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Placental hypoplasia is associated with the pathophysiology of
fetal growth restriction and preeclampsia. The placenta consists of
differentiated trophoblasts, including cytotrophoblasts, syncytio‐
trophoblasts, and extravillous trophoblasts. Cytotrophoblasts
are thought to have stem-like characteristics and the ability
to differentiate into syncytiotrophoblasts and extravillous
trophoblasts. However, it is poorly understood whether isolated
cytotrophoblasts derived from hypoplastic placentas have
specific features compared with those in normal placentas. This
study aimed to determine the features of cytotrophoblasts in
hypoplastic placentas. Differentially expressed proteins between
isolated cytotrophoblasts from hypoplastic placenta with fetal
growth restriction and those from the normal placenta were
determined by liquid chromatography-tandem mass spectrometry.
Among 6,802 proteins, 1,253 and 2,129 proteins were more than
2-fold upregulated and downregulated, respectively. Among
them, ENDOU (endonuclease, poly(U) specific), which has high
homology with the coronavirus endoribonuclease nonstructural
protein 15 (Nsp15), showed a significantly increased expression in
cytotrophoblasts from the placenta with fetal growth restriction
related to preeclampsia compared with those in normal control
placenta. These results provide insight into the pathological
mechanisms of placental hypoplasia and additional information
on preeclamptic symptoms in cases of SARS-CoV-2 infected
placenta, although further investigation is needed.
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F etal growth restriction (FGR), to date, has no effective
therapy in utero, meaning treatment must begin after birth

in the neonatal intensive care unit, and there have been few
improvements in prognosis.(1) Establishing a treatment to
improve fetal growth in utero is desirable.(2) However, the causes
of FGR are variable, including genetic factors, congenital infec‐
tion, umbilical cord anomaly, placental hypoplasia, and other
possibly unknown factors. Recently, pro-inflammatory dietary
during pregnancy has also been reported to cause FGR.(3) Among
these causes, FGR caused by placental hypoplasia might be
improved by antenatal intervention, including improvement of
poor placentation because the fetus itself is thought to be normal
in those cases. Placental hypoplasia is also a major cause of
preeclampsia (PE), which is accompanied by maternal hyperten‐
sion complicated by organ damage, which is often further

complicated by FGR.
Cytotrophoblasts are thought to proliferate and differentiate

into distinct types of trophoblasts, syncytiotrophoblasts, and
extravillous trophoblasts (EVTs) in the human placenta.(4)

Syncytiotrophoblasts mainly produce various humoral factors for
maintaining pregnancy, and exchange gases, nutrients, and waste
products between the fetus and mother in the intervillous space.
EVT invades the maternal uterine decidua and myometrium to
remodel the spiral arteries for their dilation, which is involved in
maintaining abundant blood flow in the intervillous space.
Failure of EVT invasion into the uterus leads to placental
hypoplasia, which causes FGR or PE.(5) These findings suggest
that cytotrophoblasts could have different characteristics in
hypoplastic placentas compared to those in normal placentas.(2)

Identifying these characteristics could clarify the patho‐
physiology of the hypoplastic placenta and develop new in utero
therapies.

In the present study, we investigated the proteomic profiles of
cytotrophoblasts isolated from hypoplastic placentas with FGR
and compared them with those from the placentas of healthy
pregnant women. Among the differentially expressed proteins
(DEPs), we also examined the expression of three proteins
relevant to FGR related to PE and compared them with those in
healthy control placentas.

Materials and Methods

The study was approved by the Ethics Committee of the
Nagoya University Graduate School of Medicine (approval
number: 2008-0648, 2016-0001, 2017-0302). Study participants
comprised pregnant women who had singleton deliveries via
cesarean section at Nagoya University Hospital. The control
group included women with neonates who had appropriate birth
weights for their gestational age. FGR was diagnosed when the
estimated fetal weight (EFW) was below −1.5, standard deviation
(SD) for their gestational age. FGR cases were excluded as
follows: the presence of fetal factors that may restrict growth,
including genetic diseases such as trisomy 18 and congenital
infections such as cytomegalovirus infection. PE was defined as
the presence of hypertension (systolic blood pressure ≥140
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mmHg or diastolic blood pressure ≥90 mmHg) and proteinuria,
other maternal organ dysfunction, or uteroplacental dysfunction
after 20 weeks of gestation, which are all criteria consistent with
the international definition.(6) Inclusion criteria were strictly
defined to reduce clinical variance in immunohistochemistry
(IHC) study. Only “FGR related to PE” from FGR cases were
included in the PE-FGR group. Table 1 shows the clinical infor‐
mation of the study participants, who provided samples for mass
spectrometry analysis and IHC.

