
Submitted 22 February 2018
Accepted 7 May 2018
Published 29 May 2018

Corresponding author
Majid Masso, mmasso@gmu.edu

Academic editor
Xianjun Dong

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj.4844

Copyright
2018 Masso et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modeling transcriptional activation
changes to Gal4 variants via structure-
based computational mutagenesis
Majid Masso, Nitin Rao and Purnima Pyarasani
Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University, Manassas,
VA, United States of America

ABSTRACT
As a DNA binding transcriptional activator, Gal4 promotes the expression of genes
responsible for galactose metabolism. The Gal4 protein from Saccharomyces cerevisiae
(baker’s yeast) has become amodel for studying eukaryotic transcriptional activation in
general because its regulatory properties mirror those of several eukaryotic organisms,
including mammals. Given the availability of a crystallographic structure for Gal4,
here we implement an in silico mutagenesis technique that makes use of a four-body
knowledge-based energy function, in order to empirically quantify the structural
impacts associated with single residue substitutions on the Gal4 protein. These results
were used to examine the structure-function relationship in Gal4 based on a recently
published experimental mutagenesis study, whereby functional changes to a uniformly
distributed set of 1,068 single residue Gal4 variants were obtained by measuring
their transcriptional activation levels relative to wild-type. A significant correlation
was observed between computed (scalar) structural effect data and measured activity
values for this collection of single residue Gal4 variants. Additionally, attribute
vectors quantifying position-specific environmental impacts were generated for each
of the Gal4 variants via computational mutagenesis, and we implemented supervised
classification and regression statistical machine learning algorithms to train predictive
models of variant Gal4 activity based on these structural changes. All models performed
well under cross-validation testing, with balanced accuracy reaching 91% among the
classification models, and with the actual and predicted activity values displaying
a correlation as high as r = 0.80 for the regression models. Reliable predictions of
transcriptional activation levels for Gal4 variants that have yet to be studied can be
instantly generated by submitting their respective structure-based feature vectors to the
trained models for testing. Such a computational pre-screening of Gal4 variants may
potentially reduce costs associated with running large-scale mutagenesis experiments.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Knowledge-based potential, Variant function prediction, Computational mutagenesis,
Structure–function relationships, Machine learning, Gal4

INTRODUCTION
Galactose utilization by Saccharomyces cerevisiae (baker’s yeast) requires the orchestrated
collaboration of GAL gene products for its transport into the cell and subsequent
metabolism via glycolysis (Johnston, 1987). The Gal regulon consists of structural (GAL1,
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GAL2,GAL7, andGAL10) and regulatory (GAL3,GAL4, andGAL80) genes, with the GAL4
protein serving as a transcriptional activator for the structural genes which binds upstream
activating sequences (UASGAL) located in their promoters (Lohr, Venkov & Zlatanova, 1995;
Traven, Jelicic & Sopta, 2006). Functional Gal4 binds DNA as a homodimer, each protein
chain containing 881 amino acids with an N-terminal Zn2-Cys6 binuclear cluster DNA-
binding domain (residues 8–40), an extended loop linker (residues 41–49), a dimerization
domain (residues 50–96), and two acidic C-terminal activation domains (residues 148–196
and 768–881) (Hong et al., 2008). A complete X-ray crystallographic structure of the Gal4
dimer (residues 8–96) bound to DNA (Fig. 1) was determined at a resolution of 2.4 Å (Hong
et al., 2008), and atomic coordinates were deposited in the Protein Data Bank (PDB) under
accession code 3coq (Berman et al., 2000). With growth on glucose and in the absence
of galactose, Gal4 is inactivated by dimers of the repressor Gal80 protein, which bind
the dimeric Gal4 activation domains (Egriboz et al., 2013). The availability of galactose
converts the Gal3 protein to a transducer form which competitively binds Gal80 (Egriboz
et al., 2013; Lavy et al., 2012), leading to a significant rise in Gal3–Gal80 interactions
along with a concomitant decline in Gal80 self-associations, as well as a rapid induction
of transcriptional activation by Gal4 via recruitment of coactivators and transcription
machinery to promoter regions through its activation domain upon Gal80 dissociation
(Egriboz et al., 2013). Extensive studies have revealed this mechanism of transcriptional
activation by Gal4 to be conserved among eukaryotes; in particular, Gal4 was shown to
activate transcription when expressed in mammalian cells (Traven, Jelicic & Sopta, 2006).

Owing to the modular nature of the DNA-binding and activation domains of Gal4,
a recent study used the protein to demonstrate a proof-of-concept for an experimental
technique named programmed allelic series (PALS), a site-directed mutagenesis approach
using microarray-programmed oligonucleotides (Kitzman et al., 2015). A PALS library was
constructed for the Gal4 DNA-binding domain (residues 2–65) which targeted each codon
for replacement. The library (fused with a transcriptional activation domain) was then
introduced into a two-hybrid reporter strain in which Gal4 was deleted and the HIS3 gene
was under the control of the Gal1 promoter; hence growth on a medium lacking histidine
was dependent upon the ability of the introduced Gal4 mutant to bind to and activateHIS3
expression.

