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Milk fatty acids are essential for many dairy product productions, while intramuscular

fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major

components of IMF andmilk fat. Therefore, understanding the polymorphisms and genes

linked to fat synthesis is important for animal production. Identifying quantitative trait loci

(QTLs) and genes associated with milk and meat production traits has been the objective

of various mapping studies in the last decade. Consistently, the QTLs on chromosomes

14, 15, and 9 have been found to be associated with milk and meat production traits

in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1

(DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and

buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis,

the DGAT1 has obtained considerable attention especially in animal milk production.

In addition to milk production, DGAT1 has also been a subject of interest in animal

meat production. Several polymorphisms have been documented in DGAT1 in various

animal species including cattle, buffalo, goat, and sheep for their association with milk

production traits. In addition, the DGAT1 has also been studied for their role in meat

production traits in cattle, sheep, and goat. However, very limited studies have been

conducted in cattle for association of DGAT1 with meat production traits in cattle.

Moreover, not a single study reported the association of DGAT1 with meat production

traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view

the important role of DGAT1 in animal production, the current review article was designed

to highlight the major development and new insights on DGAT1 effect on milk and meat

production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted

the possible future contributions of DGAT1 for the studied species.
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INTRODUCTION

Milk production traits have fundamental importance in livestock
production and the related economy (1, 2). The milk fatty acids
have shown an essential role in cheese production, and it has been
found that milk fat includes about 98% triglycerides (TGs) (3). In
addition to milk production, scientists are also taking an interest
in the quality of meat. The trends for meat quality instead of meat
yield are gradually changing in many countries (4, 5). In order to
improve productivity, the animal with better quality traits such
as milk production, growth, meat, and carcass quality have been
selected and used in the breeding program in the animal industry.

Genetic factors can influence milk fat composition, and its
genetic variation has been reported in previous studies (6, 7).
Consistently, it has been documented that the carcass and meat
quality traits are under the control of several genes (4). Selection
aimed at increasing the frequency of alleles with a positive effect
on a given trait was initiated by geneticists (8). In general,
identifying and validating genetic markers for milk production
traits are the initial and crucial steps to establish a marker-
assisted selection (MAS) system. Thus, the increasing productive
performance through genetic selection is a common goal for
many animal breeding programs worldwide (9–11).

Several studies have targeted the bovine quantitative trait
loci (QTLs) on chromosome 14 for their association with
milk production traits (12–20). Acyl CoA:diacylglycerol
acyltransferase (DGAT1) gene at chromosome 14 has been
documented as a candidate marker for the QTLs associated
with milk production traits through cattle genome and linkage
mapping studies (21, 22). Besides DGAT1 association with
milk production traits, many studies have documented that the
genes on bovine chromosome 14 regulate many economic traits
including meat production in beef cattle (23–26). Urbinati et al.
explored several genes on chromosome 14 that had significantly
regulated metabolism, melanin biosynthesis (pigmentation),
bone development, and meat production in dairy cattle. They
have documented the pleiotropic ability of DGAT1 for both
influencing meat and milk quality in dairy cattle (27). Later
on, DGAT1 was reported as a production-associated gene in
several animals including buffalo, sheep, and goat. Keeping in
view the importance of DGAT1 gene in animal production, the
current review was designed to highlight the possible research
development on DGAT1 role in cattle, buffalo, sheep, and goat
milk and meat production trait regulation.

SHORT DESCRIPTION OF DGAT1 IN
CATTLE, BUFFALO, SHEEP, AND GOAT

Diacylglycerol O-acyltransferase 1 (DGAT1), Ensembl ID
(Ensembl: ENSBTAG00000026356) was identified as one
underlying QTL for milk production traits located on the
centromeric region of the bovine chromosome 14 having 17
exons with 14,117 base pair (bp) (21, 22). DGAT1 gene (Gene ID:
102390126) in buffalo located on chromosome 15 has a size of
10,733 bp distributed in 19 exons (28). The expression of DGAT1
has been documented in the small intestine, liver, adipose tissue,

and mammary gland (29, 30). In sheep, DGAT1 (Gene ID:
100126245) is located on chromosome 9 and consisted of 17
exons (31), while in goat, DGAT1 gene (Gene ID: 100861225)
is located on chromosome 14 with 18 exons (https://www.ncbi.
nlm.nih.gov/gene/100861225).