Human cytotrophoblast isolation. This was established as
previously reported.(7,8) Human villous cytotrophoblasts were
isolated from the placenta. Briefly, chorionic villous tissues were
dissected from the chorionic plate, basal plate, and main vessels.
Minced villous tissues (20–30 g) were digested in 100 ml Hank’s
balanced salt solution (HBSS) supplemented with 0.125% trypsin
(Thermo Fisher Scientific, Waltham, MA), 0.5 mg/ml DNase
type1, 250 mg Dispase 2 (Sigma-Aldrich, St. Louis, MO), 0.1
mM CaCl2 and 0.8 mM MgSO4 for 20 min at 37°C. The cell
suspension was collected, and 5 ml of fetal bovine serum (FBS)
(immobilized) was added to inactivate trypsin and was layered
over Percoll (GE Healthcare, Chicago, IL) density gradient with
four layers (50%, 45%, 25%, and 20% Percoll layers). After
centrifugation, the floating cells between the 25% and 45%
Percoll layers were collected. The collected cells (1 × 107 cells)
were incubated with 0.2 μg/μl of the anti-human leukocyte
antigen (HLA)-ABC antibody (Mouse W6/32, eBioscience
14-9983-82; Thermo Fisher Scientific) for 15 min at 4°C,
followed by further incubation with 0.2 μg/μl anti-mouse-IgG
antibody microbeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) for 15 min at 4°C. After being passed through a 100
μm nylon filter, HLA-ABC negative cells were collected using a
Mini MACSTM separator (Miltenyi Biotec) and stored at −20°C
until use. Some purified cytotrophoblasts were cultured and
confirmed to undergo spontaneous cell fusion to differentiate into
syncytiotrophoblasts, as previously reported.(8)

Sample preparation and mass spectrometry analysis.
The sample preparation was performed per a previous report.(9)

Briefly, cytotrophoblasts were lysed in lysis buffer [50 mM

Tris-HCl (pH 7.6), 150 mM NaCl], cOmpleteTM EDTA-free
Protease Inhibitor Cocktail (Sigma-Aldrich) and sonicated for 5 s
on ice. The supernatant fraction was collected by centrifugation
for 30 min at 13,000 rpm and sonicated for 5 s. Protein concen‐
trations were evaluated using the bicinchoninic acid assay
(PierceTM BCA Protein Assay kit; Thermo Fisher Scientific) in
accordance with the manufacturer’s instructions.
The protein samples were digested with trypsin and subjected

to mass spectrometry analysis using an Orbitrap FusionTM
TribridTM mass spectrometer (Thermo Fisher Scientific) in
combination with an UltiMateTM 3000 RSLCnano LC system
(Dionex Co., Amsterdam, The Netherlands). The samples were
then injected into an UltiMate3000 RSLCnano LC system
equipped with a nano HPLC capillary column, 75 μm in diameter
and 150 mm in length (Nikkyo Technos Co., Tokyo, Japan).
Multiple MS/MS spectra were submitted to the Mascot program,
ver. 2.6.0 (Matrix Science Inc., Boston, MA) for the MS/MS ion
search. Statistically significant differences in abundance between
the PE-FGR and control groups were calculated using a
two-tailed t test using Perseus software ver. 1.6.15.0 (http://
www.perseus-framework.org/). For the volcano plots, a t test
was performed, adjusting S0 to 0.1, the number of randomiza‐
tions to 250, and the false discovery rate (FDR) to 0.05.(10) DEPs
were defined as those proteins showing a 2-fold or greater
change in the ratio of average values in the PE-FGR group than
the control group average. Pathway analysis was performed on
the upregulated and downregulated proteins using Metascape
(http://metascape.org). Gene Ontology (GO) terms were consid‐
ered significantly enriched as follows: p<0.01, minimum count
of 3, and enrichment factor >1.5.