Selection for Gal4 function was reported for increasing time points and stringency
conditions as a log2(effect size) for each single residue Gal4 variant. The aim of this study is
to model the functional effects of Gal4 variants under normal biological conditions, which
implies moderate growth time and minimally required selection. Hence, the functional
data used for analysis in the present work and obtained from the supplementary material
in that study correspond to growth over 40 h on synthetic complete (SC) media lacking
urea and histidine (data set named SEL_A_40 h, media type SC –ura –his) (Kitzman
et al., 2015). The data suggest that Gal4 variants can be categorized by their log2(effect
size) values as having activity levels that are superior to wild-type (>0.0), equivalent to
wild-type ([−2.0,0.0]), or inferior to wild-type (<−2.0). Since the Gal4 structure with
PDB accession code 3coq is missing residues 1–7 (Hong et al., 2008), we were unable to
utilize the available Gal4 functional data for single residue substitutions at positions 2–7.
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Figure 1 Delaunay tessellation of the Gal4 protein structure. (A) Ribbon diagram of the Gal4 homod-
imer bound to DNA based on the PDB accession file 3coq, and (B) an isolated ribbon diagram of one
Gal4 monomer (chain A) from the same structure. (C) Delaunay tessellation of monomeric Gal4 coarse-
grained at the amino acid level. The residues are represented as points by using the coordinates of their
C-alpha atoms, and these points serve as the vertices for the tetrahedra generated by the tessellation. The
tetrahedral edges are drawn in black, and the triangular faces of the tetrahedra are transparent to enable
visualization. A C-alpha trace of the protein chain is outlined in red.

Full-size DOI: 10.7717/peerj.4844/fig-1

Additionally, functional data were not determined for a few Gal4 variants at scattered
positions with the PALS approach, leaving a total of 1,084 Gal4 variants with functional
data for analysis in this study.

Computational methods for determining the functional consequences to proteins
upon single residue replacements incorporate sequence, structure, and/or evolutionary
information (Bromberg & Rost, 2007; Sim et al., 2012). The decision as to which protein
features to include depends on both the methodology being developed as well as the
particular type of functional effect under consideration (e.g., changes to stability, activity,
association with a disease state, resistance to a molecular inhibitor, etc.). Furthermore, a
model developed for predicting and understanding one type of functional effect generally
cannot be used for inferring other consequences to the protein uponmutation.With respect
to protein structure, the analysis of known structures in the PDB has led to the development
of knowledge-based statistical potentials, many of which are based on pairwise distances,
and they have been used successfully for protein structure prediction and assessment
(Hamelryck et al., 2010). Only one recently published study to date has reported an in silico
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method to study the functional consequences to Gal4 variants (Pires et al., 2016). Their
computational mutagenesis approach used a structure-based statistical potential generated
from knowledge of tolerated residue replacements within families of homologous proteins
of known structure (Topham, Srinivasan & Blundell, 1997), and the features they generated
for the Gal4 variants were combined with machine learning models. This model was
previously developed for studying stability changes, and here it led to marginal Gal4
variant predictions; however, predictions improved once this model was combined with
four additional models (each also poorly performing on Gal4 variants individually)
designed to capture the effects on diverse protein characteristics upon mutation, including
changes to protein-protein and protein-nucleic acid interactions. We previously developed
a computational technique for quantifying structural changes to proteins upon single
residue mutations using a four-body statistical potential, and by combining these data
with machine learning algorithms, we developed models for accurately predicting protein
stability and activity changes uponmutation (Masso & Vaisman II, 2008;Masso & Vaisman
II, 2007). Our method complements that of Pires et al. while relying on a singular approach
for generating structure-based Gal4 variant feature vector data for training predictive
machine learning models, without the need to combine multiple methods each designed
for predicting the effects on a particular trait.

Here we perform a systematic analysis of the structure-function relationship in Gal4 by
comparing the experimentally quantified functional effects of single residue Gal4 variants
to computationally determined structural impacts due to the mutations. To implement
our in silico mutagenesis technique, a residue-based coarse-grained representation of Gal4
was generated using the C-alpha coordinates from the native Gal4 X-ray crystallographic
structure. The three-dimensional (3D) space occupied by this set of C-alpha points was
packed with hundreds of space-filling, non-overlapping tetrahedral tiles using Delaunay
tessellation (Fig. 1), a well-established computational geometry technique (De Berg et al.,
2008). Every tetrahedron objectively identifies at its four vertices a quadruplet of nearest
neighbor Gal4 residues in the structure, and given the tetrahedral packing arrangement in
a tessellation, each C-alpha point is generally shared as a vertex among several tetrahedra.
A score was assigned to each tetrahedron, based on the quadruplet of residues represented
by its C-alpha vertices, by using a previously developed four-body knowledge-based
energy function (Masso & Vaisman II, 2008; Masso & Vaisman II, 2014) that consists of
tabulated interaction energy scores for all types of residue quadruplets. As detailed in the
Methods, these tetrahedral scores are used to calculate both the Gal4 potential energy and
an 89-dimensional (89D) profile vector of residue environment scores for all positions in
the Gal4 structure with PDB accession code 3coqA. Similar calculations may be obtained
for any Gal4 variant by first altering the residue type associated with the corresponding
vertex in the structure tessellation. The difference between the mutant and native Gal4
energies, referred to as the residual score in this work, empirically quantifies the global
change to sequence-structure compatibility upon mutation. Additionally, the difference
between the mutant and native Gal4 profile vectors of local residue environment scores
is referred to here as a residual profile, whose components quantify the relative structural
impacts locally at each of the 89 residue positions in Gal4. The Gal4 variant residual score
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data revealed a significant structure-function correlation, and components of the residual
profiles for the variants were used to train machine learning classification and regression
models capable of accurately predicting Gal4 variant functional effects.