DGAT1 ROLE IN MAMMARY GLAND
DEVELOPMENT AND SYNTHESIS OF
TRIACYLGLYCEROL

The development of the mammary gland is a complex
process that is necessary for normal lactation. The interactions
between the mammary epithelium and surrounding stroma are
crucial for normal mammary gland development. Furthermore,
adipocytes are the most abundant cells in the stroma. Stromal
adipocytes synthesize and store large amounts of TGs, which
may serve as reservoirs of substrates for milk production by
the mammary epithelium. During this process, adipocyte TGs
must be hydrolyzed and the fatty acids transferred to the
epithelial cells for re-esterification. TG synthesis is catalyzed
by diacylglycerol O-acyltransferase 1 (DGAT1) enzymes, which
covalently join diacylglycerol with fatty acyl CoA (Figure 1)
(32). A study has identified genes encoding two mammalian
DGAT enzymes, DGAT1 and DGAT2 (33). DGAT1 gene is
expressed in nearly all tissues, including the mammary glands
(34). Mice lacking DGAT1 (Dgat1−/−) have decreased TG
content in tissues and cannot lactate (35). Furthermore, Cases
et al. found that the mice lacking DGAT1 had faced impaired
mammary gland with decreased epithelial proliferation and
alveolar development. Similarly, it has been documented that the
insufficient level of DGAT1 in both the stromal and epithelial
tissues is associated with impaired mammary gland development
(36). The knockdown of DGAT1 in bovine mammary epithelial
was associated with a reduced level of TG synthesis in bovine
mammary epithelial cells (BMECs) (37).

DGAT1 Role Association With Fat
Metabolism and Milk Production Traits
The vital role of DGAT1 in fat metabolism makes them a
best choice as a candidate marker in animal production. The
mechanism of DGAT1 role in fat metabolism is shown in
Figure 2.

Consequently, DGAT1 was documented to have a significant
influence onmilk production in cattle in Germany (38). Ardicli et
al. documented the association of DGAT1 with milk production
traits in dairy cattle and concluded that DGAT1 could be
used as a genetic marker to improve the milk production
traits (39, 40). Through the genome-wide association study
(GWAS), it has been well established that DGAT1 is associated
with milk production traits (41–43). Consistently, Jiang et al.
documented through a GWAS that DGAT1 gene is correlated
with milk fat yield; however, a negative link of single-nucleotide
polymorphism (SNP) (rs109421300) in DGAT1 with milk and
protein yields was noticed in U.S. Holstein cattle (44). The SNP
(rs109421300) has A and G alleles, while G allele was associated
with antagonistic pleiotropy for positive fat yield and negative
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FIGURE 1 | The synthesis of triacylglycerol by DGAT1 using glycerol-3-phosphate pathway (https://david.ncifcrf.gov/kegg.jsp?path=bta00561$Glycerolipid%20meta

bolism&termId=550009448&source=kegg).

milk and protein yields in U.S. Holstein cattle. It was reported
in a recent study that the variant DGAT1 K232A modulates
the expression of DGAT1 gene in the mammary gland of dairy
cattle (19).

DGAT1 K232A Association With Milk
Production in Cattle
A polymorphism AA→ GC exchanges and causes the
substitution of amino acid 232. Lysine (K)→ alanine (A)
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FIGURE 2 | The mechanism of DGAT1 role in fat digestion and metabolism (https://david.ncifcrf.gov/kegg.jsp?path=bta04975\protect\LY1\textdollarFat%20digestion

%20and%20absorption&termId=550009625&source=kegg).

was detected on exon 8 of DGAT1 gene of Bos taurus:
(Figure 3) (21, 22, 45). Later on, many studies documented the
significant association of DGAT1 K232A polymorphism with
milk production traits in dairy cattle (45–49). The DGAT1 region
analysis in six Indian cattle (Sahiwal, Rathi, Deoni, Tharparkar,
Red Kandhari, and Punganur) revealed fixed DGAT1K allele
(Figure 3) (45). Moreover, Tania et al. documented that the
desired region sequence of control cows showed heterozygous
situation for already detected mutation in three cows.

The allelic frequency and the influence of the DGAT1 K232A
polymorphism have been illustrated in dairy cattle populations in
different countries including New Zealand (12, 19, 21, 50), Israel
(13), the Netherlands (51, 52), Germany (53, 54), Poland (55, 56),
China (57–59), France (60), India (45), and Sweden (47).

