
2090  |  	﻿�  CNS Neurosci Ther. 2022;28:2090–2103.wileyonlinelibrary.com/journal/cns

Received: 12 May 2022 | Revised: 28 July 2022 | Accepted: 28 July 2022

DOI: 10.1111/cns.13944  

O R I G I N A L  A R T I C L E

A novel chemokine-based signature for prediction of prognosis 
and therapeutic response in glioma

Wenhua Fan1,2,3 |   Di Wang1 |   Guanzhang Li1,2,3 |   Jianbao Xu4 |   Changyuan Ren5 |   
Zhiyan Sun1,2,3 |   Zhiliang Wang1,3  |   Wenping Ma1,2,3  |   Zheng Zhao2,3 |   
Zhaoshi Bao1,2,3 |   Tao Jiang1,2,3  |   Ying Zhang1,2,3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

1Department of Neurosurgery, Beijing 
Tiantan Hospital, Capital Medical 
University, Beijing, China
2Department Molecular Neuropathology, 
Beijing Neurosurgical Institute, Capital 
Medical University, Beijing, China
3Chinese Glioma Genome Atlas Network 
(CGGA) and Asian Glioma Genome Atlas 
Network (AGGA), Beijing, China
4The Second Affiliated Hospital of Harbin 
Medical University, Harbin, China
5Sanbo Brain Hospital, Capital Medical 
University, Beijing, China

Correspondence
Ying Zhang and Tao Jiang, Beijing Tiantan 
Hospital, Beijing Neurosurgical Institute, 
Capital Medical University, No. 119 South 
Fourth Ring Road West, Fengtai District, 
Beijing, China.
Emails: zhangy_bni@163.com; 
taojiang1964@163.com

Funding information
Beijing Municipal Administration of 
Hospitals’ Mission Plan, Grant/Award 
Number: SML20180501; Beijing 
Postdoctoral Research Foundation, Grant/
Award Number: 2021-ZZ-022; CAMS 
Innovation Fund for Medical Sciences, 
Grant/Award Number: 2019-I2M-5-021; 
China Postdoctoral Science Foundation, 
Grant/Award Number: 2021M702308 and 
2022M712218; National Natural Science 
Foundation of China, Grant/Award 
Number: 81972337 and 81761168038; 
Natural Science Foundation of Beijing 
Municipality, Grant/Award Number: 
JQ20030; public welfare development 
and reform pilot project of Beijing Medical 
Research Institute, Grant/Award Number: 

Abstract
Aims: Gliomas are the primary malignant brain tumor and characterized as the strik-
ing cellular heterogeneity and intricate tumor microenvironment (TME), where 
chemokines regulate immune cell trafficking by shaping local networks. This study 
aimed to construct a chemokine-based gene signature to evaluate the prognosis and 
therapeutic response in glioma.
Methods: In this study, 1024 patients (699 from TCGA and 325 from CGGA data-
base) with clinicopathological information and mRNA sequencing data were enrolled. 
A chemokine gene signature was constructed by combining LASSO and SVM-RFE 
algorithm. GO, KEGG, and GSVA analyses were performed for function annotations 
of the chemokine signature. Candidate mRNAs were subsequently verified through 
qRT-PCR in an independent cohort including 28 glioma samples. Then, through im-
munohistochemical staining (IHC), we detected the expression of immunosuppressive 
markers and explore the role of this gene signature in immunotherapy for glioma. 
Lastly, the Genomics of Drug Sensitivity in Cancer (GDSC) were leveraged to predict 
the potential drug related to the gene signature in glioma.
Results: A constructed chemokine gene signature was significantly associated with 
poorer survival, especially in glioblastoma, IDH wildtype. It also played an independ-
ent prognostic factor in both datasets. Moreover, biological function annotations of 
the predictive signature indicated the gene signature was positively associated with 
immune-relevant pathways, and the immunosuppressive protein expressions (PD-L1, 
IBA1, TMEM119, CD68, CSF1R, and TGFB1) were enriched in the high-risk group. In 
an immunotherapy of glioblastoma cohort, we confirmed the chemokine signature 
showed a good predictor for patients' response. Lastly, we predicted twelve potential 
agents for glioma patients with higher riskscore.
Conclusion: In all, our results highlighted a potential 4-chemokine signature for pre-
dicting prognosis in glioma and reflected the intricate immune landscape in glioma. 
It also threw light on integrating tailored risk stratification with precision therapy for 
glioblastoma.
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1  |  INTRODUC TION

