the same as those obtained based on the continuous ones.
This implies that the used elements have been sufficiently small to
construct the desired spatial profile. In the meantime, no standing
wave effect can be observed in both cases, implying a
reflectionless propagation in a wide frequency band of 2.3–2.5
GHz. For different frequencies, the propagating waves are finally
dissipated in different resonance regions, agreeing with the
analytical results in Fig. 1.

Measurements. To experimentally verify the simulated results, we
fabricated four identical rectangular plates, each consisting of 2 ×
91 × 182 elements. The 91 elements along the x direction were

designed to have the same gradient profile as that in the simu-
lation. These elements were replicated along the y and z direction
so that each plate has the same x-dependent K–K profile. In order
to observe the reflectionless propagations in an experimental
setup similar to the simulated one in Fig. 4, an isosceles right-
triangle part was cut from each plate, as shown in Fig. 5a. The cut
parts were reassembled into a larger 2D symmetric square plate in
Fig. 5b, in which two unit cells are stacked in the z direction.
This plate was sandwiched by two parallel copper-plated boards
so that only a transverse electromagnetic wave mode can exist in
the plate26. Both boards are slightly (around one wavelength)
larger than the plate. By doing so, the radiated electromagnetic
waves would see the same K–K profiles in both ±x and ±y
directions if the radiative source is placed in the center of the
square plate.

Figure 5c shows the simulated propagation of the electric field
radiated by a line source placed at the center of the square plate.
For the 2.4 GHz radiation, no reflections can be observed in all
directions even when the edges of this sample are mismatched to
the air. The propagating waves are almost completely dissipated
in the resonance region before they can arrive at the edges.

In the actual measurement, a small monopole antenna with an
omnidirectional radiation was placed at the center of the square
plate27. Another identical monopole was sequentially placed in
each cell to measure the amplitude and phase of the electric field.
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To minimize the potential influence, when one cell was measured,
the other cells were all covered by copper-plated boards. For each
cell, an Agilent E8361A vector network analyzer was used to
measure the transmission parameter. In order to calibrate the
response of the monopoles, all the measured data were normal-
ized by the amplitude and phase of the electric filed measured at
one unit cell nearest to the source monopole. A photograph of the
actual experimental setup is shown in Fig. 5d.

The propagation of electric fields in a quadrant of the square
plate measured at 2.3, 2.4, and 2.5 GHz is shown in Fig. 6.
Figure 6a–c shows the measured instantaneous electric fields. We
see that the propagating wave is continuously dissipated along the

radiation directions without any observable standing wave effect.
Figure 6d–f and 6g–i show the amplitude distributions of the
measured and simulated electric fields, respectively. We see that
for different frequencies, the propagating waves are eventually
dissipated at different locations. The measured locations agree
with simulated ones.

For comparison, Fig. 6j–l shows the measured and simulated
intensity drops at the same frequencies. We see that in the three
cases, the experimental intensity drops measured at the
corresponding edge are 40 dB, 41 dB, and 39 dB for 2.3, 2.4,
and 2.5 GHz, respectively, while all the simulated intensity drops
are around 45 dB.
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The experimental results also show that small defects in the
fabrication and assembly of the unit cells could potentially induce
a local field disturbance. Examples can be seen in Fig. 6d–f, where
electric field disturbance is observable in the region near the
seams between the adjacent cutting plates. However, this kind of
disturbance due to unit cell defects does not impact the
understanding of the experimental results.

Discussion
The above measurements verified that the spatial K–K profile
medium, which is by far the only inhomogeneous medium that
can exhibit omnidirectional, reflectionless absorption without
gain, can be physically implemented. Based on the concept of
space–frequency Lorentzian dispersion proposed in this work,

wideband absorption can also be practically obtained. A unique
characteristic of this K–K profile medium is that it has an
omnidirectionally matched absorbing boundary.

In the physical implementation, it is important to ensure that
the impact to the continuity of the spatial K–K profile due to
the discretization of resonance cells should be minimized28.
As shown in Fig. 4, the reflectionless absorption simulated with
λ0/20-sized resonance cells has not an observable difference with
that simulated with continuous K–K profiles. However, as shown
in Fig. 7, when the size of the cells is reduced to λ0/10 and λ0/6,
weak standing wave effects become observable due to the
increased discretization. The maximum standing wave ratios
calculated from Fig. 7d–f are 1.02, 1.16, and 1.85, respectively.
This further confirms the importance of using deep sub-
wavelength cells in the implementation of spatial K–K profiles.
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In practical applications, there are two different usages of
finite-sized K–K profile media. The first scenario is to absorb
waves radiated from inside. In this case, the absorber can be
designed following the method used in our experimental
setup. As discussed, when the permittivity profile is cut on the
right-hand side of the resonance region, for radiations coming
from its left side, this region can be considered as an omnidir-
ectionally matched absorbing boundary. Multiple such
boundaries can be used to enclose the space containing radiative
sources.

