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Background and Objective: After radical prostatectomy (RP), prostate cancer (PCa)
patients may experience biochemical recurrence (BCR) and clinical recurrence, which
remains a dominant issue in PCa treatment. The purpose of this study was to identify a
protein-coding gene classifier associated with microRNA (miRNA)-mediated regulation to
provide a comprehensive prognostic index to predict PCa recurrence after RP.

Methods: Candidate classifiers were constructed using two machine-learning algorithms
(a least absolute shrinkage and selector operation [LASSO]-based classifier and a
decision tree-based classifier) based on a discovery cohort (n = 156) from The Cancer
Genome Atlas (TCGA) database. After selecting the LASSO-based classifier based on the
prediction accuracy, both an internal validation cohort (n = 333) and an external validation
cohort (n = 100) were used to examined the classifier using survival analysis, time-
dependent receiver operating characteristic (ROC) curve analysis, and univariate and
multivariate Cox proportional hazards regression analyses. Functional enrichment analysis
of co-expressed genes was carried out to explore the underlying moleculer mechanisms
of the genes included in the classifier.

Results: We constructed a three-gene classifier that included FAM72B, GNE, and
TRIM46, and we identified four upstream prognostic miRNAs (hsa-miR-133a-3p, hsa-
miR-222-3p, hsa-miR-1301-3p, and hsa-miR-30c-2-3p). The classifier exhibited a
remarkable ability (area under the curve [AUC] = 0.927) to distinguish PCa patients with
high and low Gleason scores in the discovery cohort. Furthermore, it was significantly
associated with clinical recurrence (p < 0.0001, log rank statistic = 20.7, AUC = 0.733)
and could serve as an independent prognostic factor of recurrence-free survival (hazard
ratio: 1.708, 95% CI: 1.180–2.472, p < 0.001). Additionally, it was a predictor of BCR
according to BCR-free survival analysis (p = 0.0338, log rank statistic = 4.51).
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Conclusions: The three-gene classifier associated with miRNA-mediated regulation may
serve as a novel prognostic biomarker for PCa patients after RP.
Keywords: prostate cancer, radical prostatectomy, protein-coding gene classifier, clinical recurrence, biochemical
recurrence, microRNA
INTRODUCTION

Prostate cancer (PCa) is the second most common cancer in
males worldwide, representing a serious public health issue. It
was estimated that there was 164,690 new PCa cases and 29,430
deaths in the United States in 2018 (Siegel and Jemal, 2018).

Approximately 80% of all PCa cases are diagnosed as
localized PCa, and radical prostatectomy (RP) remains the
cornerstone of therapy for the localized disease. Although RP
provides durable cancer control for some, one-third of patients
will experience biochemical recurrence (BCR) after curative
surgery. In addition, BCR has been associated with the
development of castration-resistant PCa and distant metastases
(Brockman et al., 2015). Therefore, there is a great need to
identify prognostic biomarkers for PCa to guide treatment
decision-making.

Although current clinical and pathological indicators such as
Gleason score (tumor grade), cancer stage, and prostate-specific
antigen (PSA) level have been the most reliable prognostic
factors, they do not accurately predict the progression risk of
individual patients (Cooperberg et al., 2015; Leapman et al.,
2018). Recently, many PCa prognosis-related protein-coding
gene classifiers have been developed, as reported in previous
studies. Abou-Ouf et al. (2018) reported a 10-gene classifier with
the ability to distinguish aggressive and indolent PCa within low-
and intermediate- risk groups. Jhun et al. (2017) constructed a
49-gene signature based on the Gleason score to improve the
prediction of recurrence as well as ML progression in PCa
patients after RP. Long et al. (2011) developed a classifier for
use following RP involving 10 protein-coding genes and two
microRNA (miRNA) genes, which increased the prognostic
accuracy based on formalin-fixed specimens. Shahabi et al.
(2016) reported a novel gene -expression based classifier for
patients with early-stage localized PCa after RP, which was
constructed using agnostic approaches based on whole genome
expression profiles to improve upon the accuracy of clinical
indicators to stratify patients at risk of clinical recurrence.
However, the upstream molecular mechanisms underlying
these classifiers remain unclear (Long et al., 2011; Shahabi
et al., 2016; Jhun et al., 2017; Abou-Ouf et al., 2018).