We previously achieved comparable results with activity data for 372 single residue
substitutions of the enzyme thymidylate synthase from Escherichia coli (Masso, 2015), which
is similarly functional as a homodimer. In that study, the structural data were generated by
tessellating a single chain of the protein, and the same approach is initially implemented in
the work here with Gal4 (Fig. 1). However, as we report in this work, a reexamination that
employs tessellation of the complete homodimeric structure of Gal4 takes into account
interactions between residues from both chains and yields additional improvements,
particularly with respect to predictions for mutations at dimer interface residue positions.
With both thymidylate synthase and Gal4, the variants were each represented using a 27D
vector of attributes that included only seven components from their residual profiles, those
corresponding to the mutated position and its six nearest neighbors. The remaining 20
features for each variant highlighted additional structure (and sequence) characteristics
unique to the local 3D environment of each mutated position. These 27 components,
which are outlined below in the Methods, are universal because they describe an identical
set of characteristics for all single residue variants regardless of the protein. Variant residual
profiles, on the other hand, are protein-specific with regard to both number of components
(i.e., length of the sequence in the 3D structure) and characteristics represented by those
attributes (i.e., environmental impacts or perturbations at all positions in a particular
protein upon mutation). For comparison, we conclude by using the 89D residual profiles
of the Gal4 variants to train predictive models, which perform as well as those trained with
the 27D attribute vectors.

METHODS
Four-body potential and computational mutagenesis
Substantial summaries of these methodologies are discussed below, with finer details
available in a previously published manuscript (Masso, 2015). In order to generate robust
frequency data for developing the four-body potential, we selected from the PDB a large
training set consisting of 1,417 diverse (<30% sequence identity), high resolution (<2.2 Å)
X-ray protein structures (Supplemental Information). The structures were coarse-grained
at the residue level using the amino acid C-alpha atomic coordinates, which served as
vertices for generating a tiling of each protein via the Qhull software implementation of
Delaunay tessellation (Barber, Dobkin & Huhdanpaa, 1996), yielding in each case a 3D
convex hull containing hundreds of space-filling, non-overlapping, irregular tetrahedra.
Each tetrahedron objectively identifies at its vertices a quadruplet of nearest-neighbor
interacting residues via their C-alpha atoms by virtue of this computational geometry
technique; as further assurance, all edges longer than 12 Å were immediately removed from
each protein tessellation prior to further analysis.

Working with a standard protein alphabet, the number of 4-letter subsets that can be
enumerated reaches 204 = 160,000 by allowing repetitions within a subset (e.g., AACC)
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as well as permutations of letters (e.g., AACC, ACAC, CACA, and CCAA are all distinct
orderings). In any protein structure tessellation, the four vertices of a tetrahedron may
indeed include repeated occurrences of particular residue types; however, since the four
vertices are not ordered, permutations of residue quadruplets are excluded, and a single
representation (e.g., the four letters in ascending alphabetical order) is enumerated. Thus,
in this case the four vertices of a tetrahedron in any protein structure tessellation may
represent any one of 8855 distinct types of residue quadruplets. For each such residue
quadruplet (i, j, k, l), a relative frequency of occurrence fijkl was calculated based on the
number of times it was observed at the four vertices of a tetrahedron among the 1,417
tessellations. A rate pijkl expected by chance for each residue quadruplet was also computed
using a multinomial reference distribution, given by

pijkl =
4!∏20

n=1(tn!)

20∏
n=1

atnn , where
20∑
n=1

an= 1 and
20∑
n=1

tn= 4.

In the formula above, an represents the proportion of all residues found in the training set
of 1,417 protein structures that are of type n, and tn is the number of times that residue
type n is repeated in the quadruplet (i, j, k, l). Applying the inverted Boltzmann principle
to the data (Sippl, 1993; Sippl, 1995), an energy of interaction score sijkl =−log(fijkl/pijkl)
was computed for each residue quadruplet type, and the collection of 8855 scores defines
the four-body potential (Supplemental Information).

The total potential of any proteinwith known structure, includingGal4, can be computed
using the four-body potential as follows: first, tessellate the C-alpha coordinates of the
structure and remove edges longer than 12 Å (Fig. 2A); next, assign a score to each
tetrahedron in the tessellation according to the interaction energy score of the residue
quadruplet at its four vertices as tabulated in the four-body potential; and finally, add up
the scores of all the tetrahedra in the tessellation. Each C-alpha coordinate in a tessellation
is typically shared as a vertex by a number of tetrahedra in its immediate surroundings,
and a residue environment score (RES) can be computed for each residue position in the
protein by adding up the scores of all tetrahedra that share its C-alpha coordinate as a
vertex; furthermore, a vector of RES scores for all the residue positions in a protein forms
a 3D-1D potential profile (Bowie, Luthy & Eisenberg, 1991).

