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We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a
large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy
associated with brain activity increases with age. During an average lifespan, the entropy, which was
calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in
BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons
and the excitatory conductance decreasing with age. Incorporating these properties into a computational
model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and
we found significant differences between them. The entropy of males at birth was lower than that of females.
However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years;
after this age, males have a larger entropy.

T
here is now a consensus that ageing is multifactorial; it is the joint outcome of genetics, the accumulation of
random accidents and irreparable losses in molecular fidelity1. There is ample evidence that the genetic
component alone plays a critical role in longevity determination2. This is shown in regulatory and structural

changes that occur with age in miRNA3, mRNA4, ncRNA5, protein expression6 and functional MRI7 in many
species. Intuitively, these changes could be expected to correspond to changes in the functioning of the brain. But
in what precise sense? This is the question we address in this work. The answer involves an explicitly quantitative
way of characterizing the intrinsic ageing process of the human brain.

We used entropy to quantify the functioning of the brain in individuals of different ages. Accordingly, we shall
describe this as the functional entropy.

Entropy characterizes the degree of underlying randomness of a random variable. Random variables with small
entropies have a high level of predictability and hence a low level of randomness. By contrast, large entropies
correspond to low levels of predictability and high levels of randomness8.

As outlined below, we view the brain as being divided (parcellated) into a number of distinct regions. For each
pair of distinct brain regions, we calculated the correlation coefficient of their neuronal activity; this characterizes
the functional coupling of the two brain regions. The resulting set of correlation coefficients generates a frequency
distribution. The correlation coefficient of a distinct pair of brain regions, that have been randomly selected, can
be regarded as a random variable that follows this frequency distribution. We use the dispersion or variability of
this random variable as a measure of the functional entropy (c.f., complexity) of the neuronal dynamics of the
brain. We investigate, in this work, how this measure of the functional entropy changes with age and in Figure 1
we illustrate the behaviors of the brain’s dynamics that it captures.

Figure 1 (top row) shows the situation where every brain region fluctuates over time, but is totally correlated
with all other regions. In such a case, the functional entropy of correlation coefficients is zero; all correlation
coefficients are unity, and hence their distribution exhibits no randomness, just predictability. A case of non-zero
functional entropy occurs when a range of different correlation coefficients are found between different pairs of
brain regions. An example of this case is given by the second row in Figure 1. See Supplementary Movies for
details. In the opposite case of completely independent or incoherent activity in all regions, the correlation
coefficients will all be zero and their dispersion (functional entropy) will again be zero. This means our entropy
measure is sensitive to co-ordinated activity that is most interesting, namely activity that is intermediate between
fully synchronised and fully incoherent brain-region dynamics.
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The functional entropy effectively measures the dispersion (or
spread) of functional connectivities that exist within the brain. We
initiated this study under the assumption that the dispersion of func-
tional connectivities is related to the age of the brain.

For the current paper, we collected fMRI data from 1248 indivi-
duals, ranging from 6 to 76 years of age. This provided a unique
opportunity to characterize the ageing process of the human brain.

In the analysis of our fMRI dataset of differently aged individuals,
we found that, at the population level, the functional entropy of the
human brain (as calculated below) has a definite tendency to increase
over time. This can be viewed as there being a higher level of ran-
domness in the way different brain-regions functionally interact with
one another.

Beyond showing that the functional entropy of the brain has the
tendency to increase with age, we find quantitative differences
between the entropies of males and females. In newborn males the
functional entropy has a mean value of 3.536 bits; it is approximately
0.06% larger in newborn females, with a value of 3.555 bits. However,
there are is also a difference in the rate at which the functional
entropies change in the two sexes. In males, the functional entropy
increases at a mean rate of approximately 0.0015 bits/year but in
females it increases at the slower mean rate of 0.0011 bits/year.
The different values of the functional entropy in newborns, and
the different rates of increase in the two sexes, lead to the entropies
of the two sexes approaching one another and then crossing. This
crossover in entropies occurs at approximately 50 years of age.
Beyond this age, the pattern of entropies exhibited at birth is
reversed, with males then having the larger functional entropy.

Given that the current world life expectancy is 65.59 years in males
and 69.73 years in females9, we estimate that at these ages, the func-
tional entropy of the brain will be 3.633 bits in males and 3.647 bits in
females. Thus the mean functional entropy change, from birth to life
expectancy, is 0.097 bits in males, and 0.092 bits in females, even
though female life expectancy is higher.