Furthermore, it has been well established that the DGAT1K
allele is linked to a higher fat yield, fat content, and protein
content and lower milk production protein and lactose yield
(42, 46, 47, 54). Few reports also studied that the increase in milk
fat and protein percentages was associated with the K variant
in DGAT1, while the increase in milk yield was linked to the A

variant in dairy cattle (40, 47). Berry et al. documented that the
K allele of DGAT1 K232A is significantly associated with higher
milk fat content, protein content, and milk fat yield and lower
milk and protein yield in dairy cattle in Denmark (61). Bovenhuis
et al. (42) found that the changes in milk production traits
during early lactation might be due to DGAT2 (33) in addition to
DGAT1. Furthermore, Bovenhuis et al. showed that milk protein
is directly associated with phosphate, calcium, and magnesium
contents; thus, DGAT1 K232A polymorphism may change the
milk mineral composition (42). In a recent study, the lactation
stage interaction with genotypes (SNP × lact) was evaluated for
seven milk production traits (milk yield, lactose yield, lactose
content, fat yield, fat content, protein yield, and somatic cell
score) in 1,800 first-parity Dutch Holstein–Friesian (20). It has
been reported that DGAT1 K232A effect on milk production
changes with lactation stage (20, 42). The influence of DGAT1
K232A on milk yield tends to decrease in the early lactation
stage when the cows experience negative energy balance (NEB)
(42); however, the effect was constant for milk fat throughout
the lactation but slightly lowered in early lactation (20). The
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FIGURE 3 | The AA→ GC (K232A) mutation in exon 8 of DGAT1 in dairy cattle.

main reasons documented for these changes were NEB (42)
and effects of pregnancy because repartitioning of nutrients
is required between milk production and fetus development
(18, 20). Furthermore, it is hypothesized that DGAT2 shows
more critical role than DGAT1 in early lactation, which could
be another contributory factor to the above-observed changes
(42). In contrast, it was noticed by a study that DGAT1 effects
increased in all the three stages of lactation day 5–95, from day
96 to 215, and from day 216 to 305 (62). Lu and Bovenhuis
assumed that pregnancy in the late stage of lactation might be
one reason for changes in milk production contents, especially
lactose contents (18). Mao et al. evaluated the effects of the
DGAT1 genotypes on milk production traits in dairy cattle; it
was confirmed through an association study that dairy cows with
KK genotype were significantly superior in milk fat and protein
contents compared with AA and KA. In contrast, higher 305-day
fat yield and 305-day protein yield were reported in cows with
genotype KA compared with AA or KK genotypes (61). A recent
study reported the interactions of DGAT1 K232A with milk fat
and protein percentages. In addition, the lactation stage was the
critical factor associated with the effect of DGAT1 polymorphism
onmilk fat and protein percentages. The AA genotype was linked
to a reduction in milk fat percentage, while KK significantly
increased milk protein percentage (49). Venbergue et al. selected
21 dairy cows and divided them into three groups based on
the DGAT1 K232A genotype (eight cows each of KK and KA
genotype; five cows of AA).

Furthermore, the KK genotype cows presented higher milk
fat and protein contents, higher κ-casein percentage, and lower
milk yield (63). Consequently, the DGAT1 AA genotype was
associated with low milk fat and protein contents and higher
milk yield and lactose yield than the DGAT1 KK genotype
in dairy cattle (64). Consistently, it has been found that the
K allele in DGAT1 is linked to higher milk fat and protein
contents, while the A allele showed association with higher
milk yield in dairy cattle (7, 42, 65). In contrast, Mach et al.
did not find any significant effect of DGAT1 polymorphism

on milk production traits in dairy cattle (66). A study proved
through a gene expression experiment that the enzyme activity
level of the alanine variant was lesser than that of the lysine
variant (51). Interestingly, Demeter et al. explored the effect of
DGAT1 polymorphism on non-return rates for insemination.
Furthermore, the findings of Demeter et al. provided a roadmap
to determine the associated effects of breeding to improve the
composition of milk fat on reproduction, thus enabling a better
assessment of breeding programs prior to implementation (52).

Few studies have reported that the effect of DGAT1 K232A
also depends on the breed (53, 67), lactation stage (68, 69), and
parity (41, 60). Furthermore, it has been documented that milk
fat contents were not constant throughout lactation in dairy cattle
(68, 69). The genetic effect of DGAT1 on milk production traits
showed interaction with the lactation stage (18, 20). The possible
reasons for the decreasing effects of DGAT1 on milk production
traits, especially on milk protein contents during the first and
second lactation, might be due to the dilution effect and de novo
fatty acid synthesis (42). Consistently, it has been reported that in
early lactation, dairy cows experienced a NEB. The dairy cows
mobilize body reserves to fulfill energy deficiency utilized to
maintain milk yield (41). Bionaz et al. (70) provided evidence for
differential expression of DGAT1 during lactation. They showed
that significant changes in DGAT1 expression only occurred in
early lactation (<15days), whereas in late lactation, no significant
changes in DGAT1 expression were detected. Consistently, few
studies also documented that DGAT1 expression in the bovine
mammary gland alters with the initiation of lactation (70–73).
However, these studies noticed that the changes in DGAT1
expression were not constant throughout lactation in dairy cattle.