MiRNAs are small single-strand non-coding RNA molecules
(18–25 nucleotides), which regulate gene expression mostly at
the posttranscriptional level (Karen et al., 2014). They can bind
CR, biochemical recurrence; BCRFS,
Gene Expression Omnibus; GO, Gene
Genes and Genomes; LASSO, least
LR, logistic regression; PCa, prostate
specific antigen; RFS, recurrence-free
stic; RP, radical prostatectomy; TCGA,
onfidence interval.
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to completely or partially complementary mRNA targets and
induce gene silencing by mRNA degradation or translational
repression (Zamore et al., 2000; Hudder and Novak, 2008). Many
miRNAs themselves have been identified as biomarkers for
predicting the prognosis of PCa patients after RP using
regression analysis. Fredsoe et al. (2019) reported a five-
miRNA model (miR-151a-5p, miR-204-5p, miR-222-3p, miR-
23b-3p, and miR-331-3p) for predicting of BCR, which was
verified as a significant predictor. Another five miRNAs (miR-
30c-5p, miR-31-5p, miR-141-3p, miR-148a-3p, and miR-miR-
221-3p) were validated as independent prognostic biomarkers
for PCa (Zhao et al., 2019). Furthermore, Kristensen et al. (2016)
developed a three-miRNA prognostic classifier (miR-185-5p,
miR-221-3p, and miR-326) to predict BCR independently of
routine clinicopathological variables. It has also been
demonstrated that miR-21 was an independent prognostic
factor for BCR in patients with a Gleason score of 6 (Melbo-
Jorgensen et al., 2014). However, the mechanisms between the
apparent prognostic roles of these miRNAs and PCa
remain unclear.

Therefore, we need to pay more attention to miRNA
mediated regulation of protein-coding genes when developing
gene classifiers to achieve increased understanding of the
underlying molecular mechanisms.

In the present study, we developed a prognostic protein-
coding gene classifier associated with miRNA-mediated
regulation by comparing PCa patients with a high Gleason
score (≥8) versus a low Gleason score (≤6) PCa patients after
RP from The Cancer Genome Atlas (TCGA) cohort (Geybels
et al., 2016). The classifier was then verified in an internal
validation cohort and an independent external validation
cohort from the Gene Expression Omnibus (GEO) database.
Functional enrichment analyses of co-expressed genes were
conducted to reveal the downstream mechnisms underlying
the predictive ability of the classifier.
MATERIALS AND METHODS

Study Population
Gene expression and miRNA data and corresponding clinical
information were obtained from the TCGA- prostate
adenocarcinoma (PRAD) dataset using the UCSC Xena
browser (https://xenabrowser.net/). TCGA data from 333 PCa
patients who underwent RP were included in the present study.
TCGA samples with a high Gleason score (≥8) (n = 129) or a low
Gleason score (≤6) patients (n = 27) were used as the discovery
cohort to construct a gene classifier (associated with miRNA-
mediated regulation) for predicting prognosis. The entire set of
February 2020 | Volume 10 | Article 1402
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TCGA samples (n = 333) was used as an internal validation
cohort. Another cohort of 106 samples from 100 PCa patients
after RP was obtained from the GEO database (accession
number: GSE54460 (Qi et al., 2014)). Duplicates from six
patients were removed, and the remaining 100 samples were
used as the external validation cohort. The clinical characteristics
of the PCa patients after RP in the discovery cohort, internal
validation cohort and external validation cohort are summarized
in Table 1.