In addition to determining the functional entropy of the whole
brain, we have determined the functional entropy of different regions
of the brain, again using correlations between the neuronal activity of
different brain regions. We find that different brain regions have
different entropic characteristics. Typically, the observed changes
are monotonic, but not all brain regions have increasing entropies.
There are some regions where the functional entropy increases,

others where it decreases, and a third set where the functional
entropy remains almost constant. With L and R denoting left and
right brain regions, we find that the brain regions with the fastest rate
of functional entropy increase are: the L and R paracentral lobules,
the R olfactory cortex, the L middle frontal area, the L and R hip-
pocampi and the L and R parahippocampal gyrus. We note that the
hippocampus is well known to be associated with both short and long
term memory formation10. By contrast, the L and R insulars repres-
ent regions whose entropies most rapidly decrease with the age of an
individual. Clear changes in regions of the brain, with age, are also
found in other studies, INS11, PCL12, OLF13, MFG14, HIP15 and
PHG16. We note that the functional entropy of the whole brain is
not simply an average over entropies of individual brain regions.
Accordingly, our findings, that the functional entropy of the whole
brain increases with age while some regions of the brain exhibit
decreasing entropies, are compatible.

We have used a computational model17 based on diffusion tensor
imaging (DTI) data to investigate the origins of the relationship
between functional entropy and age. Extensive experimental data
indicates that there is significant loss of neuron number with age,
and this is accompanied by the excitatory receptor number (espe-
cially NMDA) decreasing with age18. Our computational model (see
Supplementary Information for details) yields a brain entropy that
decreases when the excitatory connection strength and neuron num-
ber in each brain region are simultaneously reduced.

To motivate the definition of functional entropy that we use in this
work, let us consider the following example of an analysis we carried
out.

We parcellated the whole brain of three individuals into 90
regions, based on the AAL atlas19. These were healthy males aged
24, 49 and 69 years, which we describe as ‘young’, ‘middle-aged’ and
‘elderly’. For these, we calculated the correlation coefficient between
the BOLD signal of the thalamus in the right hemisphere and each
of 45 brain regions in the left hemisphere (see Supplementary
Information, Table S2). These signals are represented in the left-hand
of panels (a), (b) and (c) of Figure 2. Differences between the three
individuals show up which are found in more extensive analyses.

The distribution of the correlation coefficients of the elderly male
(red histogram in Figure 2d) is more widely spread than that of the
young male (blue histogram) and middle-aged male (white his-
togram). This leads to the elderly male having a larger functional

Figure 1 | Illustration of the Functional Entropy of the Brain. In this figure, the brain is parcellated into a number of distinct regions. Different levels of

brain activity (as measured by BOLD signals) are illustrated by different colors in the brain slices of the figure. We use two artificial data sets of BOLD

signals to illustrate what the functional entropy captures about brain activity. Panels (a), (b) and (c) show brain activities of brain slices at three different

times (T1, T2, T3), when the correlation coefficients between all regions of the brain are unity. In this case, all regions of the brain have the same color since

they are behaving synchronously. Panel (d) shows the BOLD signals in different brain regions, for this case. Panel (e) shows the corresponding

distribution of the correlation coefficients (a ‘spike’ located at a correlation coefficient of unity). The functional entropy for this case is zero (the minimum

possible value). Panels (f), (g) and (h) show the brain activities at three different times (T1, T2, T3), when all correlation coefficients are generally different

(so all regions have different colors, indicating that all regions are behaving asynchronously. Panel (i) shows BOLD signals in different brain regions, for

this case. Panel (j) shows the corresponding distribution of the correlation coefficients (a uniform distribution). The functional entropy in this case is 4.32

bits (the maximum possible value). See Supplementary Movies for details.
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entropy than that of the middle aged male, who has a yet larger
functional entropy than that of the young male (see Figure 2d).
This implies that the dispersion of correlations, between the right
thalamus and a region of the brain in the left hemisphere, is typically
an increasing function of age. This conclusion is found to hold in a
full analysis, where a pairwise comparison of all regions in the brain is
used, rather than just comparing regions in the left hemisphere with
the right hemispheric thalamus.

