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Abstract: Infections represent a significant cause of morbidity and mortality in cancer patients.
Multiple factors related to the patient, tumor, and cancer therapy can affect the risk of infection in
patients with solid tumors. A thorough understanding of such factors can aid in the identification
of patients with substantial risk of infection, allowing medical practitioners to tailor therapy and
apply prophylactic measures to avoid serious complications. The use of novel treatment modalities,
including targeted therapy and immunotherapy, brings diagnostic and therapeutic challenges into
the management of infections in cancer patients. A growing body of evidence suggests that antibiotic
therapy can modulate both toxicity and antitumor response induced by chemotherapy, radiotherapy,
and especially immunotherapy. This article provides a comprehensive review of potential risk
factors for infections and therapeutic approaches for the most prevalent infections in patients with
solid tumors, and discusses the potential effect of antibiotic therapy on toxicity and efficacy of
cancer therapy.
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1. Introduction

Patients with solid tumors have an increased risk of infectious complications [1]. There
are several factors contributing to the susceptibility of cancer patients to infections. The
tumor itself affects the host immune system by inducing a catabolic state and malnutrition,
which leads to immunosuppression [2]. Tumor growth can cause obstruction of tubular
organs and disruption of anatomical barriers, leading to penetration of bacteria into the
bloodstream [2,3]. Radiation therapy, targeted agents, and cytotoxic drugs used in cancer
therapy may further increase the risk of infections by inducing neutropenia, mucositis, and
skin toxicity [3].

The incidence of sepsis is 16.4 cases per 1000 cancer patients per year, with in-hospital
mortality of 37.8% in severe cases [4]. Bloodstream infections are significantly more com-
mon in patients with hematologic malignancies than in those with solid tumors. Interest-
ingly, while there is a significant downward trend in bloodstream infection in hematologic
patients over time, the incidence remains stable in patients with solid tumors [5]. Infections
are one of the leading causes of mortality in cancer patients, and the rate of fatal infections is
approximately three times higher than that of the general population [6]. This underscores
the importance of appropriate management of infections in cancer patients.
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2. Immunosuppression in Cancer Patients

Patients with solid tumors are generally considered to be immunocompromised, with
the level of immunosuppression depending on the tumor, patient characteristics, and
therapy regimen used [7]. There are a number of differences between patients with solid
tumors and those with hematologic malignancies. First, the neoplastic process of those
with solid tumors does not involve the effectors of the host immune system. Second, the
therapy of solid tumors usually does not lead to prolonged neutropenia [3]. Consequently,
the incidence of infections in patients with solid tumors is significantly lower compared to
hematologic patients [5,8,9]. Prophylactic use of antibiotics is, therefore, rarely used for pa-
tients with solid tumors. A possible exception is the use of trimethoprim/sulfamethoxazole
for the prevention of Pneumocystis jirovecii pneumonia in patients receiving temozolo-
mide together with radiation therapy, and moderate-to-high-dose corticosteroid therapy
(prednisone equivalents ≥ 20 mg for ≥4 weeks) [7].

3. Immunosuppression Induced by Chemotherapy

The immunosuppressive activity of cytotoxic drugs is usually expressed as their
potential to induce febrile neutropenia (FN; defined as oral temperature of >38.3 ◦C or two
consecutive readings of >38.0 ◦C for two hours together with an absolute neutrophil count
[ANC] of <0.5 × 109/L, or expected to decline below 0.5 × 109/L) [10]. Chemotherapy
regimens are usually divided into three risk groups according to the likelihood of FN: high
risk (>20%), intermediate risk (10–20%), and low risk (<10%). Common chemotherapy
regimens for the therapy of solid tumors with a significant risk of FN are listed in Table 1.
Patients treated with high-risk regimens benefit from the primary prophylactic use of
granulocyte colony-stimulating factors (G-CSF) [7,10,11]. The indication of G-CSF use in
the intermediate-risk group is based on the presence of additional risk factors, including age
> 65 years, advanced disease, history of FN, no antibiotic prophylaxis, poor performance
status, patient’s comorbidities, open wounds, previous chemotherapy or radiation therapy,
bone marrow involvement with tumor, and poor nutritional status [11,12].

Table 1. Selected chemotherapy regimens with a significant risk of febrile neutropenia.

Tumor Type Chemotherapy Regimen Risk of FN (%) Reference

Breast cancer AC (Doxorubicin/Cyclophosphamide) 7–13 * Truong et al. [13]
AC−→D (Doxorubicin/Cyclophosphamide−→Docetaxel) 25 Perez et al. [14]
TAC (Docetaxel/Doxorubicin/Cyclophosphamide) 22 Von Minckwitz et al. [15]
TC (Docetaxel/Cyclophosphamide) 70 Kosaka et al. [16]
TCH (Docetaxel/Carboplatin/Trastuzumab) 41 Gilbar et al. [17]
Docetaxel 17 Marty et al. [18]

Bladder cancer MVAC (Methotrexate/Vinblastine/Doxorubicin/Cisplatin) 26 Sternberg et al. [19]

Cervical cancer Cisplatin/Paclitaxel 28 Rose et al. [20]
Cisplatin/Topotecan 18 Long et al. [21]

Gastric cancer DCF (Docetaxel/Cisplatin/5-FU) † 29 Van Cutsem et al. [22]
TCF (Docetaxel/Cisplatin/5-FU) ‡ 41 Roth et al. [23]

ECF (Epirubicin/Cisplatin/5-FU) 13–18 Roth et al. [23],
Cunningham et al. [24]

ECX (Epirubicin/Cisplatin/Capecitabine) 11 Cunningham et al. [24]

Germ cell tumors BEP (Bleomycin/Etoposide/Cisplatin) 13 Fossa et al. [25]
EP (Etoposide/Cisplatin) 10 Motzer et al. [26]
VIP (Etoposide/Ifosfamide/Cisplatin) 15 Fujiwara et al. [27]
VeIP (Vinblastine/Etoposide/Cisplatin) 67 Miller et al. [28]
TIP (Paclitaxel/Ifosfamide/Cisplatin) 48 Kondagunta et al. [29]

HNSCC TPF (Docetaxel/Cisplatin/5-FU) 11 Pointreau et al. [30]
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Table 1. Cont.