Figure 8a shows the full-wave simulation of the standing
wave effects due to different cutting edges. The edge 1 is located
x= 0.54 m, which is the case in our experimental setup shown in
Fig. 5c. The corresponding relative permittivity εr is around 3.3.
Edge 2 is located at x= 0.33 m, where εr is around 1. The blue and
red curves show the simulated standing wave effects due to edges
1 and 2, respectively. We can see that while there is no visible
standing wave near edge 2, the mismatched permittivity at edge 1
does produce notable standing waves. In both cases, there is no
visible impact to the electric field on the left side of the resonance
region.

The second scenario is to absorb waves incident from outside.
In this case, in order to obtain a slab-like absorber, the permit-
tivity profile should be cut off on both sides of the resonance
region. Particularly, it should be cut on its left side at the place
where the relative permittivity is close to 1.

We show in Fig. 8b how to obtain such a finite-size K–K
medium slab based on the concept of dispersion engineering19. By
constructing a K–K permittivity profile containing two resonance
regions, i.e., ε(x)= 1−xp12/(x2 + iγ1x−x12)−xp22/(x2 + iγ2x−x22), a
unity relative permittivity must exist between locations x1 and x2.
If xp1= 2λ0, γ1= 0.2λ0, x1= 1λ0, xp2= 4λ0, γ2= 0.2λ0, and
x2= 12λ0, the location with ε= 1 is at x= 5.45λ0. If the front edge
is cut off at this location, and the back edge can be cut off at a
location on the right side of the second resonance region, such as
at x= 13.45λ0 where εr= 0.55, a slab with a thickness of 8λ0 can be
obtained.

Figure 8c shows the full-wave simulation to this slab when a
point source is placed 2λ0 away from the left edge. We see that there
is no visible standing wave effect due to the front cutting edge.

In practice, a linear gradient index has been widely used in
microwave engineering. Examples include the impedance

matching obtained by continuous impedance transform29 and the
absorbing pyramids used in anechoic chambers. Compared with
the case of Lorentzian dispersion, the most significant difference
is that the linear gradient index does not have a resonance region.
As such, the linear gradient index medium does not have a
matched absorbing boundary that can exhibit reflectionless
absorption over a short distance. This is the reason why a
practical continuous impedance transform segment always
requires a sufficient length so as to decrease the slope of the linear
gradient index.

Figure 9a shows the linear profile slab with the same thickness
and the same variation range of the imaginary part of permittivity
as those shown in Fig. 8b. Note that in Fig. 9a, the real part has
been set to 1, which presents the best case for an absorbing
medium with linear profile index. Figure 9b shows the reflection
due to such a linear profile slab. We can see that a significant
reflection can be observed. Further simulation shows that only
when the thickness increases to ~90 wavelengths, the reflection
can be reduced to a negligible level.

In summary, we have experimentally verified the omnidirec-
tional reflectionless absorption due to the spatial K–K profile of
constitutive parameters. The proposed method based on the
space–frequency Lorentz dispersions can be used to construct
broadband inhomogeneous materials with desired spatial K–K
profiles. Although we demonstrated our experiment at microwave
frequencies, our method can also be used at higher frequencies up
to the optical regime. Our work implies the practicability to
artificially fabricate broadband, omnidirectionally non-reflecting
absorbers without gain regions.

Methods
Full-wave simulations. In this work, two commercial software packages,
COMSOL Multiphysics and CST Microwave Studio, are used in different full-wave
simulations.

In the theoretical analysis, simulations for all the electric field propagation
are performed using COMSOL Multiphysics, taking the unique advantage of its
high-efficient computation for 2D full-wave simulations. The analysis type is set as
“Harmonic propagation”, and the “Stationary solver” is chosen. In all simulations,
the maximum number of iteration is set as 25, the size of the mesh is set as λ0/50,
and all the simulated domains are truncated by PML boundaries.

In the material design, the scattering parameters of the three-dimensional
unit cells are simulated using CST Microwave studio. In all the simulations, the
“FSS-Unit Cell template” in the “Frequency domain solver” is chosen. The accuracy
of the “tetrahedral mesh” is set as 0.0001%, the simulation steps per wavelength are
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Fig. 9 Reflection of a linear profile slab. a The linear permittivity profile slab with the same thickness and variation range of the imaginary part of
permittivity as those shown in Fig. 8b. The real part of the linear permittivity profile is set as a constant value of 1, so that it can perfectly match the real part
of the permittivity of air. The imaginary part is linearly increased from 0 (at the front edge located at x= 5.45λ0) to the maximum value of 6.7 at x= 12λ0.
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located at x= 13.45λ0. This configuration is the best case for an absorbing slab with a linear permittivity profile to obtain an optimal reflection performance.
b The simulated wave reflection due to the linear profile slab
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set as 10 in the “Mesh density control”, and the minimum number of steps is set
as 20.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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