Results
We have carried out a full analysis to determine the functional
entropy in all individuals in our data set. Figure 3a shows the func-
tional entropy of the full data set as a function of age, without taking
into account gender differences. In Figure 3b we present a running
average of the functional entropy for males and females, with an
averaging window of 25 years, whose choice is a compromise
between stability and being substantially smaller than the maximum
age; choosing windows from 19 to 30 years does not significantly
affect any conclusions we draw (see Supplementary Information 6).
In Figures 3c and 3d, we give the results for the functional entropy in
males and females separately, which are different at birth (3.5336 bits
in males, 3.5547 bits in females) and which have different rates of
change (0.0015 bits/year in males, 0.0011 bits/year in females). The
Pearson correlation between entropy and age is strongly significant
(r 5 0.23, N 5 610, p 5 5.6 3 1029 for males and r 5 0.15, N 5 634, p
5 1.51 3 1024 for females) These lead to the crossover that can be
seen in Figure 3b, at an approximate age of 50 years, and will be
considered in the Discussion.

For each brain region considered in this study, we have also deter-
mined trends in their individual entropies over time. The functional
entropy of a given region is determined from the set of correlation
coefficients between that region and the other 89 regions in the
remainder of the brain. In Figure 4a we have used color to show
the trend: the warmer (redder) the color, the more positive the rate

of increase. Figure 4a shows that the frontal area is more likely to have
a higher rate of increase in functional entropy with age than an
average region. By contrast, the occipital area exhibits an apparent
resistance to functional entropy change, and remains largely
unaltered over time. This pattern is considered in detail in the
Discussion.

The brain regions that exhibit the most significant (p , 1 3 1027)
functional entropy changes with age are shown in Figure 4e, and
indicated spatially in Figure 4b, c and d. The results are based on
the slope versus age, excluding any effects of gender. The most sig-
nificant increasing or decreasing regions with ageing have already
been shown in the Introduction. They are INS (r 5 0.157, p 5 2.47 3

1028), PCL (r 5 0.217, p 5 1.07 3 10214), OLF (r 5 0.269, p , 1 3

10215), MFG (r 5 0.198, p 5 1.56 3 10212), HIP (r 5 0.221, p 5 3.11
3 10215) and PHG (r 5 0.224, p 5 1.33 3 10215) (N 5 1246), which
will be considered in detail in the Discussion.

To investigate whether functional entropy can theoretically
increase with age, a computational model from Deco et al.’s work17

was employed. In essence, these authors formulated a detailed model
of a brain network as a global random attractor. This offers a realistic
mechanistic model, at the level of each single brain area, which is
based on spiking neurons and realistic AMPA, NMDA, and GABA
synapses. The global architecture of the model is shown in Figure 5a.
After obtaining the neuronal dynamics in each brain region, the
fMRI BOLD signal was simulated by means of the Balloon-
Windkessel hemodynamic model20. We found that the functional
entropy increases with decreasing excitatory connection strength
(AMPA and NMDA) within the excitatory population of each brain
region, shown in Figure 5b. To match functional entropy of the
human data, we determined a reliable range of connection strengths
[1.78, 1.81] (indicated by two red dashed lines in Figure 5b) by
comparing the two least-square lines in Figure 3a and Figure 5b.
Figures 5c and 5d illustrate the simulated BOLD signal with two
different connection strengths; the distribution of the correlation

Figure 2 | The Origin of the Functional Entropy. This figure presents time series from BOLD signals. The left-hand sides of panels (a), (b) and (c) contain

45 time series from brain regions of the left hemisphere. The vertical location of a time series, from a given brain region, is given by value of the correlation

coefficient of that region with the right thalamus. Panel (a) is from a healthy young male (age 24 years), panel (b) is from a healthy middle-aged

male (age 49 years) and panel (c) is from a healthy elderly male (age 69 years). The two horizontal red lines in panels (a), (b) and (c) give, separately, the

mean over either positive or negative correlation coefficients. Thus the separation of these lines is a measure of the width of the distribution. In the right

halves of panels (a), (b) and (c), the time series of the right thalamus is plotted (using a different vertical scale). Panel (d) gives a histogram of the

correlation coefficients of the young male (in blue), the middle-aged male (in white) and the elderly male (in red).

www.nature.com/scientificreports
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coefficients is broader for the smaller connection strength. Specifi-
cally, Figure 5c, with a larger connection strength is similar to the
result for young people in Figure 2a, while Figure 5d, with a smaller
connection strength, is similar to that of elderly people in Figure 2c.
Additionally, assuming a positive correlation between excitatory
neuron number and connection strength (shown in Supplemental
Figure S4), we find that the excitatory neuron number in each brain
region decreases from 1130 to 888 (approximately a 20% loss). It is
know from experiments that both the neuron number and excitatory
receptors number in the human brain reduce with age. Thus we
conclude that this simplified computational model does lead to a
relationship between functional entropy and age that is similar to
that observed.