To analyze single residue substitutions in a protein such as Gal4, we began with the
same tessellation as that of the native protein structure and proceeded along similar lines
as above, by first replacing the residue associated with the C-alpha coordinate for the
position of interest, hence altering the scores of all tetrahedra that share the C-alpha
point as a vertex (Fig. 2B). For the mutant protein, RES values were recomputed at all
positions in the protein chain, leading to a new 3D-1D potential profile; moreover, the
difference between these profiles for the mutant and native proteins is a vector referred
to as a residual profile for the mutant (Fig. 2C). The scalar components of the residual
profile are termed environmental perturbation (EP) scores, calculated for each position as
the difference between RES values in the mutant and native proteins. For single chain
protein structure tessellations in particular, the nonzero EP score at the mutated position
in a residual profile is identical to the global residual score defined in the Introduction
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Figure 2 Visualization of the in silicomutagenesis methodology. (A) Delaunay tessellation of
monomeric Gal4 from Fig. 1C, modified by the removal of tetrahedral edges longer than 12 Å. (B)
Twenty-four tetrahedra from the modified tessellation that all share as a vertex the C-alpha coordinate
of residue C14, which is enlarged relative to the others. Collectively, there are 14 additional C-alpha
vertices that form these tetrahedra, and they represent Gal4 residues forming the tessellation-based local
structural neighborhood of C14. (C) Residual profile for the Gal4 variant C14E. The 15 residue positions
with nonzero EP scores correspond precisely to the mutated position 14 and its 14 neighbors, and their
C-alphas form the 15 total vertices of the tetrahedra shown in (B). Attributes related to mutated position
14 and only its six closest neighbors, as determined by the lengths of tetrahedral edges in (B), are included
among the 27 input attributes for the C14E Gal4 variant feature vector.

Full-size DOI: 10.7717/peerj.4844/fig-2

(Masso & Vaisman II, 2007). The only other nonzero EP scores that appear in a residual
profile vector in the case of a single chain protein occur at all positions with which the
mutated position shares a tessellation edge, quantifying all local effects of the mutation
(Fig. 2). For the general case of multimeric protein structure tessellations, the residual score
of a mutant is not equivalent to the EP score at any position andmust be obtained by taking
the difference in total potentials between the mutant and native protein; in a homodimer
such as Gal4, for example, a mutation would simultaneously alter the same residue position
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in both chains. Lastly, for each position in Gal4 a comprehensive mutational profile (CMP)
score was computed as an average of the residual scores for all 19 residue substitutions at
that position, with CMP collectively referring to the vector of CMP scores for all positions.

Gal4 variant feature vectors, machine learning, and model
performance
As previously reported in greater detail (Masso, 2015; Masso & Vaisman II, 2008; Masso &
Vaisman II, 2014), the tessellation-based computational mutagenesis approach yields data
that allow every single residue protein variant to be uniquely characterized as a feature
vector containing 27 input attributes. The method focuses on the mutated residue position
and its six closest neighbors in the structure, identified by the lengths of edges between their
respective C-alphas in the protein tessellation. We used this technique as a way to represent
the Gal4 variants. The use of six nearest neighbors strikes a balance between competing
interests: as the required number of neighbors for the residue positions increases, their
environments are more accurately modeled; however, the number of positions that are
simultaneously excluded for having fewer than the minimum number of neighbors also
increases, and feature vectors cannot be generated for any mutations at those positions.
For each Gal4 variant, these 27 structural components included:

• position number of the residue substitution;
• the identities of the native and replacement residues;
• EP score at the mutated position;
• the difference in primary sequence numbers between that of the mutated position and
those of all six closest neighbors;
• the identities of the residues and the EP scores at the six neighbors;
• the mean volume and mean tetrahedrality for all tetrahedra in the tessellation of Gal4
that share the C-alpha coordinate of the mutated residue as a vertex;
• tessellation-based determination of themutated position location in the protein (surface,
undersurface, or buried) as well as the number of edge contacts it has with surface residue
positions;
• the secondary structure at the mutated position.

A final (28th) output attribute at the end of each feature vector consisted of the Gal4
variant function. As the homodimeric structure of Gal4 is subsequently analyzed in the
Discussion, the complete residual profiles of the Gal4 variants (EP scores at all positions in
each chain) are used exclusively as an alternative set of input attributes for the Gal4 variant
feature vectors (Masso & Vaisman II, 2007).