Tumor Type Chemotherapy Regimen Risk of FN (%) Reference

NSCLC Cisplatin/Paclitaxel 16 Schiller et al. [31]
Cisplatin/Vinorelbine 22 Pujol et al. [32]

Cisplatin/Docetaxel 5–11 Fossella et al. [33],
Schiller et al. [31]

Cisplatin/Etoposide 54 §

12 ¶
Font et al. [34]
Cardenal et al. [35]

Docetaxel/Carboplatin 26 Millward et al. [36]

Ovarian cancer Topotecan 42 Swisher et al. [37]
Docetaxel 33 Verschraegen et al. [38]
Paclitaxel 22 Omura et al. [39]

Pancreatic cancer FOLFIRINOX (5-FU/Leucovorin/Oxaliplatin/Irinotecan) 17 Hosein et al. [40]

SCLC Etoposide/Carboplatin 14 Yilmaz et al. [41]
Topotecan 28 Von Pawel et al. [42]
ICE (Ifosfamide/Carboplatin/Etoposide) 24 Lorigan et al. [43]
CAV (Cyclophosphamide/Doxorubicin/Vincristine) 14 White et al. [44]

Soft tissue sarcoma MAID (Mesna/Doxorubicin/Ifosfamide/Dacarbazin) 58 Binh Nguyen et al. [45]
Ifosfamide 18 #, 20 ## Lorigan et al. [46]

5-FU–5-fluorouracil, HNSCC–Head and neck squamous cell carcinoma, NSCLC–Non-small cell lung cancer, SCLC–Small cell lung cancer,
* Results from a systematic meta-analysis (randomized controlled trials and observational studies, respectively), † Docetaxel 75 mg/m2 D1
+ Cisplatin 75 mg/m2 D1 + 5-FU 750 mg/m2/day D1–5 q3w, ‡ Docetaxel 85 mg/m2 D1 + Cisplatin 75 mg/m2 D1 + 5-FU 300 mg/m2/day
D1–14, § Cisplatin 35 mg/m2 D1–3 + Etoposide 200 mg/m2 D1–3, ¶ Cisplatin 100 mg/m2 D1 + Etoposide 100 mg/m2 D1–3, # Ifosfamide
3 g/m2 3-h infusion D1–3, ## Ifosfamide 9 g/m2 continuous D1–3. For more information, see Aapro et al. (2011) [11].

4. Immunosuppression Induced by Targeted Therapy

Besides cytostatic therapy, some targeted agents used in the therapy of solid tumors
show immunosuppressive activity. Inhibitors of the mammalian target of rapamycin
(mTOR inhibitors—everolimus, temsirolimus) are known to induce immunosuppression
by altering the balance between effector T cells and regulatory T cells (Tregs), and inhibiting
NK cells, B cells, antigen presenting cells, neutrophils, and mast cells [47]. Consequently,
patients treated with mTOR inhibitors have an increased risk of all-grade (RR = 2.00; 95%
CI, 1.76–2.28, P < 0.001) and high-grade (RR = 2.60; 95% CI, 1.54–4.41, P < 0.001) infec-
tions [48]. Most infections affect the respiratory tract (61.7%), followed by genitourinary
tract (29.4%) and skin/soft tissue (4.2%) infections [48]. In addition, patients treated with
mTOR inhibitors can develop non-infectious pneumonitis, which may cause diagnostic
problems [49]. Currently, there are no specific recommendations for antimicrobial pro-
phylaxis in patients treated with mTOR inhibitors, although a high level of alertness is
required [50].

Other targeted agents, such as BRAF kinase inhibitors (dabrafenib, encorafenib, ve-
murafenib) and multi-target protein kinase inhibitors (sorafenib), do not show a direct
immunosuppressive effect, but the therapy may be associated with neutropenia and/or
lymphocytopenia [7]. Similarly, therapy with cyclin-dependent kinase 4/6 (CDK 4/6)
inhibitors used in the therapy of breast cancer (palbociclib and ribociclib) is associated with
a high incidence of neutropenia [51]. However, despite this relatively high incidence, few
patients develop FN, and infectious complications are rare [51]. This can be attributed to the
fact that CDK 4/6 inhibitor-induced bone marrow suppression occurs through cell-cycle
arrest with no apoptosis and is therefore reversible upon therapy withdrawal [52]. This
is in contrast to chemotherapy, which can induce apoptosis of hematopoietic precursor
and progenitor cells. Furthermore, mucositis and skin toxicity, which are considered risk
factors for infections in chemotherapy-related neutropenia, are rare in CDK 4/6 inhibitor
therapy [51]. Leucopenia is rare in another CDK 4/6 inhibitor, abemaciclib, which is
explained by it being a more potent inhibitor of CDK4 than CDK6 [53].

Immune checkpoint inhibitors (ICIs), including anti-CTLA-4, anti-PD-1, and anti-
PD-L1 monoclonal antibodies, do not confer a higher risk for infectious complications.
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However, they can induce immune-related adverse events (irAEs), necessitating the use of
corticosteroids and other immunosuppressive drugs [50]. Adequate prophylaxis should
be used, depending on the level of induced immunosuppression and the drugs used [7].
One of the most common irAEs—immune-mediated colitis—can lead to disruption of the
mucosal barrier, resulting in bacteremia and intestinal perforation with peritonitis [54].

5. Risk Scores for Febrile Neutropenia

Considering the complexity of risk factors for FN, there has been an effort to develop
risk scores capable of predicting the risk for individual patients. Several studies developed
risk scores for FN [55–59], some of which have been prospectively validated [56,58]. The
overview of these studies, including independent risk factors for FN, is shown in Table 2.
Aagard et al. introduced an internally validated risk score for FN during the first cycle of
chemotherapy (the FENCE Score) [57]. Recently, an update providing cycle-specific risk
for FN (during cycle 2–6) in solid tumors has been published [59]. Such risk scores could
be used to predict the risk of FN in a particular patient and initiate preventive measures,
including the use of G-CSF in high-risk patients, although external validation in large
prospective trials is required [59].

Table 2. Independent risk factors for FN in solid tumors (risk score model studies).

Reference Study Population Risk Factors (Multivariate Analysis)

Aagaard et al.
(2018) [57]

Patients with solid tumors and DLBCL
treated with first-line chemotherapy
(n = 9458)

Female sex, age > 65 years, cancer type, disease stage, low
albumin, elevated bilirubin, low estimated glomerular filtration
rate, infection before baseline, treatment with more than one
chemotherapy drug (two to four), receiving taxane-based
chemotherapy

Aagaard et al.
(2020) [59]

Patients with solid tumors who initiated
cycle 2 of standard first-line chemotherapy
(n = 6885)

Higher predicted risk for FN in the first cycle, platinum- and
taxane-containing regimens, concurrent radiotherapy, treatment
in cycle 2 compared to later cycles, previous FN or neutropenia,
not receiving G-CSF

Hosmer et al.
(2011) [55]

Elderly patients with breast, lung, colorectal,
and prostate cancer
(n = 58,053)

Advanced age at diagnosis, number of associated comorbid
conditions, receipt of immunosuppressive chemotherapy,
receipt of chemotherapy within one month of diagnosis

Lyman et al.
(2011) [56] *

Patients with breast, lung, colorectal, ovarian
cancer, and lymphoma patients (n = 4458)

Prior chemotherapy, use of other immunosuppressive
medications, abnormal hepatic and renal function, low white
blood count, chemotherapy and planned delivery ≥ 85%, small
cell lung cancer, specific classes of chemotherapy
(anthracyclines, taxanes, certain alkylating agents
[cyclophosphamide, ifosfamide], class I/II topoisomerase
inhibitors, platinum derivates [cisplatin, carboplatin],
gemcitabine, vinorelbine)

Razzaghdoust
et al. (2018) [58]
*

Patients with various solid tumors and
lymphomas (n = 305)

High-risk chemotherapy regimen without G-CSF,
intermediate-risk regimen without G-CSF, age > 65 years,
elevated ferritin, BMI < 1.73 kg/m2, BSA < 2 m2, estimated
glomerular filtration rate < 60 mL/min/1.73 m2, elevated
C-reactive protein

* prospectively validated studies, DLBCL–Diffuse large B-cell lymphoma, FN–febrile neutropenia, G-CSF–Granulocyte colony-stimulating
factors, BMI–body mass index, BSA–body surface area.

