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Chronic obstructive pulmonary disease (COPD) is a serious public health concern
worldwide. By 2040, 4.41 million people are estimated to expire annually due to
COPD. However, till date, it has remained difficult to alter the activity or progress of
the disease through treatment. In order to address this issue, the best way would be
to find biomarkers and new therapeutic targets for COPD. DNA methylation (DNAm)
may be a potential biomarker for disease prevention, diagnosis, and prognosis, and its
reversibility further makes it a potential drug design target in COPD. In this review, we
aimed to explore the role of DNAm as biomarkers and disease mediators in different
tissue samples from patients with COPD.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a chronic progressive disease (Rabe and Watz,
2017). Its pathological features mainly include irreversible airway obstruction, mucus secretion,
and inflammation (Celli and MacNee, 2004). Fifty years ago, it had prompted the establishment of
the Department of Pulmonary Diseases. Unfortunately, with the world’s population aging rapidly,
COPD has become an increasingly serious problem (Crapo, 2019). The Global Burden of Disease
Study (GBDS) had estimated ∼299 million patients to have COPD, worldwide, in 2017 (GBD 2017
Disease and Injury Incidence and Prevalence Collaborators, 2018). In 2016, ∼2.93 million patients
across the world died of the disease due to its high incidence rate. By 2040, the number of deaths due
to COPD is expected to be double of that in 2016, which implies ∼4.41 million deaths due to COPD
(Foreman et al., 2018). The above data, however, does not include the patients with COPD who died
of cardiovascular disease (Calverley et al., 2007), and those with some cardiovascular diseases along
with airflow restriction (Franssen et al., 2016). Therefore, the global mortality caused by COPD
is remarkably underestimated, and in near future, it could pose a serious public health concern.
For many years, the clinical treatment of COPD has focused on relieving patients’ symptoms, and
improving their health and quality of life. However, till date, it has remained very difficult to alter
the progress of this disease through treatment. COPD is a heterogeneous disease, which may need
precise and personalized therapeutic approach (Heaney and McGarvey, 2017). Moreover, early
diagnosis of the disease would be necessary, before the occurrence of disability or irreversible lung
structural changes (Lowe et al., 2019). The best way to solve this problem would be to explore the
biomarkers of COPD and identify new therapeutic targets.
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COPD is a complex disease affected by environmental factors
(smoking or drugs); therefore, its pathological mechanism is
driven by genetic and epigenetic variation (Qiu et al., 2012;
Vucic et al., 2014). Through genome-wide genetic association
studies (GWAS), many COPD-susceptible gene loci, such as
FAM13A (Cho et al., 2010; Chen et al., 2015), CHRNA 3/5 (Pillai
et al., 2009; Hardin et al., 2012) and HHIP (Pillai et al., 2009),
had been identified previously (Young et al., 2008, 2010, 2011;
Hancock et al., 2010; Lambrechts et al., 2010; Repapi et al., 2010;
Van Durme et al., 2010; Chappell et al., 2011). Interestingly,
many single nucleotide polymorphisms related to COPD were
found in the non-coding region and intron regulatory regions
of the gene; this result was consistent with many complex
diseases (Hindorff et al., 2009; Maurano et al., 2012). These single
nucleotide polymorphisms may be speculated to be involved
in the regulation of epigenetic modification. Some differential
methylated sites (CPGs), unrelated to GWAS but closely related
to those regarding smoking (the main exposure factor of COPD),
have potential significance in COPD susceptibility (Qiu et al.,
2012, 2015; Vucic et al., 2014). Therefore, genetic variation and
environmental exposure mediated by epigenetic modification
may enhance the risk of COPD (Qiu et al., 2012).

Epigenetic modification mainly includes DNA methylation
and various post-translational modifications of histones
(histone PTM, including histone acetylation, methylation,
phosphorylation, ubiquitination and sulfonation). Among
them, COPD is mainly related to histone acetylation. Histone
deacetylase is the key enzyme to control the proinflammatory
cytokines related to COPD (Bowman et al., 2009). The balance of
histone acetylation/deacetylation in COPD patients will shifted
toward acetylation (Szulakowski et al., 2006). The imbalance of
histone acetylation and deacetylation changes the nucleosome
structure in the transcription of inflammatory cytokines, affects
the expression of inflammatory genes (Mroz et al., 2007, 2008).
This leads to the change of gene expression profile in COPD
patients (Szulakowski et al., 2006).