In addition, Lu et al. studied the effect of DGAT1 K232A
polymorphism on milk metabolome and proteome obtained
from two groups of cows (AA and KK genotype cows). It was
found that milk from cows with KK genotypes consisted of less
uridine diphosphate (UDP)-linked sugar, citrate and creatine,
and more stomatin, choline, carnitine, and sphingomyelin when
compared with milk obtained from cows having AA genotypes.
Thus, the cows different in DGAT1 polymorphism showed
variations in milk metabolome and proteome, which helps us to
understand the mechanism behind the effect of DGAT1 K232A
polymorphism on milk production characteristics (37).

The genetic effect of DGAT1 polymorphism on milk
production is also affected by the season. Recently, a study
noticed the significant effect of winter and summer on the genetic
effect of DGAT1 polymorphism on milk production traits; in
winter, the DGAT K232A effect was negatively associated with
milk fat (74). However, neither increasing nor decreasing effect
of allele DGAT K232A was reported on milk content traits with
change in temperature in the Polish Holstein–Friesian breed.
However, some of the milk production traits (milk protein yield
and milk yield) were not constant throughout the lactation and
slightly decreased with change in environmental temperature
(20–28◦C). Themore prominent effect of DGATK232A in Polish
Holstein–Friesian was not observed because the temperature was
moderate (5◦C−28◦C) in this study (75). Shahzad et al. noticed
the low hepatic expression of DGAT1 in periparturient dairy
cattle during summer compared with spring (76). Consistently,
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a study reported that the KK genotype of DGAT K232A
polymorphism showed association with triacylglycerol (TAG)
composition in milk fat in summer, while in winter, the effect
among genotypes (AA cow and KK cow) was smaller for TAG
composition in milk (77). Bovenhuis et al. documented the effect
of DGAT1 polymorphism on milk, fat, protein yield, and fat
and protein content. Furthermore, it was noticed that DGAT1
polymorphism also influenced lactose content and lactose yield
(42). In addition to DGAT K232A, the DGAT1 variable number
of tandem repeat (VNTR) was also found to be associated
with milk fat percentage in dairy cattle. The promoter VNTR
polymorphism has shown effect on specificity protein 1 (SP1)
binding sites and regulate the expression of DGAT1 gene as well
(78). The research development on DGAT–K232A has also been
summarized in Table 1.

DGAT1 Role in Buffalo Milk Production
Traits
Buffalo milk is famous because of its high protein and fat
content (82). Consistently, it has been shown that buffalo milk
has higher milk fat content than cow milk (93). Thus, it is
necessary to characterize DGAT1 in buffalo because of high
milk fat yield production than that of cows (94). DGAT1
gene has been characterized in previously reported studies
in buffalo (94–97). Yuan et al. studied DGAT1 gene and
its polymorphisms in Chinese water buffalo. Furthermore, it
has been revealed that SNP at exon 17 changes the amino
acid sequence Ala residue to Val residue at position 484 in
buffalo DGAT1 (95). Consequently, Mishra et al. characterized
DGAT1 gene in six different Indian water buffalo (Murrah,
Bhadawari, Tarai, Pandharpuri, Marathwada, andMehsana). The
polymorphisms detected in DGAT1 reported by previous studies
were significantly associated with milk production traits and
could be a target as genetic markers for improvement of milk fat
and milk yield production in water buffalo (95, 96).

Two SNPs (g.11,783 G>A and g.11,785 T>C) at exon 17
of DGAT1 in cattle were also identified in Murrah buffaloes
(98). Furthermore, it was documented that SNP-g.11, 785 T>C
is associated with milk fat and protein percentages in Brazilian
Murrah buffaloes. The two SNPs g.8330T>C and g.9046T>C
at exons 17 and 13 in DGAT1 gene were identified in Riverine,
Swamp, and crossbred buffalo. Furthermore, it was revealed that
g.9046T>C had been associated with the change in amino acid
sequence at position 484 arginine to histidine (99). The SNP
g.9046T>C was associated with fat percentage, and buffalo with
TT genotype showed a higher association for milk fat percentage
than the CC genotype. Similarly, the SNP g.8330T>C of DGAT1
in Riverine buffalo was linked to peak milk yield, total milk
yield, and protein percentage. The buffalo having a CC genotype
showed a higher ability for milk yield and peak yield and less milk
protein than the TT genotype (99). Compared with that of cattle,
the high milk fat percentage in buffalo might be due to a fixed
K allele (94). In contrast, Silva et al. did not find any effect of
SNPs in DGAT1 on milk production traits in buffalo. The reason
for this might be due to their distribution on the intron region,
which is not essential for amino acid sequences on proteins (100).