Glioma is the primary human malignant brain tumor. Up to now, 
it remains incurable because of the striking genetic and cellular 
heterogeneity. According to the fifth edition of the WHO classi-
fication of tumors of the central nervous system (WHO CNS5),1 
the median survival time of glioblastoma (GBM, IDH-wildtype) 
failed to exceed 15 months.2,3 Recently, the advancing explo-
ration of molecular mechanism in GBM has paved the way for 
several emerging therapeutic approaches.4,5 For example, with 
the success of the programmed cell death protein 1 (PD-1) and 
programmed cell death 1 ligand 1 (PD-L1) blockade treatment in 
melanoma, renal-cell carcinoma and non-small-cell lung cancer,6–8 
immunotherapy represents a new revolutionary strategy in gli-
oma.9 To achieve the success of immunotherapy, the tumor mi-
croenvironment (TME) plays an indispensable role, where tumor 
cells and the host immune cell interact. Importantly, chemokines 
mediate and drive the recruitment of different immune cells in 
the TME.

Chemokines represents the largest subfamily of cytokines, in-
cluding four main classes: CC-, CXC-, C-, and CX3C-chemokines10 
and 32 members. Massive evidences have shown that chemokines 
participate in the fundamental physical and pathological processes, 
such as development, inflammation, infection, and tumorigene-
sis.11 They can not only induce the antitumor immune response 
by orchestrating T-cell infiltration to increase interferon-gamma 
(IFN-γ) expression, but also generate the pro-tumorigenic micro-
environment through the recruitment of regulatory T (Treg) cells or 
tumor-associated macrophages (TAMs).12,13 For example, the over-
expression of CXCL1 had been demonstrated as a poor prognostic 
indicator and induced radio-resistance via NF-κB signaling in glioma 
patients.14 Comprehensive analysis of chemokines has conducted 
in some solid cancers by leveraging various transcriptomic data-
bases,15,16 but it is rarely in gliomas.

Given some studies have characterized the expression profiles 
and functions of chemokines,17 it urgently needs more attention 
to identify suitable chemokines as therapeutic targets or prog-
nostic biomarkers in gliomas. To address above issues, we system-
atically investigated the chemokines family in gliomas leveraging 
an in-depth and systematic bioinformatics analysis. Due to the 
indispensable role of this family in controlling glioma TME, we 
constructed a 4-chemokine prognostic signature and explored the 
relationship between this gene signature and the immune-related 
landscape as well as the anti-PD-1 therapeutic responses. We be-
lieved that this robust prognostic signature would improve risk 
stratification and provide a more optimal and precisive treatment 
for glioma patients.

2  |  MATERIAL S AND METHODS

2.1  |  Samples and datasets

This study retrospectively enrolled RNA sequencing data and cor-
responding clinical information of 699 glioma patients from The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and 
325 glioma patients from Chinese Glioma Genome Atlas (CGGA 
https://www.cgga.org.cn). All data were normalized by log2 trans-
formed. Somatic mutation and copy number variation (CNV) profiles 
were obtained from TCGA (https://portal.gdc.cancer.gov/) and ana-
lyzed using R package “maftools” and GISTIC 2.0 with a threshold of 
FDR Q < 0.05. The involved clinical characteristics of patients were 
summarized in Table S1. The dataset of anti-PD-1 therapy in glioma 
were downloaded from the ODC Open Database License (ODbL) 
(http://opend​ataco​mmons.org).

2.2  |  Construction of a chemokine gene signature 
in glioma

First, preliminary screening was performed to include prognosis-
related genes in TCGA dataset via univariate Cox regression analysis. 
Next, the least absolute shrinkage and selection operator machine 
learning algorithm (LASSO) and the SVM-RFE method were combined 
to further determine the variables.18,19 Lastly, the remained genes were 
screened through multivariate Cox regression analysis. The riskscore 
for all patients was determined by taking the sum of regression coeffi-
cient for each gene multiplied with its corresponding expression value.

2.3  |  Development and 
evaluation of the nomogram based on the 
gene signature

To facilitate the prediction of 1-, 3-, and 5-year overall survival (OS) 
probability in glioma patients, a nomogram was developed using the 
“rms” R package. Calibration plots were used to validate the perfor-
mance of the nomogram using 500 bootstrap resamples.