Discussion
In this paper, we have calculated the functional entropy from corre-
lations between BOLD signals of different regions of the human
brain. We have found that the functional entropy is an increasing
function of age. Our approach allows a novel explicitly quantitative
characterization of the functional entropy in the human brain, and
the results obtained are closely consistent with a computational
model where ageing is incorporated by decreasing the NMDA con-
ductance and the number of excitatory neurons.

The functional entropy discussed in the present work is estimated
only for the resting state. The value of the functional entropy deter-
mined does not directly apply to task driven fMRI, since external
tasks result in activation of brain circuits specific to the task at hand.
These are likely to confound any analysis along the lines presented
here, which aims to capture genuinely intrinsic aspects of the human
brain.

Our results are in agreement with well-known facts in neu-
roscience. The histogram of correlation coefficients of the functional
network, as plotted in Figure 3d, is more peaked in schizophrenic
patients, around zero, and hence generally leads a smaller functional

entropy than would be expected for a patient’s age. (This conclusion
is validated in the Supplementary Information, Section 7). This fea-
ture closely corresponds to the disconnection hypothesis21 of schizo-
phrenics, which has been established at an early point in the
literature.

Consider, next, the pattern of increase of functional entropy
shown in Figure 4a. Most brain regions show a trend of the functional
entropy increasing with age. This fits with the idea about the hemi-
spheric asymmetry reduction in older adults22 (HAROLD): the
increasing functional entropy comes from correlation coefficients
moving away from zero, when the age is increased. This also corre-
sponds to the left and right hemispheres becoming more symmetric
in activity with age, in the resting state. In addition to its similarity to
HAROLD, this pattern is also similar to the Posterior-Anterior Shift
in Aging23 (PASA), which is an age-related ascension in frontal activ-
ity coupled with comparatively reduced occipital activity, as the
functional entropy change speed in the frontal area is much faster
than that in the occipital area in our results. Moreover, Figure 2 also
partly reflects HAROLD, since the correlation coefficients of the
links connecting the right thalamus and the left brain regions move
away from zero with ageing, which leads to the increase symmetry in
the inter hemisphere.

A robust feature of the analysis presented here concerns the cross-
over that is observed, around 50 years of age (50.2, exactly), between
the mean entropies if male and female brains of healthy individuals
(see Figure 3b). Below the crossover age, males have a lower mean
functional entropy. Above this age, the roles are reversed and females
have a lower mean functional entropy. Physical differences of the
brains of males and females may account for the functional entropy
differences at birth, and different hormonal environments of male
and female brains throughout life could play a role in the different
rates of change of the functional entropy throughout life. There are a
number of phenomena which occur in the vicinity of an age of 50
years, where the crossover in entropies occurs. (i) The mean age of

Figure 3 | Functional Entropy vs. Age. Panel (a) is a plot of the functional entropy of individuals versus their age (pooling results from males and

females). A mean rate of increase of the entropy of 0.0013 bits/year was found from the data. Panel (b) contains a plot of the running average of the

entropy, versus age, with a window of width of 25 years adopted. There is a crossover in the male/female entropies in the vicinity of 50 years of age. Panels

(c) and (d) plot the entropy versus age of males and females. Males have a lower initial value of the entropy than females, but a faster mean rate of increase.

The linear correlation between entropy and age is strongly significant (p 5 5.6 3 1029 for males and p 5 1.51 3 1024 for females, r equals 0.23 for males

and 0.15 for females, degree of freedom: 610 and 634, respectively.)

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2853 | DOI: 10.1038/srep02853 4



occurrence of the female menopause is close to 50 years. (ii) A cross-
over occurs, around 50 years, in the increase of world knowledge and
the decreasing speed of processing, working memory and long-term
memory24. (iii) It has been recognized that In addition, the unhap-
piness of human beings peaks around 50 years; people of that age
have the most chance to become depressed25.

Concerning the rates at which functional entropy changes, we note
that in the Figure 3, the increasing rate of the functional entropy of
females is lower than that of males. This may be related to the fact

that estrogen protects women’s brains26, which decreases the risk of
Parkinson’s26 and Alzheimer’s diseases27.