6. Risk Factors for Infections in Patients with Solid Tumors

Patients with solid tumors are a heterogeneous group regarding the risk of infection
complications [1]. The National Comprehensive Cancer Network (NCCN) guidelines
determine three risk categories based on the overall risk of developing an infection (low-,
intermediate-, and high-risk categories) [7]. Most patients with solid tumors belong to the
low-risk (standard chemotherapy regimens with anticipated neutropenia <7 days) and
intermediate-risk categories (anticipated neutropenia 7–10 days) [7]. Besides the depth and
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duration of immunosuppression, the presence of specific risk factors must be considered.
The most common are depicted in Figure 1. Usually, multiple risk factors are combined in
one patient [3].

Life 2021, 11, x FOR PEER REVIEW 5 of 26 
 

 

6. Risk Factors for Infections in Patients with Solid Tumors 

Patients with solid tumors are a heterogeneous group regarding the risk of infection 

complications [1]. The National Comprehensive Cancer Network (NCCN) guidelines 

determine three risk categories based on the overall risk of developing an infection (low-, 

intermediate-, and high-risk categories) [7]. Most patients with solid tumors belong to the 

low-risk (standard chemotherapy regimens with anticipated neutropenia < 7 days) and 

intermediate-risk categories (anticipated neutropenia 7–10 days) [7]. Besides the depth 

and duration of immunosuppression, the presence of specific risk factors must be con-

sidered. The most common are depicted in Figure 1. Usually, multiple risk factors are 

combined in one patient [3]. 

 

Figure 1. Factors affecting risk of infection. 

6.1. Neutropenia 

Severe neutropenia (grade 4) is defined as the ANC of < 500 cells/mm3 according to 

the Common Terminology Criteria for Adverse Events (CTCAE) [60]. A drop of ANC 

below this threshold is associated with an increased risk of infections [61]. The incidence 

and severity of infections are inversely related to ANC, with the highest risk when ANC 

drops below 100 cells/mm3. Duration of neutropenia is another important risk factor. 

Chemotherapy regimens resulting in neutropenia lasting > 10 days are considered high 

risk [7]. However, most regimens used in the therapy of solid tumors result in neutro-

penia lasting < 7 days and are therefore considered low risk [7]. 

6.2. Disruption of Anatomic Barriers 

Mucositis is another important factor increasing the risk of bloodstream infections. 

Mucosal barriers in the gastrointestinal, urogenital, and respiratory tract constitute the 

first line of host defense against various pathogens [7]. The damage of mucosal barriers 

opens the colonizing pathogens’ gateway to the bloodstream. Coexisting neutropenia 

allows for the rapid development of severe infections, even in the case of a low bacterial 

load [62]. Chemotherapy-induced mucositis is associated with an increased risk of infec-

tions caused by viridans group streptococci, gram-negative rods, and Candida spp. [7]. 

Although the risk and grade of mucositis is higher in hematologic patients receiving 

high-dose chemotherapy regimens with autologous hematopoietic stem cell transplanta-

tion, some of the cytotoxic drugs used in the therapy of solid tumors can induce mucosi-

tis. These include 5-fluorouracil, capecitabine, cyclophosphamide, ifosfamide, cisplatin, 

carboplatin, docetaxel, paclitaxel, and vinorelbine [3]. A high risk of oral mucositis is 

Figure 1. Factors affecting risk of infection.

6.1. Neutropenia

Severe neutropenia (grade 4) is defined as the ANC of <500 cells/mm3 according to
the Common Terminology Criteria for Adverse Events (CTCAE) [60]. A drop of ANC
below this threshold is associated with an increased risk of infections [61]. The incidence
and severity of infections are inversely related to ANC, with the highest risk when ANC
drops below 100 cells/mm3. Duration of neutropenia is another important risk factor.
Chemotherapy regimens resulting in neutropenia lasting >10 days are considered high
risk [7]. However, most regimens used in the therapy of solid tumors result in neutropenia
lasting <7 days and are therefore considered low risk [7].

6.2. Disruption of Anatomic Barriers

Mucositis is another important factor increasing the risk of bloodstream infections.
Mucosal barriers in the gastrointestinal, urogenital, and respiratory tract constitute the first
line of host defense against various pathogens [7]. The damage of mucosal barriers opens
the colonizing pathogens’ gateway to the bloodstream. Coexisting neutropenia allows for
the rapid development of severe infections, even in the case of a low bacterial load [62].
Chemotherapy-induced mucositis is associated with an increased risk of infections caused
by viridans group streptococci, gram-negative rods, and Candida spp. [7]. Although
the risk and grade of mucositis is higher in hematologic patients receiving high-dose
chemotherapy regimens with autologous hematopoietic stem cell transplantation, some
of the cytotoxic drugs used in the therapy of solid tumors can induce mucositis. These
include 5-fluorouracil, capecitabine, cyclophosphamide, ifosfamide, cisplatin, carboplatin,
docetaxel, paclitaxel, and vinorelbine [3]. A high risk of oral mucositis is associated with
some chemotherapy regimens, including DCF (86%), FOLFIRI (80%), CAF (79%), AC (71%),
and FOLFOX (60%) [63]. Mucosal toxicity is also frequent in some targeted therapies,
including bevacizumab, erlotinib, gefitinib, lapatinib, sorafenib, and sunitinib [64]. Oral
mucositis is a typical adverse event in patients treated with mTOR inhibitors, affecting
as much as 73% of patients [65]. Additionally, mucositis is a common adverse event in
radiation therapy [66].
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6.3. Central Venous Catheters

Central venous catheters (CVCs) are widely used in cancer patients and offer benefits
to those who receive chemotherapy. However, the presence of CVCs is considered a risk
factor for infections in cancer patients and may affect the etiology of bacteremia [62]. The
incidence of CVC-associated bloodstream infections in cancer patients is estimated to be
0.5–10 per 1000 CVC days, with mortality ranging from 12% to 40% [67].

There are two main types of indwelling CVCs used for chemotherapy administration—
centrally inserted totally implanted vascular access ports (PORTs) and peripherally inserted
central catheters (PICCs) [68]. PICCs are an alternative to traditional PORTs, and their use
has increased owing to their lower cost and ease of insertion and removal [68]. Several
studies have compared these CVCs in terms of infection complications, with conflicting
results [68–70]. A recent meta-analysis found a significantly higher risk of infectious
complications in the PICC groups (RR 3.43; 95% CI 2.58–4.56; P < 0.05) [69]. Both the local
infections of punctures and catheter-related infections were more frequent in patients with
PICCs [69]. In addition, infection complications are more frequent in multi-lumen CVCs
than in single-lumen CVCs [71].