A recently published study revealed that SNP-8426 C/T at exon
17 of DGAT1 changes the amino acid of Ala to Vla in Iranian
buffalo (101). Furthermore, the association of SNP-8426 C/T
in DGAT1 with milk production traits might a good choice to
consider as a genetic marker for enhancement of milk production
in buffalo (101). The DGAT K allele was documented in Indian
buffalo and cattle breeds (45). Consistently, the DGAT K232A
polymorphism was documented by their association with higher
milk fat yield, higher milk fat, and protein percent regulation in
buffalo breeds (45, 102). Consistently, c.1053C>T polymorphism
in the coding region of exon 17 in DGAT1 was found to be
involved with milk production traits in the ItalianMediterranean
and Romanian buffalo breeds (103). Furthermore, it was revealed
that the T allele might be assumed to be DGAT1 gene’s ancestral
state, being found in the majority of the sequenced species.
Liu et al. through a GWAS reported the significant effect of
DGAT family genes onmilk production traits in buffalo (82). The
published data show that the DGAT1 role in milk production
traits in buffalo is lacking, and further validation is warranted.
Besides, we did not find a single study regarding DGAT1 gene
importance in buffalo meat production. So still a huge gap
is there to evaluate the association of DGAT1 with buffalo
meat production.

DGAT1 Role in Goat and Sheep Milk
Production
Due to the high content of short- and medium-chain fatty acids
and smaller fat globules, goat milk is generally considered to
have a high nutritional value (104). Goat milk in many countries
around the world is of particular economic value and is attractive
for many reasons, including its abundance in different nutrients
and its health importance (105). Genetic selection programs
for dairy goats are still rare in many developing countries,
but breeding strategies for the commercial production of milk
and meat from goats have been remarkably successful (106). In
cheese production, milk fatty acids play an important technical
function, while DGAT1 has an essential role in the biosynthesis
of TGs exported to the milk. The important role of DGAT1 in
the metabolism of milk fat makes DGAT1 gene an interesting
candidate for the genetic variation of milk characteristics in
milk goats (107). DGAT1 also plays an essential function in
physiological processes that include the synthesis of TAG, such
as the absorption of intestinal fat (22, 36), the development of
adipose tissue, and mammals’ lactation (12, 19).

DGAT1 gene was characterized in goat by Angiolillo et al.;
furthermore, an association study was suggested to explore the
relationship of DGAT1 with TAG synthesis in the goat mammary
gland (108). It has been documented that miR-145 regulates the
fatty acids metabolism in goat mammary epithelial cells. MiR-
145 acts on fatty acid regulating genes including DGAT1 in
goat mammary epithelial cells. Furthermore, a significant change
in fatty acid level was observed by knocking out the MiR-145,
inhibiting the DGAT1 expression (109). Consequently, it has
been reported that SP1 impairs the milk fatty acid synthesis by
decreasing the expression of DGAT1 in goat mammary epithelial
cells (110, 111).
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TABLE 1 | Research development on DGAT1 K232A polymorphism association with milk production traits in dairy cattle.

Polymorphism Production traits Country Breeds References

DGAT1 K232A Milk production traits Belgium Holstein–Friesian Grisart et al. (51)

DGAT1 (K232A) Milk fatty acid traits Benin Borgou and White Fulani Houaga et al. (79)

DGAT1 K232A Milk production traits Brazil Nellore, Guzerat, Red Sindhi, Gyr,

Holstein, and Gyr × Holstein

Lacorte et al. (80)

DGAT1 K232A Milk fatty acids Chile Holstein–Friesian, Jersey, Frisón

Negro, Montbeliarde, and Overo

Colorado

Carvajal et al. (81)

DGAT1 K232A Milk production traits China Chinese local breed Li et al. (82)

DGAT1 K232A Milk production traits Czech Republic Holstein–Friesian Kadlecova et al. (83)

DGAT1 K232A Milk production traits France French Holstein, Normande, and

Montbéliarde

Gautier et al. (60)

DGAT1 K232A Milk production traits France Holstein × Normande crossbred Vanbergue et al. (63)

DGAT1 K232A Milk production traits Germany Holstein–Friesian, Fleckvieh and

Braunvieh

Winter et al. (22)