DNA methylation (DNAm) is a tissue-specific epigenetic
modification involved in the regulation of gene expression
(Vucic et al., 2014). It plays an important role in many chronic
complex diseases, like cancer (Luo et al., 2020) and aging
(Horvath and Raj, 2018), and is the basis of normal physiological
development. Many studies, till date, have confirmed DNA
methylation, related to COPD, to be a potential biomarker for
disease prevention, diagnosis, and prognostic evaluation (Qiu
et al., 2012; Sundar et al., 2017). Furthermore, its reversibility
makes it an attractive candidate for designing disease biomarkers
and drugs. In this review, we focused on the role of DNAm
as biomarkers and disease mediators in different tissue samples
from patients with COPD.

BIOMARKER IN BLOOD

Blood samples from patients with COPD had previously been
reported to show hypomethylation of DNA, which is related
to severity of the disease (Zinellu et al., 2017c). Some studies
had suggested DNA hypomethylation to be related to oxidative

stress (OS) via various mechanisms (Fomenko et al., 2007;
Hitchler and Domann, 2007; Franco et al., 2008). The redox
state of cells, with higher degree of oxidation, may lead to
the reduction of DNAm through redox regulation of related
enzymes, such as SAM-dependent methyltransferase (Fomenko
et al., 2007). In an environment with higher level of oxidation, the
activity of methionine adenosyltransferase is decreased, which
in turn catalyzes the addition of methionine to adenosine to
synthesize SAM (Pajares et al., 1992). The important role of
OS in COPD has now been confirmed (Figure 1; Zinellu et al.,
2016a,b,?); the characteristics of hypoxia in COPD can enhance
OS by increasing ROS production at the level of mitochondrial
respiratory chain (Chandel and Schumacker, 2000; Hoppeler
et al., 2003). In contrast, Angelo Zinellu et al. had reported
DNA hypomethylation in the blood of patients with COPD to
be related to disease severity, although there was no significant
correlation between DNAm and OS index (Zinellu et al., 2017c).
This may be due to the relatively small sample size of the
study or the lack of severely unstable patients with COPD
(particularly with high oxidative stress). At the same time, Qiu
et al. (2012) had screened 27578 CpG loci in subjects with
COPD, by using the HumanMethylation27 array (Illumina, San
Diego, CA, United States). A total of 349 CpG loci was found
to be significantly related to the susceptibility and severity of
COPD. Gene ontology analysis, based on these CpGs, suggested
the involvement of immune and inflammatory system pathways,
stress response, and external stimulation. Hypomethylation of
SERPINA1 and fucosyltransferase-7 (FUT7) genes was found
to be closely related to COPD and pulmonary dysfunction.
Recently, the haplotypes of two major alleles of SERPINA1
were found to be related to reduced risk of COPD (Ponce-
Gallegos et al., 2019). SERPINA1 gene encodes a sialic acid
protein called α-1 antitrypsin (AAT), whose main function
is to protect the lower respiratory tract from degradation
by neutrophil elastase (Salahuddin, 2010). AAT deficiency is
generally believed to be the most important genetic risk factor
of COPD. Decrease of α-1 antitrypsin level in circulation leads
to the increase of elastase activity in pulmonary neutrophils;
it is the imbalance of protease–antiprotease that leads to lung
remodeling (Brode et al., 2012). FUT7 encodes sialyl Lewis X
(SLeX), which can promote leukocyte migration to inflammatory
tissue (Miyashiro et al., 2004). Furthermore, the SLeX is a ligand
of E-selectin (ES), which is increased in patients with COPD
(Di Stefano et al., 1994). Therefore, future research should focus
on whether the relative hypomethylation of FUT7 could change
the peripheral expression of SLex and eventually lead to the
transfer of neutrophils to the lung. If this hypothesis could be
confirmed, it will be another exciting and biologically credible
way. Some new differential methylation sites related to COPD
had been identified in the DNA of Korean blood samples,
including cg03559389 (DIP2C) and a rare variant (rs140198372)
of cg19904425 (SERPINA 12) (Lee et al., 2017). Among them,
the DIP2C mutation was found in lung cancer samples (Gao
et al., 2013) and SERPINA12 was reported to be related to
airflow restriction (Jackson et al., 2016). For the systematic
evaluation of COPD as well as DNAm of peripheral blood in
a population-based study, no consistent CpG locus was found
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FIGURE 1 | Mechanism for the development of COPD driven by oxidative stress. Exogenous oxidants from the environment and endogenous oxidants (released by
activated neutrophils, alveolar macrophages and epithelial cells) lead to the production of reactive oxygen species and cause lung tissue damage. It mainly includes
lipid peroxidation, Protein damage, DNA damage and Altering signal pathway. (A) Lipid peroxidation results in the hydrolysis of phospholipids in the cell membrane
and changes in the structure and permeability of the cell membrane. Arachidonic acid produced by hydrolysis of phosphoric acid molecules, its metabolites
thromboxane, prostaglandin E and leukotriene C4 are involved in the inflammatory process. (B) The inactivation of α1-AT breaks the balance between protease and
anti-protease, which do great damage to elastin and eventually leads to emphysema. (C) Gene expression of inflammatory mediators induced by DNA damage.
(D) Oxidative stress changes TNF-α-mediated signaling pathway, which leads to increased mucus secretion and ciliated cell dysfunction. ROS, reactive oxygen
species; AA, arachidonic acid; α1-AT, alpha-1-antitrypsin; Nrf2, nuclear factor erythroid-2-related factor2; HSF, heat shock transcription factor; NF- kB, Nuclear
Factor-κB.
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in the study of COPD status or that of lung function value
(Machin et al., 2017). Large-scale research on vertical design
to solve reverse causality may prove to be a more fruitful
research approach.