Preprocessing of the Gene Expression and
miRNA Data
For samples in the TCGA dataset, gene expression and miRNA
profiles were converted to log2(x + 1) of the initial expression
value. Only protein-coding gene profiles were extracted for
further analysis by identifying genes with protein products in
the HUGO Gene Nomenclature Committee (HGNC) database
(https://www.genenames.org/). Given that failures of gene and
miRNA expression detection might exist, we only selected genes
and miRNAs that were abundantly expressed for further
analysis. The criteria were as follows: (1) expression level >0;
(2) appeared in >50% of all specimens. For samples in the
external validation cohort (from the GEO database), the gene
expression data were preprocessed into fragment per kilobase per
million reads (FPKM) values.

Statistical Analysis
We constructed a gene classifier associated with miRNA-
mediated regulation using the following four steps. Step 1
involved obtaining candidate genes and miRNAs. Logistic
regression was applied to the discovery cohort to identify
Frontiers in Genetics | www.frontiersin.org 3
candidate genes and miRNAs (with p < 0.05) associated with
the Gleason score. Step 2 involved obtaining significantly
negitively correlated miRNA-gene pairs. A Pearson correlation
analysis was applied to each miRNA-gene pair based on the
candidate genes and miRNAs identified in step 1. A miRNA-
gene pair with a Pearson correlation coefficient < -0.4 and
p < 0.05 was defined as having a statistically significant
negative correlation and used for further study. Step 3
involved, obtaining the target genes associated with miRNA-
mediated regulation. We retrieved the potential target genes of
the significantly negitively correlated miRNAs from miRWalk 3
(http://mirwalk.umm.uni-heidelberg.de/). Target genes that
overlapped, i.e., were also significantly negitively correlated
genes, were employed to develop the classifier. Step 4 involved,
least absolute shrinkage and selector operation (LASSO)
regression and a decision tree to further narrow down the
variables and create two candidate classifiers. The Glmnet
package was used to perform logistic regression and LASSO
regression while the rpart package was used to construct the
decision tree, in R software version 3.4.0.

Receiver operating characteristic (ROC) curve analysis was
applied to assess the classifier’s ability to distinguish samples
with a high or low Gleason score. Time-dependent ROC curve
analyses were applied to assess the classifier’s ability to predict
the 3-year clinical recurrence-free survival (RFS) rate and BCR-
free survival (BCRFS) rate, using the survival ROC package in R
software. Area under the curve (AUC) values were calculated to
estimate the prediction ability of the classifier or related clinical
factors. The Youden index from the time-dependent ROC curve
analysis was employed to define the cutoff to split samples into
high- and low-risk groups. The RFS and BCRFS were compared
TABLE 1 | Clinical characteristics of the prostate cancer (PCa) patients after radical prostatectomy (RP).

Parameter Discovery cohort (n = 156) Internal validation cohort (n = 333) External validation cohort (n = 100)

Age at diagnosis (mean ± SD) 61.2 ± 6.6 60.7 ± 6.8 61.1 ± 6.6
Clinical stage, n(%) ≤T2a 56 36% 147 44% 43 43%

T2b 17 11% 35 11% 8 8%
≥T2c 44 28% 76 23% 48 48%
Null 37 24% 75 23% 1 1%

Pathological stage, n(%) Local 35 22% 128 38% – –

Regional 119 76% 200 60% – –

Null 2 1% 5 2% – –

Gleason score, n(%) ≤6 27 17% 27 8% 11 11%
7 0 0% 177 53% 75 75%
≥8 129 83% 129 39% 14 14%

PSA at diagnosis (ng/ml), n(%) 0-3.9 126 81% 283 85% 9 9%
4-9.9 5 3% 6 2% 58 58%
10-19.9 3 2% 7 2% 19 19%
≥20 3 2% 3 1% 11 11%
Null 19 12% 34 10% 3 3%

Surgery margins, n(%) Negative – – – – 56 56%
Positive – – – – 39 39%
Null – – – – 5 5%

RFS, n(%) Yes 29 19% 37 11% – –

No 108 69% 255 77% – –

Null 19 12% 41 12% – –

BCR, n(%) Yes – – – – 49 49%
No – – – – 51 51%
Null – – – – 0 0%
F
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between the two groups according to the Kaplan-Meier method
with the log-rank test.