DGAT1 K232A Milk fat Germany German Holstein Kuhn et al. (84)

DGAT1 K232A Milk production traits Germany German Holstein Kuhn et al. (85)

DGAT1 K232A Milk production traits India Sahiwal, Rathi, Deoni, Tharparkar,

Red Kandhari and Punganur

Tantia et al. (45)

DGAT1 (K232A) Milk production traits Ireland Holstein–Friesian Berry et al. (61)

DGAT1 K232A Milk fat Israel Dutch Holstein–Friesian Argov-Argaman et al. (86)

DGAT1 K232A Milk production traits+ milk

coagulation properties

Italy Italian Holstein–Friesian Bobbo et al. (87)

DGAT1 K232A Milk production traits Netherlands Holstein–Friesian Schennink et al. (7)

DGAT1 K232A Milk production traits Netherlands Holstein–Friesian Schennink et al. (88)

DGAT1 K232A Milk production traits Netherlands Holstein–Friesian Duchemin et al. (74)

DGAT1 K232A Milk fat Netherlands Holstein–Friesian Tzompa-Sosa et al. (65)

DGAT1 K232A Milk metabolome and proteome Netherlands Holstein–Friesian Lu et al. (37)

DGAT1 K232A Milk production traits and lactose

contents

Netherlands Holstein–Friesian Bovenhuis et al. (41)

DGAT1 K232A Higher milk fat, protein and milk

fatty acid

Netherlands Holstein–Friesian Bovenhuis et al. (42)

DGAT1 K232A Higher milk fat, protein and lower

milk yield

Netherlands Holstein–Friesian van Gastelen et al. (64)

DGAT1 K232A Milk fatty acids Netherlands Holstein–Friesian van Gastelen et al. (89)

DGAT1 (K232A) Triacylglycerol in milk fat Netherlands Holstein–Friesian Pacheco-Pappenheim et al.

(77)

DGAT1 K232A Milk production traits New Zealand Holstein–Friesian Grisart et al. (21)

DGAT1 K232A Milk production traits Poland Polish Holstein–Friesian Vanbergue et al. (63)

DGAT1 K232A Milk production traits Poland Polish Holstein–Friesian Nowacka-Woszuk et al. (90)

DGAT1 K232A Milk production traits Poland Polish Holstein–Friesian Szyda et al. (69)

DGAT1 K232A Milk production traits Poland Polish Holstein–Friesian Komisarek J, Kolenda (75)

DGAT1 K232A Milk fatty acids Poland Polish Holstein–Friesian Kesek-Wozniak et al. (49)

DGAT1 K232A Milk fat percentage and fatty acid Romania Romanian Holstein Tăbăran et al. (91)

DGAT1 K232A Milk production traits Scotland Holstein–Friesian Banos et al. (46)

DGAT1 K232A Milk production traits Sweden Swedish Red and Swedish Holstein Näslund et al. (47)

DGAT1 K232A Milk production traits USA Holstein–Friesian Barbosa et al. (92)

Polymorphism in Caprine DGAT1 and Their

Association With Milk Production
An et al. discovered different polymorphisms (g.407–408insC
(in intron 14), g.6852C→ T, and g.6798C→ T (in exon 7)
of DGAT1 gene in Xinong Saanen (SN) and Guanzhong (GZ)
goat breeds. Furthermore, a significant association of DGAT1
in–del (g.407_408insC) with milk yield and fat percentage were
observed in Chinese dairy SN and GZ goats. Interestingly, the

DGAT1 in–del (g.407_408insC) was not in the coding region
but still has a positive effect on milk production traits (2),
which might be due to its regulatory effect on the mechanism of
mRNA deadenylation and degradation (112). Consistently, four
polymorphisms (T21153G, C21154G, A21172C, and A21194T)
were identified in DGAT1 of the Iranian Khalkhali goat (113).
The variants T21153G and C21154G cause the transformation of
serine to glycine amino acids, while A21172C was associated with
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the change in aspartic acid to alanine amino acid. Furthermore,
Evrigh et al. found that four mutations (T21153G, C21154G,
A21172C, and A21194T) of DGAT1 in Iranian Khalkhali goat
were significantly associated with milk yield and milk protein
percentage (113). Martin et al. explored the two SNPs R251L and
R396W in goat DGAT1. The SNPs were genotyped in two goat
breeds (Saanen and Alpine breeds). The frequencies noted for
R251L and R396W mutations in Saanen goat were 3.5 and 13%;
however, only R396W was found with a frequency of 7% in the
Alpine breed. Moreover, it was found that both the mutations
in DGAT1 were associated with a decrease in milk fat; however,
the association was not strongly significant for both the SNPs
(114). As the two types of mutation lead to substitution in protein
sequence (114), further experimental trials are highly warranted
for these two SNPs R251L and R396W in DGAT1 with a higher
goat population because the sample size was too low in a study by
Martine et al. Similarly, Tabaran et al. did not find the significant
influence of DGAT1 gene on milk production traits in sheep and
goat. Again, we found the same issue of less number of samples
in the experiments of Tabaran et al. (115). For an association
study, usually, a large size of population is needed (116). Recently,
two important mutations (T703C and T713C) in DGAT1 of the
Egyptian Zaraibi goat were identified (117). The polymorphism
T713C was found at the coding region associated with the
substitution of amino acid isoleucine to threonine. Furthermore,
the polymorphism T713C significantly regulated the total solid
content of milk, milk yield, and contents in Egyptian Zaraibi
goat (117).