Four classification algorithms—random forest (RF), support vector machine (SVM),
decision tree (DT), and neural network (NN), and two regression algorithms—reduced
error pruning tree (REPTree) and support vector regression (SVR), were implemented
with the Weka (version 3.6) software package (Frank et al., 2004;Witten & Frank, 2000) to
train and evaluate predictive models for the Gal4 variants with known functional levels.
Parameter selections for each algorithm implementation are provided in the Results. For
the regression algorithms, the log2 (effect size) functional values for the Gal4 variants
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were used as the output attributes in their feature vectors (Kitzman et al., 2015). For the
classification algorithms, binary functional categories were used owing to the following
observations. Based on the three categories of Gal4 variant activity mentioned in the
Introduction, we noted a statistically insignificant difference between Gal4 variants that
are superior to or equivalent to wild-type (see beginning of Results). This information,
combined with data presented by Kitzman et al. (2015) in Table S3, led us to implement
a log2(effect size) value of −2.0 as an appropriate cutoff between Gal4 variants whose
activities are unaffected (≥−2.0) versus negatively affected (<−2.0) for use as a pair of
categorical output attributes in classification algorithms; moreover, the data set consists of
453 unaffected and 631 affected mutants. Gal4 variant activity class predictions made by
each of the classification algorithms are based on output probabilities generated for their
membership in each of the two functional categories (Witten & Frank, 2000); hence, an
additional ‘‘combined classifier’’ was implemented by averaging these probabilities.

Evaluations of model performance were based on cross-validation (CV) results, leave-
one-out (LOOCV) as well as tenfold (10-fold CV), and both were implemented in the
study. With 10-fold CV, the Gal4 variants (represented as feature vectors to the machine
learning algorithms) are randomly stratified to ten disjoint subsets roughly equal in size.
With each of 10 iterations, a different subset is held-out for testing (10% of the data) while
a model is trained using the combined Gal4 variants from the remaining nine subsets
(90% of the data), and the trained model is then used to predict the (known) activities of
the Gal4 variants in the test set. Under LOOCV, each Gal4 variant initially forms its own
subset (a singleton), then the procedure follows in a manner analogous to that of 10-fold
CV. Referring to the two categories of Gal4 variants as negatively affected (P) or unaffected
(N) activities, respectively, classifier predictions were evaluated by calculating sensitivity
= TP / (TP + FN), specificity = TN / (TN + FP), and PPV = positive predictive value
(i.e., precision) = TP / (TP + FP). Performance measures that are robust to differences
in category sizes were also computed, including the balanced accuracy rate BAR = 0.5 ×
[Sensitivity + Specificity], Matthew’s correlation coefficient (MCC), and the area (AUC)
under the receiver operating characteristic (ROC) curve. With the regression models,
the output attribute for each Gal4 variant feature vector is an activity value as opposed
to a category, and they generate numerical predictions. In these instances, in addition
to reporting the overall correlation (r) between the actual and predicted activity values
for the Gal4 variants, all values are subsequently converted to their respective activity
categories (unaffected versus negatively affected) based on the threshold described in the
previous paragraph, for the purpose of evaluating the performance measures associated
with classification.

RESULTS
Observations presented in this section are based on the analyses of data obtained from the
structural tessellation of a single chain of the Gal4 protein (PDB accession code 3coq, chain
A), followed by a similar investigation based on the tessellation of a biologically functional
Gal4 homodimeric structure (3coq, chains A and B).
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Figure 3 Gal4 structure-function correlation. ‘‘All’’ refers to the full set of 1,084 Gal4 variants, and
C/NC are the subsets of these variants that represent conservative/non-conservative amino acid substi-
tutions. The data in the table below the figure are means of the residual scores for the associated subsets
of the mutants. All parenthetical whole numbers located either on the graph or in the table row/column
headers are counts of the total number of mutants in that subset.

Full-size DOI: 10.7717/peerj.4844/fig-3

Gal4 structure-function relationships
Residual scores were calculated for the 1,084 Gal4 variants with experimentally determined
function, and these scores were averaged over all variants in each of the three activity
categories described in the Introduction (Fig. 3, black bars). A clear trend emerged, whereby
as Gal4 variant function diminished by category, structural effects became increasingly
detrimental (lower mean residual scores). The difference in mean residual scores for Gal4
mutants belonging to the Superior/Inferior pair as well as the Similar/Inferior pair of
activity categories were each found to be statistically significant (t -tests: p< 0.0001 for
each pair of categories), but this was not the case for the Superior/Similar pair (p= 0.14).
As discussed in the Methods, this observation supports the use of two functional categories
of Gal4 mutants with classification algorithms (Similar and Superior combined versus
Inferior). Within each of the three functional categories in Fig. 3, Gal4 mutants were
further segregated based on whether the replacement amino acid was a conservative (C) or
non-conservative (NC) substitution relative to the native residue, and mean residual scores
were computed for each of these subgroups. With the 20 amino acids clustered according
to physicochemical similarities as ((A, S, T, G, P), (D, E, N, Q), (R, K, H), (F, Y, W), (V, L,
I, M), and (C)), conservative residue substitutions are selected fromwithin the same cluster
while inter-cluster replacements are non-conservative (Dayhoff, Schwartz & Orcut, 1978).
As reflected by Fig. 3, the overall structure-function relationship is fundamentally driven
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Table 1 Distribution of all Gal4 residues in structure 3coqA.

Residue types

Graph quads Apolar Charged Polar Total

Q1 5 6 2 13
Q2 5 20 15 40
Q3 4 3 1 8
Q4 19 3 6 28
Total 33 32 24 89

by non-conservative Gal4 variants, while conservative substitutions minimally impact Gal4
structure on average (mean residual scores are closer to zero for Gal4 variants in each
of the C subgroups). In particular, the difference between the mean residual scores for
the 27 Superior and 60 Similar conservative (C) substitutions in Fig. 3 is not statistically
significant (p= 0.12), despite the fact that the mean residual scores of the Gal4 variants in
those categories are 0.32 and −0.02, respectively, owing to the relatively small number of
mutants.