Based on a Pearson correlation analysis of the genes in the
classifier, genes with an absolute Pearson correlation coefficient
>0.4 were identified as co-expressed genes (Seon-Kyu et al.,
2015). Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses of the co-
expressed genes were conducted using ClusterProfiler with p <
0.01 as the cut-off criterion (Yu et al., 2012). A network that
involved the above-mentioned overlapping miRNA-gene pairs
was visualized using Cytoscape 3.5.1.
RESULTS

Construction and Assessment of the
Protein-Coding Gene Classifier in the
Discovery Cohort
After preprocessing, each abundantly expressed gene and
miRNA from samples in the discovery cohort was subjected to
univariate logistic regression using binomial Gleason score as the
dependent variable. Consequently, 3,732 genes and 98 miRNAs
(Additional File 1) were found to be significant. Next, 1,235
significantly negitively correlated miRNA-gene pairs were
identified using a Pearson correlation analysis (Additional File
2). Theredfter, we retrieved the potential target genes of the
significantly negitively correlated miRNAs from miRWalk 3,
obtaining 158,948 miRNA-gene pairs (Additional File 3). The
miRNA-gene pairs involving genes that overlapped, i.e., were
present in both sets (Additional File 4) were visualized in a
network, with 79 genes and 28 miRNAs involved, as shown in
Figure 1.
Frontiers in Genetics | www.frontiersin.org 4
These 79 genes were first subjected to LASSO regression, still
using the binomial Gleason score as the dependent variable.
LASSO regression is a parsimonious model that involves L1
regularization. l is the coefficient of the penalty term in L1
regularization and as l increases, the regression coefficients
approach zero. Variables with non-zero regression coefficients
are the variables most strongly associated with the dependent
variable. Tenfold cross-validation was performed to determine
the best l value, with the AUC as the criterion. A series of models
were constructed for variable selection (Figure 2A), among
which the model with the highest AUC value was selected as
the best model (Figure 2B). Three genes (FAM72B, GNE, and
TRIM46) had non-zero coefficients in the best model. These
three genes and their coefficients formed the following
prognostic index (PI), representing a candidate classifier:

PI = 0:83444� FAM72Bð Þ + −0:57533� GNEð Þ
+ 0:01167� TRIM46ð Þ

The PI of samples were compared between groups with high
and low Gleason scores using a violin plot, as shown in Figure
2C. To further evaluate the sensitivity and specificity of Gleason
score prediction, we conducted a ROC curve analysis of PI. As
shown in Figure 2D, PI exhibited a remarkable ability regarding
Gleason score prediction (AUC = 0.927).

Furthermore, we used the 79 genes and the binomial Gleason
score to construct a decision tree using the classification and
regression tree (CART) algorithm. The decision tree with
minimal cross-validation error was generated, as shown in
Figure 2E, comprising two genes, FAM72B and GNE. As
shown in the decision tree, FAM72B had almost complete
dominance, while GNE came second. The coefficients in the PI
FIGURE 1 | Network of the miRNA-gene pairs involving genes from both miRWalk 3 and the correlation analysis.
February 2020 | Volume 10 | Article 1402
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FIGURE 2 | Construction and assessment of the three-gene calssifier associated with microRNA-mediated regulation. (A) Process of variable selection in least
absolute shrinkage and selector operation (LASSO) regression. (B) Cross validation in LASSO regression. (C) Violin plot for the classifier. (D) Receiver operating
characteristic (ROC) curve of the classifier’s ability to predict the Gleason score. (E) Decision tree based on the classification and regression tree (CART) algorithm.
(F) Comparison of prediction accuracy between the LASSO-based classifier and decision tree-based classifier. (G) Heatmap of genes included in LASSO-based
classifier and corresponding miRNAs.
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indicated the same pattern. Therefore, the candidate classifiers
obtained from the two machine-learning algorithms agreed well
with each other, with the exception of TRIM46 in the LASSO-
based classifier. To estimate the performance of the two
classifiers, their sensitivity and specificity in classifying Gleason
score were calculated, as shown in Figure 2F. The accuracy of
the LASSO-based classifier was a little higher than that of the
decision tree-based classifier. Thus, the PI derived from
the LASSO-based classifier was identified as the final classifier.