DGAT1 Role in Sheep Milk Production
The polymorphisms in DGAT1 have been studied for their
association with milk production traits in sheep (118–120).
Dervishi et al. identified four polymorphisms: two in exon 17
(g.8522C>T and g.8539C>T), one in exon 1 (g.358C>A), and
one in intron 10 (g.7457C>A) of DGAT1 in the Spanish Assaf
goat breed (121). Furthermore, it was detected that the SNP
(g.358C>A) and (g.8522C>T) leads to a change in amino acid
sequence at points p.Asp53Glu and p.Arg482Cys. The association
study revealed that the sheep having genotype CC showed greater
performance in milk fats than the CT genotype. Overall, the four
detected SNPs in DGAT1 were associated with milk production
traits in the Spanish Assaf goat breed (121). Consistently,
in sheep, Scata et al. documented five new mutations in
DGAT1 gene, distributed on exon 17 (g.8539C>T), 5_UTR
(g.127C>A), intron 1 (g.1655C>T), intron 2 (g.5553C>T), and
intron 10 (g.7492C>T). Additionally, a negative association
of polymorphism g.5553C>T with milk fat content in Sarda,
Altamurana, and Gentile di Puglia Italian sheep breeds was
documented. Consequently, in the Sarda sheep breed, the variant
g.127C>A was negatively associated with milk fat content (122).

DGAT1 ROLE IN MEAT PRODUCTION

DGAT1 is considered a key enzyme that controls the major
pathway of TAG synthesis in the adipose tissue (123, 124). In
animals, TAG can be found in the liver, small intestine, muscle,
and adipose tissue and is considered the main component of

intramuscular fat (IMF) and a key role in energy metabolism
(125). TAG also facilitates the cell membrane composition and
transportation of lipoprotein (126). Furthermore, significant
changes in lipid metabolism in several tissues of DGAT1
lacking mice have been documented (127). Consistently, it was
validated that overexpression of DGAT1 is associated with raised
TG biosynthesis, enhanced fatty acid oxidation, and preserved
insulin sensitivity (128). In addition, Ying et al. experimentally
proved the influence of DGAT1 TAG synthesis, resistance to
insulin, and IMF deposition (129). Furthermore, it was found
that DGAT1 overexpression regulated the glucose and lipid
metabolism and catalyzed the TAG synthesis reaction, which is
responsible for enhancing muscle insulin sensitivity and raising
the content of the IMF (129). Furthermore, it was documented
that DGAT1 mediates the TAG synthesis and IMF formation,
possibly due to its effect on unsaturated fatty acid, insulin, and
MAPK signaling (130). Altogether, it was observed that DGAT1
overexpression is associated with lipid and glucose metabolism,
thereby facilitating the TAG biosynthesis (130).