In support of these results, a contingency table was also generated to analyze the
distribution of the residual scores for all 1,084 experimental Gal4 mutants, based on the
three functional categories (Superior, Similar, and Inferior) as well as three residual score
categories (<−0.5,[−0.5,0.5], and >0.5). A chi-square test applied to the resulting 3 × 3
table (Supplemental Information; χ2

= 40, with 4 degrees of freedom) leads to rejection
of the null hypothesis that no association exists between activity level and residual scores
(p< 0.0001).

Gal4 residue position classifications with in silico data
For each residue position in Gal4, the CMP score represents the mean of the residual
scores for all 19 possible amino acid substitutions, hence averaging the structural effects
of having introducing all possible residues other than the native at that position. The
RES score, on the other hand, quantifies the compatibility of the native residue within
its structural environment in Gal4. A plot of the CMP scores against the RES scores
for the 89 residue positions in a single chain of the Gal4 structure (Fig. 4) revealed a
strong inverse correlation (R2

= 0.89). Furthermore, when the residual scores of non-
conservative (NC) and conservative (C) residue substitutions at each position were
averaged separately to generate separate NC-CMP and C-CMP scores, the data revealed
that NC substitutions (R2

= 0.88) were primarily responsible for the overall correlation in
Fig. 4, while C substitutions (R2

= 0.02) provided no meaningful contribution. In support
of the correlation evident in Fig. 4, a 4×3 contingency table was generated (Table 1) to
analyze the distribution of all Gal4 residues by quadrant locations (Quads 1–4) as well as
by residue polarities (apolar, charged, and polar). A chi-square test applied to the data in
Table 1 (χ2

= 24.8, with 6 degrees of freedom) led to rejection of the null hypothesis that
no association exists between polarity and location (p< 0.0001).

To illustrate how the in silico data distinguish between groups of Gal4 residue positions
based on structural or functional considerations, we analyzed an annotated set of 30
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Figure 4 Gal4 CMP-potential profile correlation plot.Note how the amino acids in the protein tend to
cluster by their polarity (apolar tend toward Quad 4; charged tend toward Quad 2; and polar cluster about
the origin), with the exception of the Cys6 binuclear cluster. Hydrophobic residues, especially in the pro-
tein core, typically have positive RES scores owing to the network of favorable interactions they form with
one another. Substituting these residues, especially with polar or charged amino acids or with residues of
significantly different size, leads to unfavorable interactions with the neighbors, and therefore the CMP
scores at these positions are negative. Charged residues on the protein surface often interact with other
macromolecules or the solvent, and their interactions with other residues in the protein are modestly un-
favorable. This explains their negative RES scores and positive CMP scores. Lastly, polar residues are gen-
erally ambivalent about their environment and tend to have RES and CMP scores close to zero.

Full-size DOI: 10.7717/peerj.4844/fig-4

positions that were categorized by Hong et al. as follows: binuclear cluster cysteines (C11,
C14, C21, C28, C31, and C38), linker region (S41, P42, K43, T44, K45, R46, S47, P48, and
L49), dimer interface core (R60, R63, L64, L67, F68, L70, I71, F72, L77, I80, L81, M83, I89,
L92, and L93), and a subset of the dimer interface core that is highly conserved among
fungal Gal4 homologs (L67, I71, I80, L81, and L93) (Hong et al., 2008). Table 2 reveals the
distribution of the residues belonging to each category based on their Cartesian coordinate
quadrant locations in Fig. 4. Using Fisher’s exact test on this 4× 4 contingency table led to
rejection of the null hypothesis that no association exists between residue categories and
quadrant locations (p< 0.0001). For each category of Gal4 residue positions, Fig. 5 displays
the calculated mean of their residue environment scores (M.R.E.S.), as well as the mean of
the residual scores associated with the collective set of 19 single residue substitutions taken
over all positions in the category (All). As before, these category-wide Gal4 variants were
segregated as conservative or non-conservative substitutions, and mean residual scores
were obtained for both subgroups (C/NC). Substantial differences exist in mean scores
between distinct groups of annotated residues; in particular, the mean scores for the subset
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Figure 5 Characteristics of Gal4 structural/functional residue groups. ‘‘All’’ refers to the mean of the
residual scores for all Gal4 variants at all positions belonging to each structural/functional group. Whereas
the mean of the residual scores for all 19 variants at a single position yields a CMP score for that position,
here this concept is generalized by taking the mean of the residual scores for 19 × N variants, where N
is the number of positions in the group. C/NC are the subsets of all variants in each group that represent
conservative/non-conservative amino acid substitutions. M.R.E.S. refers to the mean of the residue envi-
ronment scores for all residue positions in each group. The inverse relationship between the mean of the
residual scores for all Gal4 variants in a group (All) and the mean of the residue environment scores for all
positions in the group (MRES) stems from the strong inverse correlation observed between CMP and RES
in Fig. 4.