Blood biomarkers are useful for the assessment of systemic
properties of COPD (Faner et al., 2014). Compared to lung
tissue samples, the risk in blood sampling is lower. In addition,
sampling of blood samples can be easily repeated, which is
beneficial for longitudinal monitoring of disease progression.
Compared to other minimally invasive biological samples (such
as urine or sputum), blood samples have a wider range of
application, more repeatability, and are less time-consuming.
These characteristics make blood sampling more practical in
large-scale research (Regan et al., 2019).

BIOMARKER IN SPUTUM

Methylation of P16 and GATA4 promoter in sputum samples was
assumed to be an early biomarker of COPD (Sood et al., 2010;
Meek et al., 2015). GATA4 is a transcription regulator for many
cell cycle genes (Rojas et al., 2008). In humans, it is a crucial
transcription factor for normal lung development (Ackerman
et al., 2007). Moreover, methylation of GATA4 gene has been
found to regulate oxidative stress and/or airway inflammation,
which is related to the health status of patients with COPD (Yao
and Rahman, 2011). Therefore, methylation of GATA4 gene in
sputum may independently predict the health status of patients
with COPD (Meek et al., 2015). P16 mediated cell cycle arrest
and senescence (Takahashi et al., 2006), The absence of p16
activated the accumulation of Akt and cyclin D, upregulated
IGF1 pathway, promoted the proliferation and regeneration
of aecii, and finally effectively prevented the cigarette induced
emphysema (Cottage et al., 2019). Of course, there are also
some researchers who are opposed to the protective effect of
p16, but the sample size of relevant studies is very small (only
3 cases), and the reliability of the results needs further study
(Sundar et al., 2018).

The methylation pattern of tumor suppressor gene (TSG)
promoter was studied in sputum samples of patients with COPD;
they included cyclin dependent kinase inhibitor 2A (Berger and
Bardeesy, 2007), MGMT (Belinsky et al., 2002), and CDH1 (Elloul
et al., 2006). The extent of methylation in CDKN2A and MGMT
was significantly higher. Induction of abnormal methylation in
TSG in sputum samples could be a useful tool for early diagnosis
of COPD (Guzmán et al., 2012).

BIOMARKER IN TRACHEAL
EPITHELIUM AND LUNG TISSUE

COPD is a heterogeneous inflammatory disease of the airways,
alveolus, and microvasculature (Rabe and Watz, 2017). Since
DNAm in lung tissue (Cheng et al., 2016; Morrow et al.,
2016) and small airway tissue (Vucic et al., 2014) is closely
related to COPD, tissue-specific DNAm may be considered
to occur in COPD. Unlike the hypomethylation pattern of

DNAm in blood (Qiu et al., 2012), most differentially methylated
genes in COPD-associated small airway epithelia (SAE) are
hypermethylated. Although collection of samples of airway and
lung tissues is difficult, a large volume of literature exists
regarding DNAm markers in tracheal epithelium and lung
tissues (Table 1).