2.4  |  Biological function and signal 
pathway analysis

The patients in two datasets were divided into high- and low-risk 
groups using the median riskscore as a cut-off. The positive corre-
lated genes with the riskscore were obtained by Pearson correlation 
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analysis (R > 0.6, p < 0.05) and the ClusterProfiler (R package) was im-
plemented to conduct the gene ontology (GO) analysis.20 Then, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and HALLMARK 
analysis (MSigDB database v7.2) were obtained with the gene set en-
richment analysis software (GSEA 4.1.0, http://softw​are.broad​insti​
tute.org/gsea/index.jsp).21 The pathways activity scores (N  =  11) 
were calculated using PROGENy.22

2.5  |  Comprehensive analysis of molecular and 
immune characteristics

The immune cell infiltration and inflammation activity analysis were 
obtained with single-sample gene set enrichment analysis (ssGSEA) 
method.23 The gene set list was from Gabriela and colleagues.24 
Also, the immune score was evaluated using the ESTIMATE R pack-
age, and the immune subtype was identified according to Thorsson 
and colleagues, including C1 (wound healing), C2 (IFN-γ dominant), 
C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically 
quiet), and C6 (TGF-β dominant).25

2.6  |  Immunohistochemistry assay

The formalin-fixed, paraffin-embedded glioma tissue was stained 
according to our previous procedure,26 which included 25 glioma 
samples. Written informed consent was obtained for all patients. 
Briefly, brain tumor sections were incubated with the PD-L1 
(1:100, ab213524, Abcam, USA), IBA1 (1:100, ab213524, Abcam, 
USA), TMEM119 (1:100, ab213524, Abcam, USA), CD68 (ZM-
0464, ZSGB-BIO, China), CSF1R (1:200, 25,949-1-AP, Proteintech, 
USA), and TGFB1 (1:300, 21,898-1-AP, Proteintech, USA) antibody 
overnight at room temperature, respectively. Then, the stained 
sections were scored by two independent pathologists. The stain-
ing intensity was 0–3 points: 0 (negative), 1 (weak), 2 (moderate), 
and 3 (strong). The extent of staining reflected the percentage of 
positive cells: 0 (<5%), 1 (6%–25%), 2 (26%–50%), 3 (51%–75%), 
and 4 (>75%). Staining index was defined as the product of stain-
ing intensity and staining extent. Also, PD-L1 protein expression 
in The Cancer Proteome Atlas (TCPA, http://tcpap​ortal.org) was 
analyzed.

2.7  |  The prognostic analysis and immunotherapy 
response prediction

To explore the relationship between the gene signature and anti-
PD-1 immunotherapy, we performed survival analyses in Raul's 
anti-PD-1 treatment dataset.27 Moreover, we performed the same 
analysis for tumor inflammation signature (TIS) and tumor immune 
dysfunction and exclusion (TIDE, http://tide.dfci.harva​rd.edu/) 
score with the timeROC package.28

2.8  |  Estimation of drug response in 
clinical samples

Drug sensitivity was obtained use the R package “pRRophetic.” 
The predictive model was trained on expression profiles and drug 
response data of solid cancer cell lines by default 10-fold cross-
validation. Both datasets provide the estimated concentration for 
50% maximal inhibitory concentration (IC50) values as a measure of 
drug sensitivity.

2.9  |  Quantitative reverse transcription-
polymerase chain reaction (qRT-PCR)

Total RNA of 28 independent glioma samples were extracted using 
RNeasy Mini Kit (Qiagen). Written informed consent was obtained 
for all patients. Then, the RNA intensity was assessed using 2100 
Bioanalyzer (Agilent Technologies). The expression levels of each 
gene were analyzed by ABI 7500 Real-time PCR System. The rela-
tive expression levels of target genes mRNA were obtained by com-
parative CT method.29 The primer sequences used in this study were 
listed in Table S2.

2.10  |  Statistical analysis

All statistical analyses were performed in R software (version 4.1.1; 
https://www.r-proje​ct.org/). The Kaplan–Meier method was used 
to assess the survival time and calculate the difference. Spearman 
correlation analysis was performed to access the existence of a 
correlation between variables. Wilcoxon test or Student's t-test 
was used to compare between two groups for continuous vari-
ables. Categorical variables were compared between groups using 
Chi-square or Fisher's exact tests. p < 0.05 is considered statisti-
cally significant.

3  |  RESULTS

3.1  |  Establishment of a chemokine-related 
prognostic gene signature

In this study, we enrolled 32 well-defined chemokine family 
genes, including 17 CC-chemokines, 12 CXC-chemokines, 2 
C-chemokines, and 1 CX3C-chemokines (Table S3). First, the 
univariate Cox regression was conducted to identify the 27 
prognostic-related chemokines in TCGA dataset (p < 0.05, Table 
S4). Next, we performed the LASSO algorithm to identify a set of 
20 chemokines (Figure 1A) and the SVM-RFE algorithm to select 
a set of 16 chemokines (Figure  1B). After intersecting by the 
LASSO and SVM-RFE algorithms, 10 chemokines were selected 
(Figure 1C). Subsequently, the multivariate Cox regression analysis 
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was employed to determine the final candidate genes (p < 0.05, 
Figure 1D). Lastly, four candidate genes and their corresponding 
cox regression coefficients were used to construct a prognostic 
index as the formula: Riskscore = 0.0803 × CCL2 + 0.1336 × CCL5 
+ 0.0736 × CCL18 + 0.1821 × CXCL16.