Most CVC infections originate from the skin flora (65%), catheter or catheter joints
(30%), or other pathways (5%) [72]. The most commonly detected pathogens causing CVC-
related infections in cancer patients are coagulase-negative staphylococci, followed by other
gram-positive bacteria, including Staphylococcus aureus, enterococci, and streptococci [67,73].
As in other bloodstream infections in cancer patients, a shift toward gram-negative flora
(including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella spp.) has been noted in
CVC-related infections [74,75]. Therefore, a broad-spectrum empirical therapy covering
gram-negative pathogens should be considered in CVC-related bloodstream infections [74].

6.4. Tumor Obstruction

Direct expansion of the tumor may cause obstruction of tubular organs [3]. Bronchial
obstruction caused by local growth of bronchogenic carcinomas and metastatic tumors
may cause post-obstructive pneumonia and occasionally be the first manifestation of the
disease [76]. The post-obstructive component can be found in ~45–55% of patients with
pulmonary neoplasms who develop pneumonia [77]. Bronchial obstruction develops more
commonly in tumors arising centrally, such as small cell lung cancer (SCLC) and squamous
cell carcinoma (SCC) [78]. Pathogens causing post-obstructive pneumonia include gram-
positive organisms (St. aureus [incl. MRSA], viridans group streptococci, beta-hemolytic
streptococci [groups A, B, C, F, and G]), gram-negative organisms (E. coli, Klebsiella spp.,
other Enterobacteriaceae, Ps. aeruginosa, Stenotrophomonas maltophilia, Acinetobacter spp.),
anaerobes (Peptococcus spp., Peptostreptococcus spp., Fusobacterium nucleatum, Bacteroides
spp.), and fungi (Candida spp.) [79]. Despite therapy with broad-spectrum antibiotics,
responses tend to be low, and persistent or recurrent infections are common. Moreover,
~10–15% of patients develop severe complications, including lung abscess, empyema,
hemorrhage, and fistula formation [77].

Obstructive uropathy is a frequent complication of advanced solid tumors, especially
prostate, retroperitoneal, and pelvic tumors [80]. It is usually managed by placing a ureteral
stent or permanent nephrostomy tube (PNT) [81]. However, the presence of PNT in cancer
patients is associated with a high risk of PNT-associated pyelonephritis (with a rate of
19%) [82]. Patients with a history of previous urinary tract infection (UTI) and neutropenia
are at higher risk [82]. Many pathogens are capable of forming biofilms on indwelling
implants, including E. coli, Enterococcus faecalis, Ps. aeruginosa, Proteus mirabilis, St. aureus,
and Candida spp. [82]. Eradication of these microorganisms is challenging, and long-term
suppressive antibiotic therapy may be required in patients with recurrent urosepsis [3].
Nevertheless, prophylactic antibiotic therapy does not seem to prevent the development
of pyelonephritis and asymptomatic bacteriuria in cancer patients with PNT [82]. In
addition to complicated UTIs, patients with prostatic carcinoma may develop prostatitis
and prostatic abscesses [3].
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Malignant biliary obstruction (MBO) is caused by pancreatic adenocarcinoma, cholan-
giocarcinoma, ampullary/duodenal adenocarcinoma, gallbladder carcinoma, lymphoma,
and compressive metastatic proximal lymph nodes [83]. Pancreatic adenocarcinoma is
the most common cause of MBO, and as many as 70–90% of pancreatic cancer patients
develop jaundice during the course of their disease [84]. MBO frequently results in as-
cending cholangitis, which may be the initial manifestation of underlying malignancy [3].
In cases of persistent obstruction, hepatic abscesses may develop [85]. The etiology is
usually polymicrobial, with enteric gram-negative rods, Enterococcus spp., and anaerobes
being most common [86]. Management of MBO includes percutaneous transhepatic biliary
drainage [87] and endoscopic retrograde cholangiopancreatography (ERCP) with the place-
ment of plastic or self-expandable metallic stents (SEMS), which is considered the current
mainstay of treatment [84,88]. In patients with resectable disease, up-front surgery without
a stent placement is an option and does not increase the risk of complications compared to
preoperative biliary drainage [84].

Additionally, large tumors can overgrow the capacity of their blood supply and
become necrotic, forming the seeds of infection. Direct invasion of colorectal cancer through
the mucosa may lead to abscess formation and sepsis by enteric bacteria [7].

6.5. Oncologic Surgery

Patients who undergo extensive tumor resection are at increased risk for postoperative
nosocomial infection, especially in tumors involving the respiratory and gastrointestinal
tract [1]. In a large retrospective study, the rate of serious postoperative infections was
9.4% and led to a nearly 12-fold increase in the odds of in-hospital mortality [89]. Surgical
procedures associated with the highest risk of serious infections were esophagectomy (25%),
gastrectomy (19%), pancreas resection (17%), and lung resection (10%). The incidence of
infections is significantly lower in high-volume centers than in low-volume hospitals [89].
Besides the type of surgery, the risk of infection may be related to the tumor burden,
preoperative performance status, and previous therapy [7]. However, it seems that surgical
and intensive care unit-related factors play a more significant role than previous oncologic
therapy [62].

6.6. Splenectomy and Function Asplenia

The number of indications for splenectomy in cancer patients has declined over the
years. In the case of solid tumors, splenectomy is traditionally performed in gastric cancer to
dissect the splenic hilar lymph nodes, although it seems to have no benefit in tumors located
at lesser curvature [90]. Splenectomy may also be performed in cases of oligometastatic
disease from other sites, especially ovarian cancer [91]. Additionally, intraoperative splenic
injury during abdominal surgery may result in splenectomy [92]. Besides surgical splenec-
tomy resulting in asplenia, radiotherapy and some pathologic conditions (including graft
versus host disease following allogeneic hematopoietic stem cell transplantation) lead to a
decreased function of the spleen—hyposplenism (function asplenia) [7].

The spleen is a lymphoid organ that plays an important role in regulating immune
homeostasis through both innate and adaptive immunity. The function of the spleen is
crucial in the elimination of encapsulated bacteria [93]. Asplenic patients are therefore at
risk of sepsis caused by encapsulated bacteria—most commonly Streptococcus pneumoniae
(50–70%), but also Haemophilus influenzae and Neisseria meningitidis (15–25% each) [94].
Other pathogens causing serious infections in asplenic patients include Capnocytophaga can-
imorsus after animal bites, Bordetella holmesii, Ehrlichia spp., and intraerythrocytic parasites
such as Babesia spp. after tick bites [94].

6.7. Patient-Related Factors
6.7.1. Age

Age is an important factor regarding the risk for infections. Age-related changes in
the immune system, referred to as immunosenescence, play a major role in increased sus-
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ceptibility to infections in elderly patients [95]. Other risk factors for infections frequently
present in elderly patients include malnutrition, comorbidities, age-related organ changes,
functional dysfunction (i.e., impairments in the performance of activities of daily living),
polypharmacy, and social factors [96,97]. Furthermore, age is associated with an increased
risk of FN [98], owing to reduced bone marrow reserves and reduced renal and hepatic
functions [99].