Immunohistochemistry. The procedure was performed as
previously described.(9) Briefly, paraffin-embedded tissue sections
(4 μm thick) were deparaffinized in Tris-EDTA buffer (pH 9.0)
and heated at 95°C for 20 min in a microwave oven. Immuno‐
histochemical staining was performed using the Histofine
SAB-PO(R) kit (Nichirei Bioscience Inc., Tokyo, Japan) using
the avidin-biotin immunoperoxidase technique, according to the
manufacturer’s instructions. The sections were incubated at

Table 1. Clinical characteristics of the study population

Isolated cytotrophoblast Control (n = 4) FGR (n = 5) p value

Maternal age (years) 36.3 ± 3.6 32.8 ± 6.6 0.357

Nulliparity 1 (25.0%) 2 (40.0%) 1.000

Maternal BMI at delivery 27.0 ± 4.0 26.1 ± 5.7 0.784

Gestational age at birth (weeks) 38.6 ± 0.5 33.7 ± 5.4 0.111

Birth weight (g) 3,323.5 ± 336.6 1,349.4 ± 624.0 <0.001

Placental weight (g) 481.8 ± 110.9 236.6 ± 138.8 0.022

Male newborns 0 (0.0%) 3 (33.3%) 0.167

Immunohistochemistry Control (n = 13) PE-FGR (n = 13) p value

Maternal age (years) 33.3 ± 6.4 33.2 ± 3.6 0.941

Nulliparity 7 (53.9%) 11 (84.6%) 0.202

Maternal BMI at delivery† 25.4 ± 4.8 23.7 ± 2.4§ 0.287

Systolic blood pressure (mmHg)† 118.2 ± 15.8 168.5 ± 14.1 <0.001

Diastolic blood pressure (mmHg)† 75.5 ± 12.2 104.9 ± 8.1 <0.001

Gestational age at birth (weeks)‡ 37.7 [32.7–38.7] 34.1 [27.1–36.4] <0.001

Birth weight (g)† 2,803.4 ± 555.2 1,387.5 ± 473.8 <0.001

Placental weight (g)† 470.8 ± 98.8 276.2 ± 101.1 <0.001

Male newborns 8 (61.5%) 9 (69.2%) 1.000

Systolic blood pressures are indicated as the highest value in hospitals for childbirth, and diastolic blood
pressures are indicated as the values measured at the same time point. Continuous variables are presented
as mean ± SD and p values were calculated by Weltch t test, †Student t test or ‡ as mean [range] by Wilcoxon
rank-sum test. Categorical variables are presented as number (percentage) and p values were calculated by
Fisher’s exact test. §n = 12 as data was absent.
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4°C overnight with 5.2 μg/ml of rabbit anti-human apolipo‐
protein A1 (APOA1) (14427-1-AP; Proteintech, Rosemont, IL),
2.3 μg/ml of anti-human poly(U)-specific endoribonuclease
(ENDOU) (18002-1-AP; Proteintech), and 4.5 μg/ml of anti-
human myotrophin (MTPN) (13508-1-AP; Proteintech). As a
negative control, the primary antibody was replaced with
normal goat serum (Nichirei Bioscience Inc.). The sections
were then rinsed and incubated for 10 min with biotinylated
secondary antibodies (Nichirei Bioscience Inc.). After washing,
the sections were incubated for 5 min with horseradish peroxidase-
conjugated streptavidin and treated with diaminobenzidine
(DAB; Dako Agilent Technologies, Inc., Santa Clara, CA) in
0.01% H2O2 for 20 min and counterstained with Meyer’s
hematoxylin (Wako Pure Chemical Industries, Ltd., Osaka,
Japan) at approximately 25°C. The intensity of immunoreactivity
mainly in cytotrophoblasts in the placenta was evaluated on a
four-level scale (0, none; 1, weak; 2, moderate; 3, strong;
Fig. 2C). Ten representative fields per section were evaluated
by two examiners, and their values were averaged.

Statistical analysis. Statistical analyses were performed
using JMP Pro 15 software (SAS Institute Japan, Tokyo, Japan).
Fisher’s exact test was used to compare the categorical variables.
The Wilcoxon rank-sum test and Student’s/Welch’s t test were
used to compare continuous variables with non-normal and
normal distributions for homoscedasticity/heteroscedasticity,
respectively. Statistical significance was set at p<0.05.