3.2  |  Clinic pathological features related to the 
gene signature in glioma

To investigate the clinical and pathological value of the gene 
signature, we examined the association between the riskscore and 
clinic pathological information, including WHO grade, age, gender, 
TCGA subtype, and some molecular status. As shown in Figure 2A, 
the patients were ordered by riskscore in both datasets. We found 
a positive correlation between riskscore and age at diagnosis (all 

p < 0.001), which indicated that younger patients with glioma had 
lower riskscore. Furthermore, glioma patients with higher riskscore 
were more likely belong to WHO Grade IV and mesenchymal 
subtype (all p < 0.001), suggesting that the 4-chemokines-based 
signature predict malignant progression. Compared with high-risk 
group, IDH mutation, 1p/19q codeletion were more occurred in 
the low-risk group (all p < 0.01). Additionally, the MGMT promoter 
methylation is prognostic and played a powerful predictor of 
temozolomide sensitivity in gliomas,2 we further reanalyze the 
relationship between riskscore and MGMT promoter methylation 
and found that the higher riskscore are enriched in the MGMT 
promoter un-methylated group in both datasets (Figure  2B,C). In 
the TCGA dataset, we found that ATRX mutation mainly exists in 
the low-risk group (p < 0.001), while TERT promoter mutation in the 
high-risk group (p  =  0.010). All above results demonstrated that 
the 4-chemokine-based signature is closely related to clinical and 

F I G U R E  1  Feature selection of a chemokine-based gene signature. (A) LASSO coefficient profiles of the remained 27 chemokines. (B) 
The accuracy of the estimate generation for the SVM-RFE algorithm. (C) The intersection feature selection between LASSO and SVM-RFE 
algorithms. (D) The hazard ratio and p-value of genes involved in multivariate Cox regression in the TCGA dataset
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pathological features. Then, we reconfirmed the genes expression 
in an independent 28 glioma samples by qRT-PCR, and the higher 
riskscore were founded in the WHO Grade IV (Figure 2D), IDH-wild-
type subgroup (Figure  2E) and 1p19q intact subgroup (Figure  2F), 
which are consistent with results in TCGA and CGGA datasets.

3.3  |  Prognostic evaluation of 4-chemokine 
gene signature

To further evaluate the relationship between the gene signature 
and patients' survival time, the four gene expression details and 

F I G U R E  2  Landscape of clinical and molecular characteristics associated with the gene signature in gliomas. (A) TCGA (top) and CGGA 
(bottom) were arranged in an increasing order of the 4-chemokine-based riskscore. The relationship between the riskscore and patients' 
clinic pathological characteristics was evaluated (A, Spearman correlation tests; B, One-way ANOVA test; C, Wilcoxon test). (B and C) The 
riskscore distribution between MGMT promoter methylated group and MGMT un-methylated group in both TCGA (B) and CGGA (C) dataset. 
(D–F) The riskscore distribution in the different subgroup of glioma in a 28 independent cohort (Wilcoxon test and One-way ANOVA test)
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the patients' survival status are ranked by riskscore values, and all 
patients were assigned to high-risk or low-risk groups based on the 
median cut-off point (−0.03) in TCGA dataset (Figure 3A). The patients 
in the low-risk group had a significantly better prognosis than that in 
the high-risk group (log-rank test, p < 0.0001) (Figure 3B). For GBM 
(WHO Grade IV), patients in the high-risk group are associated with 
significantly shorter survival time (log-rank test, p = 0.03, Figure 3C). 
According to the WHO CNS5, we found that the survival probability 
of the high-risk patients decreased significantly in the IDH wild-type 
subgroup (log-rank test, p = 0.0016, Figure 3D). When we further 
explored the prognostic role of the signature in the patients with 

IDH mutant, we found that there is no difference (Figure  3E,F), 
which confirmed the important role of IDH status in gliomas.30 The 
above-mentioned results are well validated in independent CGGA 
dataset (Figure S1A–F). Notably, the riskscore was confirmed as an 
independent prognostic factor for overall survival of glioma patients 
in both datasets  (Tables S5 and S6). To improve the feasibility of 
clinical application in the individual glioma patients, we generated 
a nomogram that integrates independent prognostic factors to 
predict the 1-, 3-, and 5-year overall survival rates, and the red arrow 
shows an example (Figure 3G and Figure S1G). The calibration plots 
are extremely close to an ideal model (Figure 3H and Figure S1H), 