Full-size DOI: 10.7717/peerj.4844/fig-5

Table 2 Distribution of annotated Gal4 residues.

Residue types

Graph quads Cysteine cluster Linker region Interface core Conserved core Total

Q1 0 0 0 0 0
Q2 0 8 0 0 8
Q3 0 0 0 0 0
Q4 6 1 15 5 27
Total 6 9 15 5 35

of dimer interface positions that are highly conserved among fungal Gal4 homologs are
more extreme than the mean scores for all dimer interface residues combined.

Predictive models of Gal4 variant function
Default parameters in Weka were applied here to all machine learning algorithms, with the
following exceptions: RF (use 100 trees), SVM (build logistic models and use radial basis
function (RBF) kernel), NN (implement one hidden layer), and SVR (use RBF kernel).
The algorithms were implemented using the data sets of Gal4 variants represented as
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Table 3 Prediction performance on 1,068 Gal4 variants. Feature vector input attributes based on in sil-
icomutagenesis using the tessellation of one Gal4 monomer (Chain A).

Method Se Sp PPV BAR MCC AUC

LOOCV classification:
RF 0.87 0.81 0.87 0.84 0.68 0.91
SVM 0.89 0.75 0.84 0.82 0.65 0.88
DT 0.88 0.79 0.86 0.84 0.68 0.86
NN 0.90 0.82 0.88 0.86 0.73 0.88
Combined classifier 0.88 0.83 0.88 0.85 0.71 0.92

LOOCV regression:
REPTree (r = 0.65) 0.91 0.74 0.83 0.83 0.67 —
SVR (r = 0.68) 0.92 0.81 0.87 0.87 0.74 —

Predictions made by existing methods:
SNAP 0.78 0.59 0.73 0.69 0.38 0.69
SIFT 0.93 0.60 0.77 0.76 0.57 0.80

feature vectors consisting of 27 input attributes and a single categorical (classification
algorithms) or numerical (regression algorithms) output attribute. Tessellation of the Gal4
structure revealed that residue T44 has only five neighbors (edge-lengths <12 Å between
the C-alphas of each neighboring residue and T44), fewer than the six neighbors required
to generate a complete set of 27 input attributes for each of the 16 Gal4 variants (activities:
13 unaffected, three detrimentally affected) defined by residue substitutions at position
44. In particular, since the missing 6th neighbor would have contributed information for
three of the 27 input attributes (residue identity and EP score at the sixth neighbor, and
its primary sequence distance from the mutated position 44), feature vectors cannot be
generated for these variants. Hence, these 16 variants were excluded, and the data sets each
contained a total of 1,068 Gal4 variants.

Performance results of leave-one-out cross-validation (LOOCV) testing are shown in
Table 3. All four classification methods performed equally well, highlighting the robustness
of the Gal4 variant data set and lack of bias toward any one machine learning approach.
The combined classifier led to improved predictions by averaging prediction probabilities
of activity class membership obtained with all four methods. Performance measures for
the combined classifier suggest that it successfully embodies the best predictive qualities
of the individual models. The following experiment highlighted the significance of these
performance results: LOOCV testing was performed using the combined classifier with
a control Gal4 variant data set generated by randomly shuffling the 1,068 activity class
output attribute labels (440 unaffected/628 affected) among the feature vectors for the Gal4
variants in the original data set. The performance results (AUC = 0.50, BAR = 0.48, and
MCC =−0.06) were indicative of a model that performs no better than random guessing,
as highlighted by a graphical comparison of the ROC curves obtained using the combined
classifier on both the original and control Gal4 variant data sets (Fig. 6A).

We subsequently employed a more systematic approach for assessing the statistical
significance of the combined classifier predictions. In the first step, ten runs of tenfold
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Figure 6 Evaluating the significance of Gal4 prediction performance. (A) Leave-one-out cross-
validation (LOOCV) ROC curves obtained with the combined classifier by using the original data set
as well as a control set generated by a single random shuffling of the activity class output attributes
among the 1068 Gal4 variants in the data set. (B) Distribution of LOOCV combined classifier prediction
performance over 1,000 random activity class label permutations, compared with results using the
original data set (BAR, balanced accuracy rate; MCC, Matthew’s correlation coefficient). (C) Scatter
plot comparing SVR LOOCV predictions obtained for the Gal4 variant activity values versus their
experimentally measured values yields a correlation of r = 0.68.