After mapping the three genes in the classifier to the
corresponding overlapping miRNA-gene pairs, we found that
FAM74B was regulated by both hsa-miR-133a-3p and hsa-miR-
222-3p, while GNE and TRIM46 were regulated by hsa-miR-
1301-3p and hsa-miR-30c-2-3p, respectively. A heatmap of the
expression of the three genes and four miRNAs was generated to
gain more understanding of the correlations of individual genes
and miRNAs with the Gleason score (Figure 2G). The heatmap
shows that FAM72B, TRIM46 and hsa-miR-1301-3p were
Frontiers in Genetics | www.frontiersin.org 6
positively correlated with the Gleason score, whereas GNE,
hsa-miR-133a-3p, hsa-miR-30c-2-3p, and hsa-miR-222-3p
were negatively correlated with Gleason score.

As described in theMaterials and Methods, the three genes in
the classifier were significantly negatively correlated with their
corresponding miRNAs. Scatter plots of the four miRNA-gene
pairs’ expression and corresponding linear regression lines were
generated, as shown in Figure 3. The Pearson correlation
coefficients were -0.475, -0.411, -0.405, and -0.551 for the
miRNA-gene pairs hsa-miR-133a-3p-FAM74B, hsa-miR-222-
3p-FAM74B, hsa-miR-1301-3p-GNE, and hsa-miR-30c-2-3p-
TRIM46, respectively.

Verification of the Protein-Coding Gene
Classifier
First, we examined the associations between each gene included
in the classifier and the clinical recurrence of PCa patients after
RP in the internal validation cohort. RFS differences between the
FIGURE 3 | Scatter plots of the four miRNA-gene pairs’ expression and corresponding linear regression lines for (A) hsa-miR-133a-3p-FAM74B, (B) hsa-miR-222-
3p-FAM74B, (C) hsa-miR-1301-3p-GNE, and (D) hsa-miR-30c-2-3p-TRIM46.
February 2020 | Volume 10 | Article 1402
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low- and high-risk groups were analyzed using the Kaplan-Meier
method with the log-rank test, as shown in Figures 4A–C. We
found that the three genes were all significantly associated with
the RFS of PCa patients after RP (p < 0.001 for FAM74B, p <
0.001 for GNE and p = 0.0134 for TRIM46). Identical analyses
for the four upstream miRNAs were also conducted, as shown in
Figures 4D–G. Except for hsa-miR-1301-3p (p = 0.0829), all
other miRNAs were significantly associated with RFS ((p-0.0121
for hsa-miR-133a-3p, p < 0.001 for hsa-miR-222-3p and p =
0.025 for hsa-miR-30c-2-3p).