In view of the common genetic and epigenetic variation of
COPD, some researchers follow the results of GWAS as a guide
to prioritize the identified loci related to COPD (Morrow et al.,
2018) with epigenetic annotation (Kundaje et al., 2015), and
highlight the mechanisms related to complex traits. The genetic
control of DNAm has been observed in a variety of complex traits
and diseases (Olsson et al., 2014; Hannon et al., 2016; Bonder
et al., 2017). Morrow et al. (2016) had analyzed the whole genome
DNAm of homogenous lung tissue samples from patients with
COPD. The differential methylation sites were integrated with
previous genome-wide studies and four of them, namelyCHRM1,
DTX1, GLT1D1, and C10orf11, were focused upon in the study
(Morrow et al., 2016). TheCHRM1 is known to be associated with
airway constriction, and a small candidate gene study had shown
it to be associated with asthma (Maeda et al., 2006) and nicotine
dependence (Lou et al., 2006). In addition, the role of other
muscarinic receptor genes had also been previously reported in
COPD (Cherubini et al., 2016).

In the lung parenchyma of patients with COPD, researchers
had found differentially methylated genes to be closely related
to the top typical pathways (such as β-γ signal or cancer
mechanism), diseases and disorders (tissue damage and
abnormality, cancer and respiratory system diseases), and
molecular and cellular functions (Sundar et al., 2017). Genomic
DNAm analysis had confirmed the changes in DNAm status
of suggestive genes such as NOS1AP, TNFAIP2, BID, GABRB1,
ATXN7, and THOC7 in COPD-lung tissue, and further verified
the changes by pyrosequencing. DNAm was suggested to possibly
play a key role in the regulation of gene expression related to
molecular pathways and cellular processes in COPD (Yao and
Rahman, 2011). Small airways are the main sites of airflow
obstruction in patients with COPD; therefore, detection of

TABLE 1 | Potential DNA methylation markers in tracheal epithelium and lung
tissue of COPD.

References Gene Tissue

Clifford et al. (2018) OAT, GRIK2 Parenchymal fibroblasts

Morrow et al. (2018) KCNK3, EEFSEC, PIK3CD,
DCDC2C, TCERG1L,
FRMD4B, IL27

Lung tissue

Qiu et al. (2018) Klotho Human bronchial epithelial

Sundar et al. (2017) NOS1AP, TNFAIP2,
BID,GABRB1,ATXN7,
THOC7

Lung tissue

Barnawi et al., 2017 S1PR5 Alveolar macrophages

Song et al. (2017) SPDEF, FOXA2 Bronchial tissue (primary
airway epithelial cells)

Morrow et al. (2016) FRMD4A, THSD4,
C10orf11

Lung tissue

Yoo et al. (2015) EPAS1 Lung tissue
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markers in small-airway epithelium of patients with COPD
could have important biological and clinical significance. Three
pathways in SAE were found to have potential significance in the
pathogenesis of COPD, namely phosphatase and tensin homolog
(PTEN) signal, NF-E2-related factor 2 (Nrf2) mediated oxidative
stress, and interleukin-17F(IL-17F) inflammatory response
pathway (Vucic et al., 2014).

DNAm has a high level of cell-type specificity, there are
some studies on DNAm of individual cell types in patients
with COPD. Clifford et al. (2018) had studied the genomic
DNAm of fibroblasts isolated from lung parenchyma and airway,
and found DNAm to be related to differential gene expression
only in the parenchymal fibroblasts. In addition, 359 individual
differential CpG loci were found in the parenchymal fibroblasts.
The methylation sites of OAT and GRIK2 genes significantly
increased their expression in COPD cells (Clifford et al., 2018).
Barnawi et al. (2017) had found phagocytosis of apoptotic
cells by alveolar macrophages in patients with COPD to be
controlled by epigenetic regulation, and decrease of methylation
to possibly be the cause of increased S1PR5 gene expression
in alveolar macrophages and of the defect in COPD-related
efferent cells. Notch-mediated hypermethylation of Klotho in
alveolar macrophages and airway epithelial cells inhibited the
expression of Klotho and promoted inflammatory response
and apoptosis in COPD (Qiu et al., 2018). Demethylation of
NF-κ B-mediated pathway gene is related to the deterioration
of COPD. However, TET1/2 plays an important role in the
regulation of DNAm and production of cytokine/chemokine
by NF-κ B, STAT3, IKK, and NIk genes in A549 cells
(Kaur and Batra, 2020).