Results

Protein expression patterns of cytotrophoblasts isolated
from placentas with FGR were different from those from the
control placenta. Table 1 shows that the clinical character‐
istics of these two groups were similar, unlike birth and placental
weights. Both birth weight and placental weight in the FGR
group were significantly lower than those in the control group
(p = 0.022 and p<0.001, respectively). A total of 6,802 proteins
were detected. Among them, 1,253 and 2,129 proteins were at
least 2-fold upregulated and downregulated, respectively. These
proteins were used for the pathway analysis. The top 10 GO
pathways were significantly upregulated and downregulated
(Fig. 1A, black and white bars, respectively). The upregulated
pathways included oxidoreductase activity, but the downregu‐
lated pathways included GTPase binding and GTPase regulator
activity pathways. The volcano plot was also produced, and

the names of proteins were labeled as they were matched to the
following criteria: more than 2-fold change, consistent with
previous reports (Fig. 1B).(11,12) These proteins were alkaline
phosphatase, placental type (ALPP), APOA1, cytochrome P450,
family 19, subfamily A, polypeptide 1 (CYP19A1), follistatin-
related protein 3 (FSTL3), ENDOU, and MTPN. ALPP,
CYP19A1, and FSTL3 were excluded from further analysis as
they have been previously reported to be associated with the
pathology of PE or FGR.(13–17)

Differential expression of APOA1, ENDOU, and MTPN
between PE-FGR and control placenta. The clinical charac‐
teristics of the PE-FGR group versus the control group are
summarized in Table 1. Maternal age, nulliparity, BMI at
delivery, and sex of newborns were similar between the PE-FGR
and control group, although both birth weight and placental
weight in the PE-FGR group were significantly lower than those
in the control group (p<0.001). Systolic and diastolic blood pres‐
sures were significantly higher and gestational age at birth was
significantly earlier in the PE-FGR group than in the control
group (p<0.001).
The protein expression of APOA1, ENDOU, and MTPN was

evaluated by immunohistochemistry. APOA1 was included in the
enzyme activator activity pathway and is listed as the 6th most
increased pathway (Fig. 1A, shown in red). ENDOU was
included in the catalytic activity, acting on RNA pathway (the 9th
most increased pathway) and hydrolase activity, acting on ester
bonds pathway (the 10th most increased pathway) (Fig. 1A,
shown in red). APOA1 (Fig. 2A and B, top panel) and ENDOU
(Fig. 2A and B, second panel) expression in the placental
cytotrophoblasts in the PE-FGR group were significantly higher
than those in the control group (p = 0.013 and p = 0.008, respec‐
tively). MTPN expression was not significantly different between
the FGR-PE and control groups (p = 0.120, Fig. 2A and B, third
panel). No pathway was shown to include MTPN (Fig. 1A).

Discussion

The present study is the first to demonstrate that isolated
cytotrophoblasts derived from the placenta with FGR have a
unique protein signature compared to those from healthy
controls. The oxidoreductase activity pathway was significantly
upregulated; however, other pathways, including the GTPase-
binding pathway, were significantly downregulated. CYP19A1
is involved in the oxidoreductase activity pathway. GTPases
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have been previously reported to be associated with placental
FGR.(18,19)

The expression levels of ALPP, APOA1, CYP19A1, FSTL3,
ENDOU, and MTPN proteins showed greater than 2-fold
changes; expression levels of ALPP, APOA1, CYP19A1, FSTL3,

and ENDOU proteins were increased and MTPN protein was
decreased. The changes in expression observed in this study
are consistent with previous reports.(11,12) It has been reported
that ALPP, APOA1, CYP19A1, and FSTL3 are significantly
increased and MTPN is decreased in the PE placenta, as deter‐
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mined by proteomics.(11) Microarray analysis has shown that
ENDOU mRNA is significantly increased in cytotrophoblasts
isolated from PE placentas.(12) Of these proteins, ALPP,(15)

CYP19A1,(14,16) and FSTL3(13,17) have already been reported to be
associated with the pathology of PE; thus, they were excluded
from further investigation. In the present study, the expression
levels of APOA1, ENDOU, and MTPN were evaluated in PE-
FGR placentas by immunohistochemistry.