Second, we examined the classifier’s ability to predict clinical
recurrence in patients after RP. With the use of the best cutoff
point, the patients in this cohort were further divided into a high-
risk group (n = 119) and a low-risk group (n = 173). The RFS
Frontiers in Genetics | www.frontiersin.org 7
difference was analyzed between the low- and high-risk groups
(Figure 5A) in the internal validation cohort. The survival curves
indicated a highly significant difference between the low- and
high-risk groups (p < 0.001, log rank statistic = 20.7). To gain a
deeper insight into the classifier, it was subjected to univariate
Cox proportional hazards regression, as were four candidate
clinical prognostic factors (age, Gleason score, PSA, and
pathological stage) in the internal validation cohort. The
results indicated that high classifier value, high Gleason score,
high PSA value and Regional pathological stage were associated
with significantly shorter RFS. The fmultivariate analysis
confirmed that the classifier (hazard ratio [HR]: 1.708, 95%CI:
1.180–2.472, p < 0.001) and Gleason score (HR: 1.720, 95% CI:
1.089–2.716, p = 0.02) were independent risk factors for RFS. To
FIGURE 4 | Examination of each gene included in the three-gene classifier and corresponding miRNA’s prognostic ability. (A–C) Recurrence-free survival (RFS)
analyses for FAM74B, GNE, and TRIM46 in the internal validation cohort. (D–G) RFS analyses for hsa-miR-133a-3p, hsa-miR-222-3p, hsa-miR-1301-3p, and
hsa-miR-30c-2-3p in the internal validation cohort.
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FIGURE 5 | Examination of the three-gene classifier’s prognostic ability. (A) Recurrence-free survival (RFS) analysis for the classifier in the internal validation cohort.
(B) Time-dependent receiver operating characteristic (ROC) curve analysis for the classifier and clinical factors in the internal validation cohort. (C) RFS analysis for
the classifier in the discovery cohort. (D) RFS analysis for the classifier in the subgroup of the internal validation cohort with a Gleason score of 7. (E) BCR-free
survival (BCRFS) analysis for the classifier in the external validation cohort. (F) BCRFS analysis for the classifier in the subgroup of the external validation cohort with a
Gleason score of 7.
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further evaluate the sensitivity and specificity of the RFS survival
prediction, we conducted time-dependent ROC curve analyses
for the classifier and clinical factors. As shown in Figure 5B, the
classifier exhibited a remarkable ability to predict RFS, as the
AUC value was 0.733, which was higher than the AUC value for
the Gleason score (0.718) (Figure 5B). Additionally, a
combination of the classifier and three prognostic factors
(Gleason score, PSA and pathological stage) achieved the best
ability to predict RFS (AUC = 0.752). The results of the
univariate and multivariate analyses of RFS in PCa patients
after RP in the internal validation cohort are summarized in
Table 2. Moreover, the classifier performed stably regarding risk
stratification in both the discovery cohort (p = 0.0133, log rank
statistic = 6.13) and the subgroup of the internal validation
cohort with a Gleason score of = 7 (p = 0.02, log rank statistic =
5.41) (Figures 5C, D).

Third, we examined the classifier’s prognostic ability to
predict the BCR of patients after RP. The classifier’s output
was calculated using the weight coefficients used in the above-
mentioned prognostic index (PI). With the use of the best cut-off
point, the patients in the external validation cohort were divided
into a high-risk group (n = 48) and a low risk group (n = 48). The
BCRFS difference was compared between the low- and high-risk
groups (Figure 5E). The survival curves still indicated a
significant difference (p = 0.0338, log rank statistic = 4.51). A
similar result was obtained in the subgroup of the external
validation cohort with Gleason score of 7 (p = 0.0227, log rank
statistic = 5.12) (Figure 5F).

Functional Enrichment Analysis
of Co-Expressed Genes
To explore the underlying moleculer mechanisms of the three
genes included in the classifier, we performed a functional
enrichment analysis of the three genes’ co-expressed genes in
the internal vlidation cohort. Genes with an absolute Pearson
correlation coefficient >0.4 were identified as co-expressed genes.
There were 673, 165, and 153 genes co-expressed with FAM72B,
GNE, and TRIM46, respectively (Additional file 5). Finally, we
obtained 894 co-expressed genes after removal of the duplicate
genes. GO and KEGG enrichment analyses were conducted on
these co-expressed genes, with Biological Process (BP) GO terms
and pathways with p < 0.01 being defined as significantly
enriched. The Top 15 of all 245 significantly enriched BP GO
Frontiers in Genetics | www.frontiersin.org 9
terms are visualized in Figure 6A, including chromosome
segregation, mitotic nuclear division, nuclear chromosome
segregation, sister chromatid segregation, DNA replication, and
mitotic sister chromatid segregation. Significantly enriched
KEGG pathways (n = 14) are shown in Figure 6B, including
Cell cycle, DNA replication, Homologous recombination,
Mismatch repair, Fanconi anemia pathway, Base excision
repair, Oocyte meiosis , Nucleotide excision repair ,
Progesterone-mediated oocyte maturation and beta-Alanine
metabolism, Valine, leucine and isoleucine degradation,
Cellular senescence, Human T-cell leukemia virus 1 infection,
and p53 signaling pathway.
DISCUSSION