In the Results, we find that INS, PCL, OLF, MFG, HIP and PHG
exhibit the most significant rates of change with age. The six brain
regions have extensive references supporting their relation with age-
ing. For example, INS and PHG represent significant volume atrophy
with ageing11,16. HIP holds a significant neuron decrease in some
parts15. Moreover, PCL, OLF and MFG show more activations in
elderly people compared with young12–14. Functionally, HIP and
PHG have a high relationship with memory28 and OLF connects with
smell29, which is typically deficient in the elderly30. In addition, PCL
and MFG are responsible for the processing of higher information31.
The various results found in other studies validate our results to some
sense. Furthermore, the pattern, that INS exhibits a significantly
decrease of functional entropy, shows that the insula is quite special
since the total functional entropy grows higher with age. Although
we have no knowledge why the INS exhibits this kind of pattern, this
deserves further investigation and may relate to the various functions
of INS.

There are a number of sources of error and noise which might
influence the robustness of the results. We note that despite the size
of the data set, it was necessary to average over a fairly extensive time
window, to see a general trend in the functional entropy. While such
an averaging is fully justified, to eliminate noise in the data, it also has
the effect of reducing or eliminating features in the data which occur
on timescales that are smaller than the averaging window. We have
considered the influence of the atlas and found that the results are
robust with respect this (see Supplementary Information, Section
16).

The age distribution of the subjects was not uniform (See Figure
S11). About half of the subjects were aged in their twenties when
scanned. To determine if the influence of this non uniform age dis-
tribution affected the correlation found between entropy and age, we
conducted resampling by selecting six subjects from each age with
equal probability and calculated the correlation between functional
entropy and age. We repeated this resampling nine times and found
that every trial showed a significant positive correlation between
functional entropy and age (See Figure S21). From this, we conclude
that the correlation between functional entropy and age is not an
artifact of the non-uniform age distribution.

Other influences, for example the pre-processing have not been
considered since they are standard and well-accepted.

In contrast to the existing definitions of entropies to measure the
randomness of brain activities in time-domain32,33, our assessment of
complexity was based upon functional connectivity matrices or cor-
relations of these brain activities. As shown in the literature34, the
randomness of brain activity decreases with age, which implies a
decrease of the entropy in time domain. However, we found, the
functional entropy increases with age. The relationship between
these two different sorts of entropy and the different trends they
exhibit with age will be investigated in the near future.

Although functional connectivity provides a simple and direct way
of assessing the statistics (complexity) of neuronal fluctuations, there
is an important qualification that we have to make: in basing our
analyses on observed hemodynamic fluctuations, we assume that the
underlying changes can be ascribed to neuronal fluctuations. This
means that we are implicitly assuming that there are no age-related
changes in neurovascular coupling or the measurement of hemody-
namics (for example, no differences in head movement). Either of
these differences could affect the correlations and therefore age-
related changes in their characterisation. Future work could use
dynamic causal modelling to separately estimate the neuronal com-
plexity, while allowing for subject-specific and age-related changes in
hemodynamic parameters.

Finally, let us point out that our data is a cross sectional study and
hence a repetition of the analysis, in the form of a longitudinal study,

Figure 4 | Functional Entropy of Brain Regions. Panel a shows the trend

exhibited by the functional entropy of each brain region with age. The

warmer (redder) the color, the larger the rate of change of the entropy.

Panels (b), (c) and (d) give the coronal, sagittal and axial views of the brain,

and show the brain regions with the most rapidly changing entropies. Red

ones show the brain regions with the most rapidly increasing entropy, blue

ones show the most rapidly decreasing regions. Panel (e) contains the

trends of all the brain regions with significant ones being in the brightest

colors. In panel (e), bright blue lines show the behavior of the insula (L, R);

bright dotted red lines indicate the paracentral lobule (L, R); solid red lines

indicate the hippocampus (L, R); dashed red lines indicate the

parahippocampal gyrus (L, R); red squares represent the olfactory cortex

(R); diamonds represent the middle frontal gyrus (L).
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is warranted. However, due to the small rate of increase of the func-
tional entropy, a significant increase in the functional entropy is only
likely to be easily observed over a large time span. Accordingly, it
might be more promising to carry out a longitudinal study in other
models, for example, in monkeys.

Methods
Subjects. Our meta-analysis included 26 datasets, with a total of 1248 samples. These
covered a range of individuals from 6 to 76 years of age. We excluded samples of poor
quality.

Note that 22 of these datasets came from the 1000 Functional Connectomes Project
(http://fcon_1000.projects.nitrc.org/), where data came from all over the world
including China, Britain and United States. In these 22 data sets, there were 842
samples, with ages ranging from 18 to 73 years, with 357 of them male. The mean age
was 28.3 6 12.3 years. Details are listed in Supplementary Table S1. The fMRI scans
performed by 1000 Functional Connectomes Project were carried out in accordance
with the guidelines issued by the local ethical committees of the various research
institutes, which can be found in their website. And informed consent was obtained
from all subjects.