6.7.2. Gender

Men are at increased risk for most infections. The explanation for this observation
is rather complex and involves both biological and social factors [100]. Sexual steroid
hormones play an important role in susceptibility to infections through differential modu-
lation of pro-inflammatory and anti-inflammatory cytokine expression, toll-like receptor
expression, antibody production, metabolism, growth, and virulence of pathogenic bacte-
ria [101]. Estrogens can enhance both cell-mediated and humoral immune responses, while
progesterone and testosterone have anti-inflammatory effects and suppress innate immune
responses [100–102]. Additionally, it seems that genetic factors related to sex chromosomes
(X and Y) may play a part [103], and differences in occupational activities and lifestyle
result in different exposures to pathogens [100].

In contrast to the overall lower risk of infections in the female population, UTIs and
genital tract infections are more common in women owing to anatomic and physiological
differences [104]. Available data suggest that female gender is a risk factor for the develop-
ment of FN [98,105]. One possible explanation is that female patients are more frequently
treated with breast cancer chemotherapy regimens, which confer a higher risk for FN (up
to 23% in standard chemotherapy and 98% in high-dose chemotherapy regimens) [106].
Gender-related differences in pharmacokinetics and pharmacodynamics of anticancer
drugs provide another rationale [107]. A recent study has found that polymorphisms of
genes involved in drug metabolism are distributed unevenly in women and men, and that
these polymorphisms have different impacts on adverse event occurrence (including FN)
between genders [108].

6.7.3. Nutrition

Malnutrition affects as many as 75% of cancer patients, with the highest prevalence in
those with tumors of the gastrointestinal tract [109]. The association between malnutrition
and infections is well-established and can be explained by impaired cell-mediated immu-
nity, phagocyte function, cytokine production, and complement system function [110].
Therefore, improvement of the patient’s nutritional status is of great importance to reduce
the risk of infections and improve survival [111].

Obesity is associated with an increased risk of infections when compared to normal-
weight subjects [112,113]. The highest increase was observed for skin infections in both
genders and for gastrointestinal tract infections, UTIs, and sepsis in obese women [113].
The underlying mechanisms involve altered adipokine signaling (e.g., leptin, adiponectin),
immune system dysregulation, impaired chemotaxis, and metabolic changes [112,114].

6.7.4. Comorbidities

Many internal diseases are associated with an increased risk of infection. Patients
with type 1 and 2 diabetes are at increased risk of all infections, particularly bone and
joint infections, sepsis, and cellulitis [115]. Chronic kidney disease is associated with
an increased risk of infections, especially in patients undergoing hemodialysis [116,117].
Patients with chronic obstructive pulmonary disease (COPD) are more likely to develop
respiratory infections, but the incidence of infections outside the respiratory tract does
not seem to be affected [118]. An increased risk of infections is observed in patients with
rheumatological disorders owing to both altered function of the immune system and
immunosuppressive therapy [119]. Opportunistic infections, including P. jirovecii, are
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particularly common [120]. Other comorbidities with increased risk of infection include
chronic heart failure [121] and cirrhosis [122].

6.7.5. Genetic Factors

Defects in innate and adaptive immunity are naturally associated with an increased
risk of infections [123]. Single nucleotide polymorphisms (SNPs) in genes involved in
cytotoxic drug metabolism are associated with an increased risk of FN [98]. In breast
cancer patients treated with the FEC (5-FU + epirubicin + cyclophosphamide) regimen,
MDM2 SNP309 and TP53 R72P genotypes [124], as well as SNPs of the ABCC1/MRP1,
UGT2B7, and FGFR4 genes [125], were significantly associated with an increased risk
of FN. UGT1A1 gene polymorphism is associated with increased risk of FN in patients
treated with irinotecan [126–128]. Similarly, DPYD gene polymorphism resulting in di-
hydropyrimidine dehydrogenase (DPD) deficiency is associated with significant toxicity,
including FN, in patients treated with fluoropyrimidines [127]. Prospective validation of
these polymorphisms as predictive factors for FN could identify patients at high risk of
infectious complications and suggest treatment deescalation or application of prophylactic
measures in affected individuals [127].

7. Antibiotic Therapy in Patients with Solid Tumors

Early detection of infections is essential in cancer patients. Clinical signs of infection
might be vague, especially in neutropenic patients, but fever remains an early, although
non-specific, sign of infection [129]. Approximately 50–60% of patients who became febrile
have an underlying infection [130]. However, non-infectious causes of fever, including
paraneoplastic etiology (neoplastic fever) and drug reactions, are not rare in cancer pa-
tients [131] Moreover, laboratory markers of infection, including elevated C-reactive protein
and leukocytosis, are frequently present in cancer patients [132,133], making the diagnosis
of infection challenging. In such circumstances, additional markers such as procalcitonin
can be used [134].

The symptoms-oriented diagnostic process should be initiated as soon as possible
with identification of the most likely infection source. The empiric antibiotic should be
initiated immediately after obtaining cultivation samples. The antibiotic choice should be
tailored according to the suspected infection site, microbial colonization of the patient (i.e.,
known presence of multiresistant strains in previous cultivation samples), and the local
epidemiological situation [10]. The most likely tumor-specific infections should be ruled
out first, including cholangitis in pancreatic cancer, obstructive pneumonia in lung tumors,
urinary infection in prostate cancer patients, etc. [135].

The use of antibiotics with broad-spectrum coverage, including anti-pseudomonal
activity, is recommended in patients presenting with severe neutropenia [7]. Deescalation
of the antibiotic therapy should be performed as soon as the results of cultivation samples
are available, and the duration of antibiotic therapy should be tailored to the type of infec-
tion, level of immunosuppression, and other risk factors (type of malignancy, anticancer
therapy, patient’s comorbidities, etc.). It should be kept in mind that prolonged antibiotic
therapy can lead to severe complications, including vulvovaginal candidosis in women,
Clostridioides difficile infection (CDI), and possible detrimental effects on anticancer therapy
effectiveness due to dysmicrobia [136].

The rise in multiresistant strains of bacteria (including extended-spectrum β-lactamase
[ESBL]-producing Enterobacteriaceae, methicillin-resistant St. aureus [MRSA], and vancomycin-
resistant Enterococcus faecium) has become a significant problem, especially in oncologic
patients [1]. Antimicrobial stewardship and strict adherence to infection control recommen-
dations are essential to reduce the risk of emergence and spread of multiresistant bacteria
strains [3]. However, approximately one third of antibiotics prescribed in the United States
acute care hospitals are either unnecessary or suboptimal [137,138]. In up to 50% of cases, the
treatment indication, choice of agent, or duration of antibiotic therapy may even be incor-
rect [139]. This is of upmost importance considering that 30-day mortality can reach 70% in
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patients with bloodstream infections not receiving appropriate antimicrobial treatment [140].
It is, therefore, the policy of many hospitals to restrict the use of broad-spectrum antibiotics
unless approved by the hospital’s antibiotic center. This approach can reduce treatment
expanses and limit the emergence of multiresistant strains and CDI [141,142].