In the present study, a three-gene classifier associated with
miRNA mediated regulation was identified as a comprehensive
prognostic biomarker that predicts both clinical recurrence and
BCR for PCa patients after RP by comparing patients with a high
Gleason score (≥8) to those with low Gleason (≤6) in a TCGA
dataset and then validating the classifier.

The classifier, involving FAM72B, GNE, and TRIM46,
showed a pronounced ability to predict the Gleason score of
PCa patients after RP according to ROC analysis. Furthermore,
both the three genes and the classifier showed remarkable
prognostic ability to predict clinical recurrence in the internal
validation cohort, and the classifier also had a ability to predict
BCR in an indenpendent external cohort from the GEO database.
It also performed stably regarding predicting prognosis in a
subgroup of samples with Gleason score of 7 whose prognosis
was difficult to predict (Geybels et al., 2016). Hence, the
prognostic index (PI) based on the classifier derived in this
study can act as a trustworthy index for clinical prognosis. In
addition, four upstream miRNA (hsa-miR-133a-3p, hsa-miR-
222-3p, hsa-miR-1301-3p, and hsa-miR-30c-2-3p) were
identified as being both significantly negatively correlated with
the three genes in the classifier and able to target the three genes,
according to miRWalk 3. Three of the miRNAs (though not hsa-
miR-1301-3p) were also prognostic biomarkers. Taken together,
it is rational to hypothesize that the three genes in the classifer
are regulated by these four miRNA, which may be a promising
biological research topic.
TABLE 2 | Univariate and multivariate analyses of recurrence-free survival (RFS) in prostate cancer (PCa) patients after radical prostatectomy (RP) in the internal
validation cohort.

Variable Variable Treatment Univariate Multivariate

p HR 95%CI(lower/upper) p HR 95%CI(lower/upper)

Three-gene classifier Continuous <0.001 1.61397 1.33704 1.94826 0.00458 1.70751 1.17961 2.47166
Age Continuous 0.30192 1.02595 0.97725 1.07707
Gleason score Continuous <0.001 2.49847 1.74031 3.58692 0.02005 1.71988 1.08896 2.71633
PSA Continuous 0.02204 1.05189 1.00731 1.09845 0.08653 1.04008 0.99438 1.08789
Pathological stage