Goblet cell metaplasia is a common feature of COPD, which
is related to mucus hypersecretion. SAM-pointed domain, a
transcription factors containing ETS like factor (SPDEF) and
forkhead box protein A2 (FOXA2), regulates the differentiation
of goblet cells. Airway mucin 5AC, secreted by SPDEF,
is aggravated the differentiation of goblet cells and mucin
production (Park et al., 2007; Chen et al., 2009; Rajavelu et al.,
2015), while FOXA2 effectively inhibited the differentiation
of pulmonary goblet cells (Tang et al., 2013). Song et al.
(2017) had found hypermethylation of CPG-8 in the promoter
of SPDEF and hypomethylation of CpG-14 and CpG-15 in
FOXA2, was identified the abnormal methylation of SPDEF and
FOXA2 during the differentiation of goblet cells is the basic
factor of mucus hypersecretion in COPD, thus providing a
new approach to understand mucus hypersecretion from the
perspective of epigenetics.

Some researchers had identified key regulatory factors in
lung samples of patients with COPD by integrating functional
genome, epigenetic data, and higher-order phenotype data (Yoo
et al., 2015). Endothelial PAS domain protein 1 (EPAS1) was
found to be the only key regulatory factor with a significant
overlap of multiple gene sets related to COPD, and the protein
level of EPAS1 was low in the lung tissue of patients with
COPD (Yoo et al., 2015). EPAS1 is a hypoxia responsive
transcription factor, also known as hypoxia inducible factor 2
α (HIF2A) (Ema et al., 1997; Tian et al., 1997). Its expression

in lung and endothelial cells was higher than that of hypoxia
inducible factor 1 α (HIF1A). The decrease of EPAS1 expression
observed in COPD actually lead to inadaptability of hypoxia
response (Kent et al., 2011). Therefore, it would be highly
significant to understand the role and mechanism of EPAS1 in
the treatment of diseases.

The above study found significant levels of abnormal DNAm
to be different across lung tissues and cell types. It depends on the
number of samples (Sundar et al., 2017), the integration method
of gene expression (Yoo et al., 2015), and the integration scheme
with GWAS results (Morrow et al., 2016).

DISCUSSION

DNAm is obviously a potential biomarker for disease prevention,
diagnosis, and prognosis. Owing to its reversibility, it has been
widely considered as a biomarker and drug design target in
COPD. While it has huge prospects in research, there are some
limitations in the studies as well. First, the studies were limited by
the type of sample: either they were conducted in blood, related
to blood biomarkers of the disease (although the transformation
of lung pathology was limited), or they are carried out in the
lung tissue, where the cell type-specific methylation spectrum
could hide the disease-related changes. Stueve et al. (2017)
confirmed that DNA methylation from peripheral blood can
serve as a surrogate marker for DNA methylation in lung tissue,
which shows that it is feasible to search for cross tissue DNA
methylation markers (especially in blood and lung tissue) in
COPD patients. Moreover, mixed cell population in the whole
tissue might complicate the study of the mechanism of cell
type-specificity in subsequent diseases. Second, cross-sectional
studies hindered the causal relationship between methylation
changes and COPD status or lung function level. We are not
sure whether these are prior to COPD or the result of COPD.
Finally, the studies focused on the European population, with
few methylation and transcriptome data from other populations,
such as the Asians.

Nevertheless, DNAm as a potential biomarker of COPD,
has a broad research prospect. First of all, COPD, as a non-
neoplastic lesion, often occurs simultaneously with lung cancer
(Tockman et al., 1987; Mannino et al., 2003). Hypermethylation
of IL-12RBETA2 and WIF-1 has been found frequently in
the transition from COPD to lung cancer (Suzuki et al.,
2010). Therefore, COPD and lung cancer are suggested to be
an epigenetic continuum characterized by the accumulation
of methylation markers over time. In addition, large-scale
methylation studies may help to reveal the details of epigenetic
development of COPD into lung cancer, which would be of
great significance to public health. Second, the discovery of
CRISPR-Cas9 has promoted the development of epigenetic
editing (Wu et al., 2018). Its advantages in targeting, safety,
and preventing non-targeting effect make epigenetic editing,
based on epigenetic markers, feasible. In addition, unlike genome
editing, epigenetic editing does not lead to permanent changes
in the genome. The core of its function is to correct abnormal
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epigenetic markers to affect the expression or function of
specific genes. This could provide a very effective method for
the treatment of COPD in future. It is also urgent to obtain
dynamic and persistent information of epigenetic markers for
different cell types.
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