The advent of modern treatment modalities, including targeted therapy and im-
munotherapy, has brought new challenges for the management of infections in cancer
patients. Targeting checkpoints of immune response with ICIs has become a new treatment
strategy in many solid tumors, including melanoma, renal cell carcinoma, lung cancer, and
others. Despite great improvements in patients’ survival, a new class of adverse events,
known as immune-related adverse events (irAE), has emerged [143]. This form of autoim-
mune reaction can affect various organs and be potentially life-threatening. Importantly, the
discrimination between irAE and infectious complications may be challenging. This is of
high clinical significance, considering that corticosteroids and other immunosuppressants
used in irAE management may aggravate the course of infectious diseases and increase the
risk of opportunistic infections [144]. Improper use of antibiotics in patients treated with
ICIs may weaken the treatment outcome via antibiotic-induced dysbiosis [145]. Therefore,
antibiotic therapy should be prescribed cautiously in patients treated with ICIs, and the
diagnosis of infection should be confirmed with appropriate tests. Narrow-spectrum antibi-
otics are the preferred option in this setting, and consultation with the hospital’s antibiotic
center before treatment initiation is highly encouraged [145].

8. Antibiotic Therapy of Specific Infections
8.1. Febrile Neutropenia

FN represents a severe and potentially life-threatening complication of cancer therapy,
with an overall in-hospital mortality of ~10% [10]. The definition and risk factors for FN in
patients with solid tumors have already been addressed. The management of FN follows
international guidelines with slight variations reflecting national differences (i.e., local
epidemiological situation and prevalence of multiresistant strains) [10,146].

The first step is to stratify patients into risk categories based on clinical characteristics
(nature of the underlying malignancy, comorbidities, performance status, presence of
hypotension, dehydration, and stress-induced hyperglycemia at presentation, outpatient
status, and age). Evaluation of these characteristics allows us to stratify patients into low-
and high-risk groups using the Multinational Association for Supportive Care in Cancer
(MASCC) Risk Index Score [10] or Clinical Index of Stable Febrile Neutropenia (CISNE)
score [147], the latter having been specifically validated for patients with solid tumors. FN
patients within the high-risk group or having high-risk features as assessed by the admitting
physician should be admitted to hospital and administered broad-spectrum antibiotics
intravenously within one hour of admission (Table 3) [7,10]. Local epidemiological bacterial
isolate and resistance patterns are crucial to determining the optimal empirical antibiotic
therapy [10]. Inadequate antibiotic regimen use is associated with a significantly higher
ICU admission and death rate during hospital stay [148]. Culture specimens, including
two sets of blood cultures (from a peripheral vein and any indwelling venous catheter),
urine specimens, and specimens from any suspected site of infection, should be obtained
before antibiotic therapy initiation [7,10].

Patients at low risk of developing serious complications (<10%) may receive oral
antibiotics in an outpatient setting after being provided careful patient education [146].
Outpatients should be instructed on how to monitor their symptoms and when and how
to contact appropriate medical services. Compliance of the patient and ability to reach the
healthcare facility are prerequisites for this approach [149].
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Table 3. Appropriate initial antibiotics in febrile neutropenia groups with different risk of serious infection development.

Risk of Serious Complications Low High

Initial antibiotic
Oral or parenteral Parenteral

Inpatient or outpatient Inpatient
Amoxicillin-clavulanate +

fluoroquinolone (ciprofloxacin or
levofloxacin)

Antipseudomonal beta-lactam *
(cefepime or meropenem or imipenem or

piperacillin-tazobactam)

Suspicion of catheter-related infection,
severe skin and soft tissue infection,

pneumonia, or risk of MRSA infection
Shift to high-risk group

Add gram-positive bacteria targeted
antibiotic (vancomycin or linezolid or

daptomycin †), in case of VRE add
linezolid or daptomycin †

Suspicion of abdominal infection Shift to high-risk group Add metronidazole

Risk of multiresistant strain infection Shift to high-risk group
Choose carbapenem (in case of ESBL),
add polymyxin-colistin or tigecycline

(in cases of KPC)

ESBL–extended-spectrum beta-lactamase producing strains, KPC–carbapenemase producing strains, MRSA–methicillin-resistant St. au-
reus, VRE–vancomycin-resistant enterococci, * choice depends on the local epidemiological situation, † not in cases of pneumonia.
References: [10,146,150,151].

8.2. Central Venous Catheter-Related Infections

CVC-related infections represent ~10% of bloodstream infections in cancer patients [152,
153]. In case of suspected CVC-related infection, blood culture from the CVC and peripheral
vein must be performed in order to determine differential time to positivity. A difference
in time to positivity of >2 h (blood culture from CVC must be the first positive) is a highly
sensitive and specific CVC-related infection indicator [154].

In particular situations, it might not be necessary to remove the infected CVC, and
antimicrobial therapy alone is sufficient. The main premise for such an approach is a
stable patient and the assumption of successful antimicrobial therapy without developing
complications (Table 4) [155,156]. There is no consensus regarding the length of antimi-
crobial therapy. However, a recent meta-analysis suggests that a short-course therapy
(seven days) for gram-negative bacteria, seven days for enterococci, and three days for
coagulase-negative staphylococci could be sufficient in uncomplicated CVC-related infec-
tion [157]. However, the authors conclude that shorter courses may not be appropriate for
immunocompromised patients, and prospective studies are warranted [157]. In case of
complications, including tunnel infection, port abscess, septic thrombosis, endocarditis, and
osteomyelitis, the catheter must always be removed, and appropriate pathogen-directed
antimicrobial therapy should be used [155].

Another therapeutic option for stable patients with catheter-related infections caused
by low-virulence pathogens—coagulase-negative staphylococci (except from Staphylococcus
lugdunensis), Corynebacterium spp., and some gram-negative rods—is the use of antimicro-
bial lock therapy (ALT) either with or without delayed CVC removal [158]. This approach
should only be used in combination with systemic administration of antibiotics [155,158].
The choice of antimicrobial agent depends on the type of isolated pathogen (Table 5). The
dwell time of the lock solution differs according to the stability of the substance solution
at the body temperature, but it should not exceed 48–72 h [158]. The type of CVC or port
determines the volume of instilled antibiotic lock solution, which is ~2–5 mL. The most
frequent antibiotics used for ALT are listed in Table 5. Appropriate duration of ALT is
unknown, but generally 10–14 day therapy is recommended [155]. Importantly, the lock
solution must be removed before catheter reuse.

Besides therapy for CVC-related infections, prophylactic ALT might decrease the
incidence of central-line associated infections in cancer patients [159]. This approach seems
promising and has demonstrated its cost-effectiveness specifically in cancer therapy [160],
although further studies are warranted to optimize prophylactic ALT use.
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Table 4. Appropriate antibiotic treatment of bacterial CVC-related infection according to isolated pathogens.