ENDOU was initially characterized as human placenta protein
11 (PP11)(20) but it was found to have RNA binding capability,
allowing it to cleave single-stranded RNA at uridylates in an
Mn2+-dependent manner.(21) However, the role of ENDOU in the
placenta remains unknown, although ENDOU has been previ‐
ously reported to regulate B cell survival.(22) Recently, ENDOU
inhibitors have been investigated as potential therapeutic agents
against COVID-19.(23) ENDOU cleaves the 5'-polyuridines from
negative-sense viral RNA, which leads to evasion from the host
pattern recognition receptor melanoma differentiation-associated
gene 5 (MDA5).(24) Moreover, placental ENDOU has previously
been reported to have high homology with the coronavirus
endoribonuclease nonstructural protein 15 (Nsp15).(25,26) Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
been detected in the placenta of mothers with COVID-19.(27)

Moreover, it has been reported that pregnant women with severe
COVID-19 can develop a PE-like syndrome, but the abnormal
balance of angiogenic factors observed in actual PE has not been
observed in these patients.(28) It has been suggested that coron‐
avirus endoribonuclease expression of SARS-CoV-2 might be
associated with PE-like symptoms in pregnant women with
severe COVID-19. However, several single-institution cohort
studies found no association between SARS-CoV-2 infection
during pregnancy and adverse pregnancy outcomes, including PE
and FGR.(29–32) It remains unknown whether a shared pathology
may exist between COVID-19 and PE, and further investigation
is needed.(33) A previous study also reported that ENDOU expres‐
sion is increased in patients with preeclampsia (n = 4), but the
study population was minimal.(26) The present study supports this
finding by including a larger number of cases. In addition, we
showed that ENDOU expression was also increased in cyto‐
trophoblasts from FGR placentas. Recently, ENDOU has been
reported to play a role in increased CCAAT-enhancer-binding
protein homologous protein (CHOP) protein levels upon
stress,(34) and CHOP expression was reported to be upregulated
in PE and PE-FGR placentas.(35,36) These findings suggest
that ENDOU might be related to the pathogenesis of PE-FGR
placentas, although further investigation is needed.
APOA1, a major component of high-density cholesterol

(HDL), has also been reported to be secreted from the placenta(37)

and has been reported to be involved in cholesterol transport to
the mother at term.(38) Several studies have reported APOA1
serum levels in women with PE compared with those in healthy
controls, but these results contradict with ours; they showed
decreased levels or no change in PE.(39–42) The present study
showed increased expression in cytotrophoblasts in the PE-FGR
placenta. However, cytotrophoblasts exist inside the syncytio‐
trophoblasts in villi, and syncytiotrophoblasts play a major role
in maternal serum secretion. Thus, increased expression in cyto‐
trophoblasts might not be related to maternal serum levels.
Previously, only two studies reported APOA1 expression in PE
or PE-FGR placentas. The study of severe PE placenta by
proteomics showed a significantly increased expression (n = 20
in each group) (11) but another study using IHC reported no
difference in APOA1 expression in PE placentas compared with
normal controls (n = 17 in each group).(43) Both study samples
were small, which may be a limitation of these results.
MTPN expression was not significantly different between

the PE-FGR and control groups. MTPN’s function remains
unknown, although it is associated with miR-375, a regulator of

insulin secretion.(44)

The present study showed different protein profiles in cyto‐
trophoblasts derived from FGR placentas and normal controls.
There are various causes associated with the pathology of FGR.
In this study, FGR cases related to congenital infections or
congenital anomalies were excluded. In the IHC analysis, the
samples were further restricted to PE-FGR cases because the
pathological factors were unified. PE has been well investigated,
and it is well known that the failure of EVT invasion into the
maternal decidua causes hypoplastic placenta.(45)

The methodology of the present study could be applied to
other obstetric studies. Cytotrophoblasts can also be isolated
from other pathological placentas, including cases of placenta
accreta and placentas from preterm birth. Findings from other
pathologies might lead to the discovery of new therapeutic
targets for these diseases.
The present study has several limitations. First, the sample size

was small. Second, the protein levels gained from isolated cyto‐
trophoblasts were limited and difficult to analyze for validation.
Thus, the protein levels were evaluated by IHC. Third, cyto‐
trophoblasts were derived from the placenta after birth and at the
end of placentation. Thus, the protein profile may show placental
hypoplasia’s result rather than its cause. However, ENDOU,
which showed increased expression in PE-FGR, might play a
pathological role in poor placentation, although further investiga‐
tion is required to confirm this.

In conclusion, we found an altered protein profile between
cytotrophoblasts derived from the hypoplastic FGR placentas and
those from control placentas. ENDOU, which is highly homolo‐
gous to coronavirus endoribonuclease Nsp15, showed increased
expression in PE-FGR, although its pathological role should be
determined in the future.
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