Another 2 datasets were from the ADHD-200 Consortium for the global com-
petition (http://fcon_1000.projects.nitrc.org/indi/adhd200/). One of these was from
the Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience at the
Child Study Center, New York University Langone Medical Center, New York, New
York and the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
The other came from the Institute of Mental Health, Peking University and the
National Key Laboratory of Cognitive Neuroscience and Learning, Beijing University.
Since they were both concerned about ADHD classification, their data were ADHD
patients versus controls (normal individuals). We cannot apply the data from indi-
viduals with ADHD disorder, since their brains may be different from normal people,
and we used only the controls, namely the normal people from the 2 datasets. In total,
there were 241 samples, with 134 of them male. Their mean age was 11.83 6 2.47
years, so they were teenagers/children. Since most samples in the other dataset were
more than 18 years old, we selected the two datasets to complete our story about

ageing in the range of 6 years to 18 years old. The fMRI study in Peking University was
approved by the Research Ethics Review Board of Institute of Mental Health, Peking
University. Informed consent was also obtained from the parent of each subject and
all of the children agreed to participate in the study. The fMRI scans from NYU were
carried out in accordance with the guidelines issued by the local ethical committee,
and informed consent was obtained from all subjects.

There was also one dataset of elderly people, covering 117 samples from the
Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine
and Department of Biological Psychiatry, Shanghai Mental Health Centre, Shanghai
Jiao Tong University School of Medicine. In this dataset, 73 were male. The mean age
was 70.42 6 3.52 years. With a designed health status checklist, we excluded indi-
viduals with: obvious cognitive decline, a diagnosis of AD, serious functional decline
(having difficulty with independent living), as well as individuals with major medical
or psychiatric conditions such as cancer, current chemotherapy/radiation treatment,
major depression, and schizophrenia. This study was approved by the Human
Research Ethics Board of Tongji Hospital in Shanghai, China and all participants gave
written informed consent before being enrolled in the study.

The last dataset was from the Department of Biomedical Imaging and Radiological
Sciences, National Yang-Ming University, Taipei, Taiwan and the Brain Connectivity
Laboratory, Institute of Neuroscience, National Yang-Ming University, Taipei,
Taiwan. There were 48 samples in the dataset. All were male and covered a range of
ages from 21 to 76 years. The mean age was 43.8 6 17.0 years and all individuals were
normal and healthy. Moreover, the T1-image and DTI data of these 48 samples were
also applied in our paper. The fMRI scans from National Yang-Ming University were
carried out in accordance with the guidelines issued by the local ethical committee,
and informed consent was obtained from all subjects.

Data acquisition. The various ways that data were acquired in the 22 datasets from
the 1000 Functional Connectomes project can be found in their website, http://
fcon_1000.projects.nitrc.org/. Moreover, the acquisition of the two datasets from the
ADHD-200 Consortium for the global competition was in their website, http://
fcon_1000.projects.nitrc.org/indi/adhd200/.

In the dataset from Shanghai, all people underwent functional scanning using a
Siemens Trio 3 T scanner at East China Normal University, Shanghai, China. Foam
padding was used to minimize head motion for all subjects. Functional images were

Figure 5 | Computational Model. Panel (a): Schematic representation of brain network. Each brain region is comprised of excitatory pyramidal cells (red

triangles) and inhibitory interneurons (blue circles). Yellow and black arrows describe excitatory and inhibitory connections between neurons in each

brain region respectively, and blue arrows show excitatory connections between neurons in different brain regions. Panel (b): Functional entropy versus

intra-excitatory connection strength. The black dash line represents the least-square line of blue dots (different trials), and the linear correlation between

functional entropy and connection strength is statistically significant (1 3 10210). The two red dashed lines show a range of connection strengths,

[1.78, 1.81], which make the corresponding functional entropy match the human data. From the relationship between strength and excitatory neuron

number (see Supplementary Information Figure S4), the neuron number range is limited to [888, 1130] (indicated by green arrows). Panel (c) and (d):

Time series of simulated BOLD signal. Similar to Figure 1, the left hand sides of panels (c) and (d) contain 45 time series arising from brain regions in the

left hemisphere. The time series are vertically located, according to their phase difference with the right thalamus. The corresponding connection strength

in (c) and (d) is 1.81 and 1.78, respectively. (c) is similar to the result of young people and (d) is similar to that of elderly people.
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acquired using a single-shot, gradient-recalled echo planar imaging sequence (repe-
tition time 5 2000 ms, echo time 5 25 ms and flip angle 5 90 degrees). Thirty-two
transverse slices (field of view 5 240 3 240 mm2, in-plane matrix 5 64 3 64, slice
thickness 5 5 mm, voxel size 5 3.75 3 3.75 3 5 mm3), aligned along the anterior
commissure–posterior commissure line were acquired. For each subject, a total of 155
volumes were acquired, resulting in a total scan time of 310 s. Subjects were instructed
simply to rest with their eyes closed, not to think of anything in particular, and not to
fall asleep.