F I G U R E  3  Kaplan–Meier survival analysis stratified by 4-chemokine gene signature and the nomogram for survival prediction in TCGA 
dataset. (A) The riskscore of 4-chemokine-based signature distribution and survival status distribution for glioma patients. (B–F) Kaplan–
Meier survival curves were plotted to estimate the overall survival probabilities in all grade's gliomas (B), GBM (C), IDH wildtype (D), 
IDHmut/1p19q intact (E) and IDHmut/1p19q codel (F). (G) The nomogram prediction of glioma patients for 1-, 3-, and 5-year OS combining 
the signatures with clinic pathological features. (H) Calibration curves used to compare the predicted nomogram, the dashed diagonal line 
represents the ideal nomogram. (I) qRT-PCR analysis of the four chemokine genes (CCL2, CCL5, CCL18, and CXCL16) expression between 
high- and low-risk group in an independent validation cohort, 18S was used as an internal reference. (J) Kaplan–Meier survival curves were 
plotted to estimate the overall survival probabilities in an independent validation gliomas group

F I G U R E  4  Distinct genomic alterations between high- and low-risk group. (A) Differential somatic mutations were detected between 
high- and low-risk group. (B) Top 20 significantly differential mutational genes (Fisher's exact test). (C) TMB between high- and low-risk 
group (Wilcoxon test). (D and E) Distinct CNA profiles between gliomas in high- and low-risk groups
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indicating the nomogram possessed better predictive power and 
facilitate the clinical decision-making. Importantly, we again verified 
the expression of four chemokine genes by qRT-PCR method in an 
independent cohort including 28 glioma samples (Figure 3I), notably, 
the riskscore also predicted the prognosis of glioma patients well 
(Figure 3J).

3.4  |  Comprehensive analyses of genomic 
alterations

To unveil the association between genomic features and the gene 
signature, TCGA samples with available mutation and copy number 
variation (CNA) information were collected. According to strati-
fied group above mentioned, the top frequent mutations contain 
IDH1, TP53, ATRX, CIC, TTN, MUC16, NOTCH1, EGFR, NF1, and 
PIK3CA. While 82% of cases in low-risk group carried IDH1 muta-
tion (Figure 4A), which represented an earlier driven mutation in the 
glioma and indicated a better prognostic outcome.30 20% patients 
carried the PTEN mutation in the high-risk group (Figure 4A), Zhao 
et al had demonstrated that GBM with PTEN mutation induce more 
immunosuppressive TME and is resistant to anti-PD-1 therapy.27 
Moreover, the EGFR and MUC16 mutations were also significantly 
enriched in cases within high-risk group, while mutations in CIC, 
NOTCH1, ATRX, and CDH12 occurred more frequently in the low-
risk group (Figure  4B), these characteristics are consistent with 
the update WHO CNS5 classification of glioma. We also observed 
that significantly different mutation frequencies in SLK, OTOP1, 
MYO1F, MYH3, FANCM, CSF2RA, ATP7A, and ANK3, while further 
studies were needed to explore their roles in glioma. Additionally, 
we confirmed that there was more tumor mutation burden (TMB) 
accumulated in the high-risk group (p < 0.0001, Figure  4C), which 
implied the more tumor heterogeneity and chemotherapy resist-
ance.31 Subsequently, CNA data were employed to explore distinct 
chromosomal alteration. Notably, Chr 7 amplification paired with 
Chr 10 loss, a representative characteristic in GBM,32 were also en-
riched in the high-risk group (Figure 4D). However, the incidence of 
the 1p/19q codeletion, which is a genomic hallmark in oligodendro-
glioma,33 was higher in the low-risk group (Figure 4E). These results 
also are verified in our independent cohort in vitro (Figure 2D).