Isolated Pathogen Catheter Removal
Antibiotic Therapy

Choice Duration

Coagulase-negative staphylococci Not necessary
Risk factor for recurrence

Vancomycin
Oxacillin *
Flucloxacillin *
Cefazoline *

Catheter removed: 5–7 days
Retained catheter: 10–14 days +
ALT 10–14 days

St. aureus, St. lugdunensis Yes Vancomycin
Oxacillin *
Flucloxacillin *
Cefazoline *

≥14 days. Necessary to rule out
complications. Complications:
4–6 weeks

Enterococci Yes
Long-term CVC may retain

Vancomycin
Ampicillin *

5–14 days. Retained long-term
CVC: 7–14 days + ALT 7–14
days

gram-negative bacilli Yes, especially in case of
multiresistant bacteria
CVC retaining unsuitable for
immunosuppressed patients

Based on severity of disease:
Piperacillin/tazobactam *,
4th gen. Cephalosporin *,
Carbapenem +/- Aminoglycoside *

7–14 days

* According to sensitivity pattern and local susceptibility data. CVC–central venous catheter, ALT–antimicrobial lock therapy.
References: [155,156].

Table 5. List of the most frequently used antibiotic catheter lock solutions.

Antibiotic Spectrum of Bacteria Concentration *
(mg/mL)

Heparin Content
(IU/mL) Stability (Hours) References

Vancomycin gram-positive 2.0–5.0 2500 or 5000 72 [161,162]
Teicoplanin gram-positive 5.0–10.0 0 or 100 96 [163,164]
Daptomycin gram-positive 5.0 0 or 5000 72 [165]

Gentamicin gram-positive,
gram-negative 1.0–5.0 0, 2500 or 5000 72 [166,167]

Amikacin gram-positive,
gram-negative 1.0–40.0 † 0 or 5000 72 [168]

Ceftazidime gram-negative 0.5–10.0 0 or 5000 48 [167,169,170]

Cefazolin Methicillin-sensitive
staphylococci 5.0–10.0 2500 or 5000 72 [168]

Ciprofloxacin gram-negative 0.2–5.0 0 or 5000 48 [171,172]

Ampicillin Ampicillin-sensitive
enterococci 10.0 10 or 5000 8 ‡ [161]

Ethanol gram-positive,
gram-negative 70% 0 24 [173]

* Concentration should exceed 100–1000×minimal inhibitory concentration (MIC). † Most commonly used 2.0 mg/mL, ‡ according to
SPC [174]. For more detailed information on ACL see Justo et al. [168].

8.3. Pneumonia

Cancer patients are at increased risk of pneumonia due to impaired immune function
caused by the tumor itself and cancer therapy [175], together with frequent tumor obstruc-
tion causing post-obstructive pneumonia [79]. The therapy of community-acquired pneu-
monia in cancer patients who are not neutropenic does not differ from that of the general
population and should follow respective guidelines [7]. Beta-lactam antibiotics are the main-
stay of therapy, but the choice depends on the local epidemiological situation (i.e., the local
level of pneumococcal resistance). Antibiotics covering atypical pathogens (Mycoplasma
pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila) are necessary for patients
with community-acquired pneumonia [10]. In patients requiring hospital admission, respi-
ratory fluoroquinolone or a combination of macrolide with a third generation cephalosporin
(ceftriaxone or cefotaxime) or ertapenem are the options [7]. Besides gram-positive and
gram-negative activity (excluding Ps. aeruginosa and Acinetobacter spp.), ertapenem has
anaerobic activity useful for suspected aspiration and post-obstructive pneumonia [7,176].
Severe community-acquired pneumonia and pneumonia in neutropenic patients should be
treated with a combination of an antipseudomonal beta-lactam (piperacillin/tazobactam)
and a respiratory fluoroquinolone or azithromycin [7,10].
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In patients who come from a medical facility or are long-term oncologically treated
and repeatedly hospitalized, etiological microorganisms of pneumonia have changed, and
therefore the empirical choice of antibiotic should be different, covering St. aureus, Ps. aerug-
inosa, or other gram-negative rods: piperacillin/tazobactam, cefepime, or carbapenems
in combination with antibiotics covering gram-positive cocci (linezolid, vancomycin, or
teicoplanin) [177]. In this regard, the choice of initial antibiotic regimen should be based
on knowledge of the local patterns of antibiotic susceptibility [7,177]. Clinical samples, in-
cluding good-quality sputum, lower respiratory tract samples for culture, viral (influenza,
COVID-19), mycoplasma, chlamydial PCR detection, and urine samples for detection
of pneumococcal and legionella antigens, should be obtained before antibiotic therapy
initiation in case of severe pneumonia in immunocompromised patients [178,179]. Micro-
biological results can help to deescalate and target antibiotic treatment [177]. In patients
receiving a prednisone equivalent of ≥20 mg for ≥4 months, or treated with RT and con-
comitant temozolomide without reliable antipneumocystis prophylaxis, the addition of
high-dose trimethoprim/sulfamethoxazole should be considered [7,10].

8.4. Intra-Abdominal Infections

In addition to common intra-abdominal infections, cancer patients are at risk for
infections complicating the underlying disease (infiltration of intra-abdominal organs by
tumor, compression of adjacent organs by the tumor and associated stagnation of secre-
tions, tumor disintegration with subsequent rupture, or creation of intra-abdominal or
pelvic abscess) [180]. Antibiotic choice depends on the patient’s condition, previous antibi-
otic treatment, and colonization with multidrug-resistant bacteria. A high probability of
polymicrobial pathogens and the presence of endogenous anaerobic flora has to be kept in
mind [7]. Initial empirical treatment is based on administration of beta-lactam antibiotics
(ampicillin/sulbactam, piperacillin/tazobactam, cefotaxime, ceftriaxone, carbapenem). If
second-, third-, or fourth-generation cephalosporins are used, it is necessary to add metron-
idazole to cover anaerobic bacteria [10,180]. Antibiotic therapy with antipseudomonal
activity is required in neutropenic patients [7]. Repeated cultivation of suitable materials
(i.e., secretion from the drain, deep wound sample, and puncture fluid) may be required to
avoid long-term administration of broad-spectrum antibiotics [180,181].

Cancer patients are susceptible to developing CDI as a result of the malignancy itself,
immunosuppression, chemotherapy administration, antibiotic exposure, and frequent
hospital stays [182]. This translates into a six- to nine-fold higher risk of developing CDI
compared to non-cancer patients [183]. Orally administered fidaxomicin or vancomycin are
the treatment of choice in initial and subsequent CDI episodes [184]. Orally administered
metronidazole should be restricted to non-severe CDI cases when the above-mentioned
agents are not available [184]. Fecal microbiota transplantation seems promising in the
management of recurrent CDI, albeit the data in cancer patients are limited [7].

Neutropenic enterocolitis (referred to as typhlitis when located in the coecum) is not
common in patients with solid tumors, but its association with taxanes (docetaxel, paclitaxel)
and vinorelbine therapy has been reported [3]. Computed tomography is the preferred
diagnostic tool for revealing thickening of the bowel wall [185]. The therapy consists of general
supportive measures (including bowel rest and parenteral nutrition) and broad-spectrum
antibiotics with coverage for C. difficile, aerobic pathogens, and anaerobic pathogens [3,7].
Complications develop in ~5% of patients requiring surgical intervention [186].