At last, in the dataset from Taiwan, all people underwent structural, functional and
diffusion tensor imaging scanning using a Siemens Trio 3 T scanner at National
Yang-Ming University, Taiwan. Foam padding was used to minimize head motion for
all subjects. Functional images were acquired using a single-shot, gradient-recalled
echo planar imaging sequence (repetition time 5 2500 ms, echo time 5 27 ms and
flip angle 5 77). Fourty-three transverse slices (field of view 5 220 3 220 mm2, in-
plane matrix 5 64 3 64, slice thickness 5 3.4 mm, voxel size 5 3.44 3 3.44 3

3.4 mm3), aligned along the anterior commissure–posterior commissure line were
acquired. For each subject, a total of 200 volumes were acquired, resulting in a total
scan time of 500 s. Subjects were instructed simply to rest with their eyes closed, not to
think of anything in particular, and not to fall asleep. The diffusion tensor images
covering the whole brain were obtained using spin echo-based echo planar imaging
sequence, including 30 volumes with diffusion gradients applied along 30 non-col-
linear directions (b 5 1000 s/mm2) and three volumes without diffusion weighting (b
5 0 s/mm2). Each volume consisted of 63 contiguous axial slices (repetition time 5

11000 ms, echo time 5 104 ms, flip angle 5 90 degrees, field of view 5 100 3

100 mm2, matrix size 5 128 3 128, voxel size 5 2 3 2 3 2 mm3). To improve the
signal to noise ratio, the entire sequence was repeated three times. Subsequently, high-
resolution T1-weighted anatomical images were acquired in the sagittal orientation
using a magnetization-prepared rapid gradient-echo sequence (repetition time 5

3500 ms, echo time 5 3.5 ms, flip angle 5 7, field of view 5 256 3 256 mm2, matrix
size 5 256 3 256, slice thickness 5 1 mm, voxel size 5 1 3 1 3 1 mm3 and 192 slices)
on each subject.

Data preprocessing. Firstly, we dealt with the two datasets from the controls of
ADHD 200 Consortium. Before functional image preprocessing, the first four
volumes were discarded, to allow for scanner stabilization. Briefly, the remaining
functional scans were first corrected for within-scan acquisition time differences
between slices, and are then realigned to the middle volume, to correct for inter-scan
head motions. The functional scans were then spatially normalized to a standard
template35 (Montreal Neurological Institute) and resampled at 4 mm 3 4 mm 3

4 mm voxel resolution. After normalization, the Blood Oxygenation Level
Dependent (BOLD) signal of each voxel was first detrended to remove any linear
trend and then passed through a bandpass filter (0.009 Hz , f , 0.08 Hz) to reduce
low-frequency drift and high-frequency physiological noise. Finally, nuisance
covariates including head motions, global mean signals, white matter signals, and
cerebrospinal fluid signals were regressed out. An automated anatomical labeling
(AAL) atlas19 was used to parcellate the brain into 90 regions of interest (ROIs), with
45 in each hemisphere. The names of the ROIs and their corresponding abbreviations
are listed in supplementary Table S2. We thank Carlton Chu, Virginia Tech’s ARC,
the ADHD-200 consortium, and the Neuro Bureau for what they have done for us.

Let us now consider all other datasets. The first 10 volumes of these datasets were
discarded, to allow for scanner stabilization and the subjects’ adaptation to the
environment. fMRI data preprocessing was then conducted by Statistical Parametric
Mapping36 (SPM8) and a Data Processing Assistant for Resting-State fMRI37

(DPARSF). The remaining functional scans were first corrected for within-scan
acquisition time differences, between slices, and then realigned to the middle volume,
to correct for inter-scan head motions. Subsequently, the functional scans were
spatially normalized to a standard template35 (Montreal Neurological Institute) and
resampled to 3 3 3 3 3 mm3. Data was then smoothed, and after normalization and
smoothing, BOLD signals of each voxel were firstly detrended, to remove any linear
trend, and then passed through a band-pass filter (0.01–0.08 Hz) to reduce low-
frequency drift and high-frequency physiological noise. Finally, nuisance covariates
including head motions, global mean signals, white matter signals and cerebrospinal
signals were regressed out from the BOLD signals. After data preprocessing, the time
series were extracted in each ROI by averaging the signals of all voxels within that
region and then linearly regressing out the influence of head motion and global
signals. In our present study, the automated anatomical labeling atlas19 (AAL) was
used to parcellate the brain into 90 regions of interest (ROIs) (45 per hemisphere).
The names of the ROIs and their corresponding abbreviations are listed in supple-
mentary Table S2.