3.5  |  Biological processes and signal 
pathways analysis

To explore the biological functions and pathways associated with 
4-chemokine-based signature, the gene ontology (GO), GSEA, and 
PROGENy pathway analysis were performed. First, we carried out 
principal component analysis to explore the transcriptomic features 
associated with the gene signature, which showed a strong associa-
tion between whole transcriptome expression profile and riskscore 
(Figure  5A and Figure S2A), implying distinct biological character-
istics between two groups. Afterward, we screened the genes that 

positively correlated with riskscore (Pearson, R > 0.6, p < 0.05), 900 
and 631 genes were separately identified in TCGA and CGGA data-
sets, respectively. Then, GO analysis showed that the positively 
associated genes were mainly immune-relevant, such as T-cell acti-
vation, neutrophil degranulation, neutrophil activation, and regula-
tion of immune effector process in both databases (Figure 5B and 
Figure S2B). Additionally, the hallmark analysis also showed that the 
gene signature was not only closely enriched the interferon γ re-
sponse, but also associated with epithelial-mesenchymal transition 
(EMT), apoptosis, hypoxia and angiogenesis (Figure  5C and Figure 
S2C), suggesting that our gene signature could also predict malignant 
process in glioma. Lastly, NF-κB, MAPK, TNFα, and WNT signaling 
pathway, especially for JAK–STAT, TGFβ pathways were obviously 
enriched in the high-risk group (Figure 5D and Figure S2D).

3.6  |  Immune cell infiltration and inflammatory 
profiles related to the gene signature

Inspiring by the tight relationship between the 4-chemokine 
signature and immune-related biological processes and pathways, 
we elaborately investigated both innate immune cells and adaptive 
immune cells infiltration.24 Comparing with the low-risk group, 
the high-risk patients induced a higher abundance of DCs, Tregs, 
macrophages, neutrophils, and microglia as well as lower abundance 
of NK CD56 bright cells (Figure 6A and Figure S3A), which conferred 
suppressive TME.34 Furthermore, patients in the high-risk group had 
an eminent increment of expression level related to MHC II, B-cell 
costimulation, cytotoxic T cells, and MHC I inflammation-related 
genes (Figure  6B and Figure S3B). These higher adaptive immune 
gene markers represent a fundamental feature of the host defense 
against tumor development.24 The paradoxical phenomenon in 
the TME makes us speculated that the high-risk patients retain 
their antitumor immunity potentiality, which might be blocked 
by the suppressive TME. Subsequently, we further evaluated the 
representative glioma-associated microglia/macrophage (GAM)-
related genes expression level between high- and low-risk group,35 
higher expression level of IBA1, TMEM119, CD68, CSF1R, and TGFB1 
was found in the high-risk group (Figure 6C and Figure S3C). Our 
in vitro glioma IHC analysis also confirmed the riskscore positively 
correlated with IBA1, TMEM119, CD68, CSF1R, and TGFB1 protein 
expression (Figure 6D,E and Figure S3D–F). Then, we compare our 
signature with other immune subtypes derived from pan-cancer,25 
the high-risk group contains C2 (IFN-γ dominant), C3 (inflammatory), 
C4 (lymphocyte depleted), and C5 (immunologically quiet) immune 
subtypes, but nearly all cases in the low-risk group were assigned to 
C5 subtype, which is mainly characterized with less TAMs (Figure 6F 
and Figure S3G). Lastly, we analyzed the activated inflammatory 
activity profile. Surprisingly, the riskscore was positively associated 
with HCK, LCK, STAT1, interferon and MHC II profile, but was 
negatively associated with IgG, suggesting that high-risk patients 
presented a more activated inflammatory level (Figure 6G and Figure 
S3H). These findings confirmed the important immune function 
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related to the gene signature and the high-risk patients retained a 
more activated inflammatory state but more suppressive TME.

3.7  |  The immunotherapy potentiality with the 
4-chemokine gene signature

Recently, immunotherapy is emerging to revolute the classical 
treatment.36 To assess the potential role of the riskscore in clinical 
immunotherapy for glioma, we further assessed the glioma TME 
characteristics via ESTIMATE algorithm.37 The results showed that 
the higher estimate score was found in high-risk group (Figure 7A), 
and the immune and stromal scores were also higher in high-risk 
group (Figure  7B,C), while the low-risk group possessed higher 
tumor purity (Figure  7D), which predicts a better prognosis.34 
Next, to further elucidate the underlying immunotherapeutic 

potential, the expression of different immune checkpoint markers 
was compared.38 As expected, excluding Adenosine A2a Receptor 
(A2AR), high-risk group had a significantly higher immune 
checkpoint genes expression level than low-risk group (Figure 7E), 
which represented a higher immune evasion. Meanwhile, the 
riskscore showed a positive correlation with PD-L1 protein 
expression in TCPA database (Figure  7F, R  =  0.3, p  =  1.9e-11). 
Also, our own glioma tissue IHC analysis confirmed the positive 
correlation (Figure 7G, R = 0.66, p = 0.01, n = 24). Finally, in GBM 
patients receiving anti-PD-1 therapy,27 the AUCs of our riskscore 
in predicting overall survival from anti-PD-1 therapy was better 
(Figure  7H) compared to the T-cell-inflamed signature (TIS, 
Figure 7I)28 and the TIDE score (Figure 7J) at 6-, 12-, and 18-month 
follow-up point. Collectively, these results indicated that the 
riskscore of our 4-chemokine signature showed a good predictor 
for patients' response to anti-PD-1 therapy.