a

Binary (local VS regional) 0.01417 2.69347 1.22031 5.94504 0.79535 1.1207 0.47369 2.65146
Feb
ruary 2020 |
 Volume 10 | A
aLocal stage is pT2, N0/NX and M0. Regional stage is pT3-T4 and/or N1 and M0.
The bolded texts have statistical significance.
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Among the three genes, FAM72B and TRIM46 were
correlated with a high Gleason score and a higher risk of
clinical recurrence and BCR, whereas GNE was negatively
correlated with the prognosis of PCa. It has previously been
shown that FAM72B was differentially regulated following
treatment with docetaxel chemotherapy and androgen
deprivation therapy (ADT) in high-risk PCa patients, and it
served as a prognostic biomarker (Rajan et al., 2014), which is in
Frontiers in Genetics | www.frontiersin.org 10
line with the present study. Notably, FAM72 has been reported
as a novel neural progenitor cell (NPC) self-renewal supporting
protein expressed under physiological conditions at low levels in
other tissues and accumulating data indicate the potential pivotal
tumorigenic effects of FAM72 (Kutzner et al., 2015). GNE is well
known for its role in GNE myopathy, which is a rare muscle
disease characterized by slowly progressive weakness and
atrophy of skeletal muscles (Carrillo et al., 2018). A recent
FIGURE 6 | Functional enrichment analysis of the three genes’ co-expressed genes. (A) Significantly enriched Biological Process (BP) GO terms. (B) Significantly
enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
February 2020 | Volume 10 | Article 1402
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study demonstrated that GNE contributed to a strategy to provide
novel insights into breast cancer subtypes and provide a foundation
for new methods of diagnosis of breast cancer (Saeui et al., 2018). It
has been found that TRIM46 was involved in the proliferation and
migration of mouse and human breast cancer cells and TRIM46
could be inhibited by mmu-miR-1894-3p (Zhang et al., 2016).
Furthermore, anti-TRIM46 antibodies have been found in patients
with diverse neurological syndromes and are associated with small-
cell lung carcinoma (van Coevorden-Hameete et al., 2017). TRIM46
also contributed to a classifier that identified subtypes of high-grade
serous ovarian carcinoma (Kalpana et al., 2015).

Among the four upstream miRNAs, hsa-miR-133a-3p, hsa-
miR-222-3p, and hsa-miR-30c-2-3p, but not hsa-miR-1301-3p,
were significantly correlated with clinical recurrence. Recent
studies showed that hsa-miR-133a-3p could serve as a diagnostic
biomarker of rectal or colon cancer and also helped to diagnose and
predict the prognosis of NSCLC (Wang et al., 2017; Weber et al.,
2018). The Limited published literature related to hsa-miR-1301-
3p, hsa-miR-222-3p, and hsa-miR-30c-2-3p can aid in
understanding their functional mechanisms in PCa after RP.

Among the 14 significantly enriched KEGG pathways, cCell
cycle (Tosoian et al., 2017; Léon et al., 2018), DNA replication
(Tosoian et al., 2017), Base excision repair (Flores-Morales et al.,
2018; Oing et al., 2018; Tonon et al., 2019), Nucleotide excision
repair (Castro et al., 2015; Nordström et al., 2016), and the p53
signaling pathway (Bouali et al., 2008; Suk-Hyun et al., 2012; Gao
et al., 2014) were extensively reported to participate in
aggressiveness, growth, and metastasis of PCa after RP.
Therefore, the classifier was evidently able to capture important
biological pathways and events related to PCa. Our functional
enrichment analysis results concur with previous research, and
they also clarify the mechanisms underlying the prognostic
relationship between the classifier and PCa outcomes after RP.

To our knowledge, the present classifier is the first protein-
coding gene classifier associated with microRNA-mediated
regulation to comprehensibly predict clinical recurrence and
BCR for PCa patients after RP. In addition, we highlighted the
prognistic roles of GNE and TRIM46, which have attracted some
attention in previous studies.

The limitations of this study are as follows: (1) as our research
is only based on analysis of secondary data, it is urgent to carry
out biological experiments to verify our findings; (2) the gene
expression data and clinical data employed in this study were
obtained from open databases, so the quality of the data used
cannot be fully evaluated; (3) other prognostic tools such as the
Cancer of the Prostate Risk Assessment Post-Surgical (CAPRA-
S) score and Decipher were not tested, so additional comparative
studies are needed.
Frontiers in Genetics | www.frontiersin.org 11
CONCLUSIONS

In conclusion, we constructed a three-gene calssifier (involving
FAM72B, GNE, and TRIM46) with comprehensive prognostic
ability to predict both clinical recurrence and BCR for PCa
patients after RP. The classifier’s prognostic mechanism may
be associated with regulation mediated by four upstream
miRNAs (hsa-miR-133a-3p, hsa-miR-222-3p, hsa-miR-1301-
3p, and hsa-miR-30c-2-3p). These results provide guidance for
PCa after RP and may help in patient management.
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