DGAT1 Association With Meat Production
Traits in Cattle
Many studies have investigated the effect ofDGAT1 gene onmeat
production traits in beef cattle (4, 5, 48, 131). The role of DGAT1
gene for production traits has also been reported in seven cattle
breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein–
Friesian, Limousin, and Simmental cattle) (132). Consequently,
it was documented that DGAT1 gene may affect the color (48)
fat contents of meat in beef cattle (25). Yuan et al. studied
the association of two SNPs (c.572A/G and c.1416T/G) in the
exon region of DGAT1 gene with meat production traits in beef
cattle. It was documented that SNPs (c.572A/G and c.1416T/G)
in DGAT1 have significantly influenced the backfat thickness,
longissimus muscle area, marbling score, and fat color in beef
cattle (133). The polymorphismDGAT1 K232A is the key variant
associated with production including meat production traits.
Few reports have illustrated the role of DGAT1 K232A in the
regulation of IMF in beef cattle semitendinosus muscle (53, 134–
136); however, Ardicli et al. did not find any association of
this polymorphism with meat production traits (40). Similarly,
a study reported the nonsignificant effect of DGAT1 K232A
on various meat traits (percentage of muscle, percentage of fat,
and percentage of bones and drip loss) (137). Moreover, Cases
et al. did not find any link of DGAT1 K232A polymorphism
with meat production traits in Brahman Breed. The frequency
of A genotype in DGAT1 in most beef cattle breeds including
Charolais (16), Angus (138), Simmental (48), and Russian beef
cattle (139) was higher than K genotype. Rump height (RH) in
beef cattle has been significantly influenced by DGAT1 K232A
polymorphism (140). Consequently, it was explored that DGAT1
K232A is strongly associated with meat fat and tenderness in
three Spanish Cattle breeds (Berrenda en Colorado, Berrenda en
Negro, and Cardena Andaluza). In addition, higher frequencies
of the K allele were documented in all three breeds compared
with the A allele (141). The IMF is an important parameter
in practice for the evaluation of the nutritional quality of beef;
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consistently, Wu et al. documented a noteworthy relationship
of DGAT1-(10,433 and 10,434)-GC/GC genotype with marbling
score and IMF in Chinese Simmental cattle (142). Importantly,
the DGAT1 overexpression caused the significant alteration
metabolism of fat metabolism, elevated TG synthesis, regulated
fatty acid oxidation synthesis, enhanced fatty acid oxidation, and
conserved the sensitivity of insulin (128, 143). Based on published
literature, we concluded that although DGAT1 has an important
role, very limited research studies explored the DGAT1 function
of meat production in cattle.

DGAT1 Role in Sheep and Goat Meat
Production
Xu et al. recorded a silent mutation of GCT (Ala487) to GCC
(Ala487) on exon 17 of DDAT1 in the Chinese sheep breed.
Furthermore, a significant association of the genotypes TT was
confirmed with a higher muscle marbling score (p < 0.05) and
IMF content and lower shear force and drip loss rate (144). An
SNP (c.69 G>A) on exon 10 of DGAT1 was documented through
sequence analysis in Barki, Najdi, and Harri sheep breeds, which
causes the substitution of the amino acid (p.Lysine>Arginine).
Furthermore, it was revealed that the detected SNP (c.69 G>A)
was associated with meat production traits in Barki, Najdi, and
Harri breeds (145). Consistently, Armstrong et al. also identified
some novel SNPs of DGAT1 in Texel sheep, which were involved
in the development of shoulder weight, fat thickness, rib-eye
area, and live weights (146). A study detected SNPs on exons
16 and 17 of DGAT1 in the Lohari sheep breed and suggested
that these variants might be considered in association research
for meat production traits (31). Consequently, Mohammadi et
al. reported a significant effect of SNPs on exons 16 and 17 of
DGAT1 on fat-tail weight (p < 0.05) and backfat thickness in the
two Iranian sheep breeds (Lori Bakhtiari and Zel). Furthermore,
it was illustrated that the CC genotypes of sheep were associated
significantly with fat-tail weight and backfat thickness (147). Ala
Noshahr and Rafat documented the significant association of
polymorphism T487C on exon 17 of the DGAT1 with carcass
weight and dressing percentage in Moghani sheep. In addition
CC genotypes Moghani breed showed a higher correlation with
carcass weight and dressing percentage than TT genotypes (148).
The DGAT1 role in goat meat is still not explored. Recently, a
copy number variation (CNV) distribution was studied in the
goat. It has been documented that the CNV reported in many
genes including DGAT1was associated withmuscle development
and metabolic processes in the goat (116).

CONCLUSIONS

Based on our review, it has been concluded that DGAT1 can be
used as a genetic marker for the improvement of milk production
in dairy cattle. In addition, the DGAT1 showed some positive
role in the enhancement of meat and carcass fatness quality in
beef cattle. However, further studies are warranted to explore
the role of DGAT1 in meat production quality improvement in
different breeds of cattle. The DGAT1 also regulates the milk
production traits in sheep, goat, and buffalo. However, very
limited studies are available on DGAT1 association with milk
production traits in buffalo, sheep, and goat.DGAT1 gene showed
some influence on meat production variables in sheep and goat,
but not a single study reported the association of DGAT1 for
meat production in buffalo. Overall, our review documented
that DGAT1 has been studied extensively for milk production
in milch animals. However, further validation of DGAT1 for
their association with milk and meat production improvement
is suggested in these animals to fill the gap with further research
in this area.
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