F I G U R E  5  Biological processes and signal pathways associated with the 4-chemokine signature in TCGA dataset. (A) Correlation between 
chemokines-based prognostic signature and transcriptomic expression profiles. (B) Biological processes enrichment of positively associated 
genes in TCGA dataset. (C) Enriched gene sets in HALLMARK collection in TCGA dataset. (D) Heatmap of signaling pathway activity scores 
by PROGENy (Wilcoxon test)
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F I G U R E  6  Immune cell infiltration and inflammatory profiles of the gene signature in TCGA dataset. (A) Heatmap of adaptive and innate 
immune cell types in high- and low-risk group. (B) Heatmap of the MHC-, costimulation-, and inflammatory-related genes expression in 
glioma patients from high- and low-risk group. (C) The representative GAM related gene expression level between high- and low-risk group 
in the TCGA dataset. (D) The representative IHC images of IBA1 and the correlation plot between riskscore and IBA1 protein expression. 
(E) The representative IHC images of TMEM119 and the correlation plot between riskscore and TMEM119 protein expression. (F) Sankey 
plot shows the relationship between glioma patients stratified by riskscore and 6 immune subtypes defiend by Thorsson et al. (G) The 
relationship between riskscore and inflammatory activity in glioma. (Wilcoxon test)
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3.8  |  Identification of potential therapeutic agents 
for high-risk group patients

Given that chemotherapy remain a common adjunctive approach 
in clinic, we explored candidate agents with higher drug sensitivity 
in high-risk patients. Through training a predictive model with the 
cell line data derived from the Genomics of Drug Sensitivity in 
Cancer (GDSC), the R package “pRRophetic” was used to estimate 
the chemotherapeutic sensitivity in TCGA and CGGA datasets. First, 
compounds with a negative correlation between the estimated IC50 
value and the riskscore were selected (Spearman, R < −0.80, p < 0.05). 
After intersecting results in TCGA and CGGA datasets, twelve 
compounds were obtained, including Roscovitine, Bryostatin.1, 
CGP.60474, BMS.536924, PHA.665752, RDEA119, PD.0325901, 
Rapamycin, Dasatinib, XMD8.85, CGP.082996, and JW.7.52.1 
(Figure  8A,C). Further analyses showed that all these compounds 
had lower estimated IC50 values in high-risk group (Figure  8B,D). 

It indicated that these agents were promising therapeutic drugs for 
high-risk patients with glioma.

4  |  DISCUSSION

Chemokines regulate cancer-related inflammation, tumor 
microenvironment, tumor growth, and metastasis.39 Recently, 
chemokine-based risk signatures have showed a good prediction 
for clinical outcome and immunotherapy response in lung 
adenocarcinoma and pancreatic adenocarcinoma.40,41 Additionally, 
a dysregulated chemokine network is one of the characteristics of 
glioma.39 Thus, we performed the comprehensive analysis of the 
chemokine genes in glioma. The constructed 4-chemokine-based 
signature was confirmed to be associated with dismal prognosis 
and was an independent risk factor. Meanwhile, the immune 
landscape and inflammatory profile were explored, patients in the 

F I G U R E  7  Distribution of immune-response markers and the prognostic value of riskscore in patients with anti-PD-1 therapy. (A–D) 
Distribution of estimate score, stroma score, immune score and tumor purity in the TCGA dataset. (E) Distribution of different immune 
checkpoint mRNA expression in high- and low-risk groups. (F) The correlation of riskscore and PD-L1 protein expression in TCPA. (G) The 
distribution of PD-L1 protein expression in high- and low-risk groups by IHC staining. Scale bar, 50 μm. (H–J) ROC analysis of riskscore (H), 
TIS (I), and TIDE (J) score on overall survival at 6-, 12-, and 18-month follow-up in GBM patients receiving anti-PD-1 therapy
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high-risk group had significantly higher T-cell dysfunction markers 
and PD-L1 expression level, indicating the obvious inhibitory TME 
characteristic. Lastly, 12 compounds were identified as potential 
therapeutic agents for high-risk glioma patients.