On the other hand, we also applied the DTI data of the 48 samples from Taiwan to
construct the connection matrix in our neuron model. We first applied the FSL38 to
remove the eddy-current and extract the brain mask of B0 image. Then, we used the
TrackVis39 (http://www.trackvis.org/) to obtain the fiber images by the deterministic
tracking method. After that, we used the T1 data to extract the native template for
every person by FSL. Thus, we could count the number of fibers connecting every two
brain regions. All the processes were performed by a pipeline named PANDA40 from
Beijing Normal University.

Entropy calculation method. After data preprocessing, the time series were extracted
in each ROI by averaging the signals of all voxels within the region. The 90 regions
were based on a selected atlas, say the AAL Template. After that, we calculated the
Pearson Correlation Coefficient of every pair of regions. Since our atlas was the AAL

template, we had 4005 function links connecting every two regions. Thus we
constructed a whole brain functional network.

Given 4005 different correlation numbers, we required an indicator to represent
features of the whole-brain functional network, and thus considered two possible
approaches.

1) In the first approach, we considered the values of the correlation coefficients as
a realization of a random variable. The range of this was [21, 1]. We then
defined the brain functional entropy as the relative entropy, i.e., the KL
(Kullback-Leibler) divergence41 from the correlation distribution to a reference
Lebesgue measure. In practice, we did not have a continuous distribution of
correlation coefficients, but 4005 correlations values from each individual. We
thus separated all 4005 realizations into 20 class intervals of equal width, and
determined the frequency (pi) of each class. These frequencies were used to
calculate the Shannon entropy (sum of 2pi*log(pi))42 of the whole brain. This
can be considered as the functional entropy of a discrete distribution42. The
justification for replacing the relative entropy by the entropy of a discrete
distribution are given in the Supplementary Information.

2) The alternative approach was to calculate the functional entropy for every
single brain region. That was, consider the functional links between the selected
region and the other 89 regions. Thus, we could extract 89 correlations. We also
separated these into 20 equal-width class intervals, and then calculated the
Shannon entropy of each region. It should be emphasized that the functional
entropy of the whole brain is not simply an average over entropies of individual
brain regions (see the Supplementary Information, Section 3.2 for more
details).

Moreover, the base of the logarithm in the paper is 2. Thus, the unit of the func-
tional entropy in the paper is the bit (binary digit).

Statistical inference. In this paper, several statistical inference methods were used.
The first and most basic one was Pearson product-moment correlation coef-

ficient43. We used it to describe the relationship between every pair of brain regions
and the connection between the functional entropy with ageing. In addition, we also
used partial correlations43. Moreover, we applied a linear regression analysis44 to
determine any trends of the functional entropy of normal people, with age.

Computational model. We used a computational model to simulate BOLD signals.
Every brain region served as a node in a large scale network, which consisted of a
population of excitatory pyramidal neurons and a population of GABAergic
inhibitory neurons, which were all-to-all connected. The communication between
every two nodes was through synaptic connections between excitatory neurons in
those areas. Those inter-regional connections were defined by number of fibers
linking different regions in a structural connectivity matrix and by a connection
strength. The neuroanatomical matrix was obtained by Diffusion Tensor Imaging.
Here, we used averaged structural matrix from 46 healthy people, which is shown in
Figure S13. In addition, we considered a group of single neurons for each node in a
global network. Specifically, we applied the biophysically realistic attractor network
model consisting of integrate-and-fire spiking neurons with excitatory (AMPA and
NMDA) and inhibitory (GABA-A) synaptic receptor types in the microscopic level.
The spiking activity of neurons was characterized by the dynamics of the membrane
potential. We can use this model to simulate BOLD signals. This then allowed the
calculation of the functional entropy for different parameter values and the extraction
of the relationship between trends in the functional entropy and parameters, such as
the intra-connection in every brain region. Details are given in the Supplementary
Information.
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