8.5. Urinary Tract Infections

UTIs are common in cancer patients due to cancer therapy, immunosuppression, and
indwelling urinary catheters [187–189]. Importantly, the urinary tract is the source of
~20% of bloodstream infections in cancer patients [152,153]. The most common pathogens
include E. coli (40–58%), Kl. pneumoniae (10–25%), Ps. aeruginosa (4–11%), Enterococcus spp.
(8–11%), Staphylococcus spp. (11%), and P. mirabilis (1–5%) [187,188]. Multidrug resistance
is frequent in cancer patients with UTIs (96%) [188]. A high proportion of resistance to
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fluroquinolones (90–96%), cephalosporins (68–80%), and aminoglycosides (46–50%) has
been observed [189,190].

Uncomplicated UTIs (women without risk factors) can be treated according to general
guidelines with orally administered fosfomycin, pivmecillinam, or nitrofurantoin [191]. Treat-
ment with antimicrobials penetrating the prostate tissue (trimethoprim/sulfamethoxazole
or fluoroquinolone) is required in male patients, provided cystitis can be associated with
prostatitis [191]. However, most UTIs in oncological patients are associated with other risk fac-
tors, including anatomical or functional abnormalities of the urinary tract, indwelling urinary
catheters, stents, renal disease, cancer-related immunosuppression, oncologic therapy, and
surgical intervention [3,80]. Antimicrobial therapy should be guided by cultivation results,
as repeated antibiotic therapy in cancer patients may lead to the selection of non-predictable
bacterial variants and multiresistant strains [192]. Antimicrobial agents with extended spec-
trum of activity (piperacillin/tazobactam, imipenem, meropenem, ceftazidime/avibactam,
ceftolozane/tazobactam) should be used for empirical treatment of severe infections in
accordance with previous individual culture or local resistance data [191]. A switch to narrow-
spectrum antibiotics should be performed as soon as the results of antibiotic sensitivity tests
are available to avoid unnecessary adverse effects and ecological consequences [191,192].
Treatment for 7–14 days is generally recommended, but the duration should be guided by the
therapy of the underlying abnormality [191,192].

9. The Impact of Antibiotic Therapy on Cancer Therapy Outcomes

Despite the undeniable contribution of antibiotic therapy to the management of
infections in cancer patients, a potential detrimental effect on treatment outcome and
toxicity has to be considered [193,194]. Several contributing factors have been proposed
to decrease the efficacy of cancer therapy, the most prominent being alteration of the
microbiome and its interaction with the patient’s immune system, potentially resulting in
reduced immune surveillance [194,195].

9.1. Impact on Cancer Therapy Efficacy

There is a growing body of evidence that antibiotic therapy can negatively affect
anticancer treatment efficacy and cancer-specific survival, especially in patients treated
with immunotherapy [196]. It is now understood that the microbiome alters antitumor
immunity and influences the efficacy of cancer therapies mediated via systemic immune
response [194]. The effect of gut microbiome composition on immunotherapy outcome is
supported by the finding that fecal transplants of gut microbiota from patients responding
to ICI therapy to germ-free mice results in an antitumor response [197–199]. The pres-
ence of several species of microbiota have been associated with ICI efficacy, including
Bacteroides spp. [200], Bifidobacterium spp. [198,201], Faecalibacterium spp. [202], Akkerman-
sia muciniphila [199], Collinsella aerofaciens [198], E. faecium [198], and bacteria from the
Ruminococcaceae family [197]. Changing the balance and diversity of the patient’s micro-
biome by antibiotic therapy may alter the antitumor immune response induced by ICIs,
resulting in poor therapeutic outcomes [145]. Multiple clinical studies have reported a
negative association between antibiotic use and response to ICIs in different solid tumors,
including melanoma [203,204], NSCLC [203,205–208], and RCC [203,205,209]. Additionally,
several meta-analyses have confirmed these results [210–212]. Interestingly, the negative
effect of antibiotics on survival was also observed in adjuvant therapy with ICIs [204]. The
most detrimental effect on overall survival in the multivariate analysis was observed in
patients treated with penicillins, cephalosporins, and fluoroquinolones [204]. In light of
these findings, the use of broad-spectrum antibiotics should be avoided in patients treated
with immunotherapy whenever possible [195]. In addition to the antibiotic class, the
length of antibiotic therapy seems to play an important role, as the detrimental effect was
most commonly observed in patients receiving multiple or prolonged cycles of antibiotic
therapy [203,207].
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Besides affecting the efficacy of immunotherapy, the use of antibiotics can potentiate
the effect of radiotherapy. Vancomycin, a glycopeptide antibiotic active against gram-
positive bacteria with minimal absorption from the gut when administered orally, showed a
potentiating antitumor effect when combined with radiotherapy in a preclinical model [213].
The effect was mediated through changes in gut microbiota composition, which led to
increased antigen presentation by CD11c+ dendritic cells in the tumor-draining lymph
nodes of the radiotherapy-treated mice. Interestingly, the vancomycin effect was abrogated
by butyrate, a metabolite produced by vancomycin-depleted gut bacteria [213]. Recently,
these results were confirmed by another study, suggesting that butyrate-producing bacteria,
such as Lachnospiraceae and Ruminococcaceae, could be novel therapeutic targets [214].

Conversely, antibiotic therapy during curative chemoradiotherapy in patients with
locally advanced head and neck cancers was associated with a significant reduction of
progression-free survival, overall survival, and disease-specific survival [215]. The potential
harm of broad-spectrum and prophylactic antibiotic therapy in these patients should,
therefore, be considered [215].

9.2. Impact on Cancer Therapy Toxicity

In addition to possible pharmacokinetic interactions, the use of antibiotics can lead to
increased toxicity of anticancer drugs by modulation of microbiome [195]. In patients with
metastatic pancreatic adenocarcinoma treated with gemcitabine, antibiotic therapy was
associated with increased chemotherapy-related toxicity [216]. The authors suggest that
intratumor bacteria may be responsible for a clinically meaningful portion of gemcitabine
metabolism [216]. In melanoma patients treated with immunotherapy, the use of antibiotics
was associated with moderate to severe immune-mediated colitis [204]. The underlying
mechanism seems to involve changes in the gut microbiome, resulting in inhibition of
regulatory T cells [217] together with regrowth of pro-inflammation bacterial species [204].

10. Conclusions

Infections are one of the most common causes of death in patients with solid tumors
and can complicate cancer therapy. Thorough evaluation of possible risk factors could
identify patients at high risk for infections and aid in the decision-making process regarding
the use of G-CSF and antibiotics. In this regard, prognostic scores considering multiple
risk factors together are being evaluated to calculate each individual patient’s risk. Early
initiation of antibiotic therapy is essential, especially in immunocompromised patients.
However, other pathologic conditions mimicking infection, including irAE in patients
treated with ICIs, have to be excluded first. Consultation with the hospital’s antibiotic
center before antibiotic therapy initiation and strict adherence to the antibiotic stewardship
program is highly encouraged to reduce the occurrence of multidrug-resistant pathogens
and decrease therapy costs. Potential risks of antibiotic therapy in cancer patients have to
be considered, including potential detrimental effects on treatment efficacy and toxicity.
This holds especially true for patients treated with ICIs, for whom antibiotic therapy should
be restricted to unequivocally diagnosed infections, and broad-spectrum antibiotics should
be avoided.
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