In the previous study, it had been demonstrated that CXCL1 
played a poor prognostic indicator and induced radio-resistance 
via NF-κB signaling in glioma patients.14 Also, Feng et al reported 
that beta-2 microglobulin (B2M) was highly correlated with two 
chemokines (CXCL10 and CCL5) and mediates GAM infiltration via 
these two chemokines in glioma.42 In the other chemokine genes, 
CCL2 secreted by glioma cells promotes tumor growth and migra-
tion, its expression is correlated with GAMs accumulation in GBM.43 
Additionally, CCL2 blockade reduced GAMs infiltration and pro-
longed the survival of C57BL/6 mice bearing GL261 glioma.44 Then, 
CCL5/CCR5 axis induces proliferation and invasion in GBM via 
calcium-dependent matrix metalloproteinase 2,45 and regulates che-
moresistance of temozolomide in GBM.46 And, CCL18 enhances the 
invasion and proliferation of U251 glioma cells.47 Moreover, CXCL16 

also promotes GBM growth and migration, also drives GAMs polar-
ization.48 All four chemokines are included in our constructed gene 
signature, further suggesting that the gene signature could play an 
indispensable role in modulating glioma TME and predict poorer 
prognosis. The higher riskscore are positively related to malignant 
clinical pathological characteristics, including high WHO grade, mes-
enchymal subtype, IDH wildtype, and MGMT promoter unmethyl-
ated. Also, the patients exhibit a shorter survival time in the high-risk 
group, especially for patients with GBM with IDH wild-type sub-
group. Additionally, the gene signature plays an independent prog-
nostic factor. A nomogram that integrates the clinicopathological 
features and riskscore showed a good accuracy. Collectively, these 
results indicated that the 4-chemokine signature has potential clini-
cal application in the future.

Second, the high-risk patients showed an enrichment of immune-
related processes and pathways, which may be the main reason for 
the difference in survival time of glioma patients. Then, our results 
confirmed that patients in the high-risk group not only presented 

F I G U R E  8  Identification of candidate agents with higher drug sensitivity in high-risk group patients. (A and C) The dot chart showed the 
correlation coefficient between riskscore and the estimate half maximal inhibitory concentration (IC50) of 12 candidate drugs in TCGA (A) 
and CGGA (C) datasets. (B and D) The estimated IC50 of 12 candidate drugs were compared between high- and low-risk groups in TCGA (B) 
and CGGA (D) datasets (Wilcoxon test)
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an inflammatory activation state, but also enriched a higher abun-
dance of GAMs and more adaptive immune gene markers. These 
classical immune regulation pathways imply the complexity of the 
glioma TME ecosystem Notably, low-risk patients featured lower in-
filtration of GAMs and mainly in an immunologically quiet subtype, 
indicating that these patients may show a better outcome.25 In the 
future, further biological experimental verification is needed to clar-
ify these bioinformatics analyses.

Third, the interesting finding is the application of 4-chemokine 
signature in therapeutic prediction. We found that high-risk patients 
presented higher level of TMB and PD-L1 expression, as well as the 
activated MAPK pathway. Arrieta et al found that MAPK/ERK path-
way activation in recurrent GBM patients is predictive of response 
to PD-1 blockade.49 The immune infiltration analysis showed that 
more innate and adaptive immune factors occurred in the high-risk 
group patients, which represents a fundamental potentiality of the 
host defense against tumor and these patients could benefit from 
immunotherapy. However, the higher inhibitory immune cell infil-
tration indicated a state of immunosuppression in the high-risk pa-
tients. These paradoxical features indicated that once reversing the 
inhibitory TME, the per se antitumor ability would exert more effec-
tively. Thus, we speculated that the high-risk patients would induce 
effectively antitumor immune response with immunotherapy, which 
were verified in the survival analysis of anti-PD-1 therapy in GBM. 
As shown in Figure 7H,I, our gene signature exhibited a good predic-
tor for patients' response in different follow-up point. Collectively, 
these results suggest that the high-risk patients may be response to 
ICI therapy.

Lastly, 12 compounds have been obtained as promising ther-
apeutic drugs for high-risk patients with glioma. Through com-
prehensive literature mining, we found that these drugs are 
inhibitors for CDK, PKC, c-MET, MEK, ERK, and MTOR, which is 
consistent with the high enrichment of MAPK, WNT, and TNFα 
signaling pathways in the high-risk patients. The experimental 
and clinical evidence of these candidate compounds were listed 
in Table S7. Among them, Dasatinib, Rapamycin, and Mirdametinib 
(PD.0325901) have been explored in silico or in vitro assay, and 
some have entered clinical trial phase. However, further experi-
ments are needed to verify.
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