Full-size DOI: 10.7717/peerj.4844/fig-6
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cross-validation (10-fold CV) testing with the original Gal4 variant data set yielded mean
performance values of BAR= 0.86, and MCC= 0.70. Next, 1,000 distinct control data sets
were generated by successively shuffling the output attribute class labels among the Gal4
variants in the original data set. The average of 10-fold CV testing over the 1000 control
data sets led to performance values of BAR = 0.50 ± 0.01 and MCC = 0.00 ± 0.04. These
performance data are summarized in Fig. 6B, suggesting that the p-value for predictive
power of the combined classifier model is less than 0.001. Furthermore, similar 10-fold
CV statistical significance results using the original and 1000 shuffled control data sets
were verified using each of the four individual classifiers: RF (original BAR = 0.84, MCC
= 0.68; shuffled BAR = 0.50 ± 0.02, MCC = 0.00 ± 0.03); SVM (original BAR = 0.81,
MCC = 0.64; shuffled BAR = 0.50 ± 0.02, MCC = 0.00 ± 0.04); DT (original BAR =
0.84, MCC = 0.68; shuffled BAR = 0.50 ± 0.02, MCC = 0.00 ± 0.04); NN (original BAR
= 0.86, MCC = 0.71; shuffled BAR = 0.50 ± 0.01, MCC = 0.00 ± 0.03). Next, regression
models also performed well under LOOCV testing (Table 3), with performance measures
rivaling those of the classifiers. A graphical depiction of the correlation (r = 0.68) between
actual Gal4 variant activity values and those predicted with the SVR model is presented in
Fig. 6C. Table 3 also shows that predictions generated for these 1068 Gal4 variants by the
related methods SNAP (Bromberg & Rost, 2007) and SIFT (Sim et al., 2012) are less robust
with respect to both sensitivity and specificity, leading to lower performance results over
nearly all reported measures. Lastly, none of the predictions obtained using five methods
of Pires, et al. discussed in the Introduction correlated well with the experimental Gal4
functional data (0.11 ≤ r ≤ 0.26), which they suggested was a reflection of a range of
different effects of the mutations on Gal4, including decreased stability and disruptions to
both homodimeric interactions as well as interactions with DNA. By linearly combining the
predictions from the five models using a regression model tree, they achieved a correlation
of r = 0.69. Random forest predictions using the five models in combination displayed
81% overall accuracy in Gal4 variant classification with AUC = 0.86.

An array identifying all of the LOOCV predictions made by the combined classifier
for the Gal4 variants is shown in Fig. 7. Note that no predictions were made for single
residue substitutions at T44 because this position had fewer than 6 neighbors in the
tessellation of the Gal4 structure, precluding the construction of feature vectors for these
Gal4 variants and their inclusion in the combined classifier data set. Substitutions with
proline create backbone kinks and generated the largest number of incorrect predictions
(19/58) scattered throughout the DNA-binding (residues 8–40), linker (residues 41–49),
and dimerization (residues 50–65) domains. Furthermore, incorrect predictions were
biased toward the dimerization domain relative to the other two domains, which is
indicative of a weakness associated with obtaining computational mutagenesis data from
the tessellation of an isolated monomer of the Gal4 protein structure. Close interactions
between dimer interface residues from both chains were not taken into account here;
however, an in silico mutagenesis and subsequent analyses based on the tessellation of the
complete homodimer are presented below.

Masso et al. (2018), PeerJ, DOI 10.7717/peerj.4844 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.4844


Figure 7 Combined classifier model LOOCV prediction array. The columns identify the wild type
residues at positions 8–65 in the Gal4 protein, the rows represent each of 20 types of residue substitutions,
and each cell corresponds to the Gal4 variant defined by substituting the native residue at the position
in the top column header with the replacement residue given in the left row header. Green and red cells
represent Gal4 variants that were predicted correctly and incorrectly, respectively, by the combined
classifier model. Cells for which the native residue (column header) and replacement residue (row header)
are identical do not represent variants, and these are colored white. Additionally, a few variants for which
functional data were not determined were not included in the data set for prediction, and these cells are
also colored white. Lastly, predictions were not generated for mutations at position 44, which has fewer
than six nearest neighbors because the variants could not be modeled with our computational mutagenesis
technique, and these cells are similarly colored white. Prediction errors are noticeable in the dimerization
domain (positions 50–65), at positions 8, 9, and 19 within the DNA-binding domain, and for variants
defined by the use of proline (P) as a substitution.

Full-size DOI: 10.7717/peerj.4844/fig-7

Predictive models incorporating homodimeric Gal4 structure
Given the potential for limitations on prediction performance using an isolated monomer
of Gal4, especially at dimer interface positions, a parallel study was undertaken with the
structural tessellation of the complete homodimeric structure of Gal4 and the subsequent
computational mutagenesis. With twice as many residues now in the structure (positions in
chain B renumbered to follow those of chain A), and with each residue substitution in Gal4
appearing simultaneously at two positions in the dimer, we proceeded to generate data
that included: RES scores for all positions, residual scores and residual profile vectors for
all Gal4 variants, and CMP scores for each position. Structure-function relationships and
correlations previously observed for the Gal4 monomer (chain A) were strengthened or
maintained with data generated from tessellation of the dimeric Gal4 structure (Fig. 8). As
before, feature vectors were generated for the Gal4 variants consisting of 27 input attributes
and one (numerical or categorical) output attribute; however, since each Gal4 variant now
corresponds to a residue substitution at two positions (one in each monomer), two feature
vectors were generated, each having a distinct set of input attributes and both sharing the
same output attribute. Performance results using both classification and regression data
sets of 2,136 feature vectors for Gal4 variants based on 10-fold CV testing are shown in
Table 4. Weka default parameters were used for all machine learning algorithms, with
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Table 4 Prediction performance on 2136 Gal4 variants. Feature vector input attributes based on in silico
mutagenesis using tessellation of the Gal4 dimer.

Method Se Sp PPV BAR MCC AUC

10-fold CV classification:
RF 0.91 0.90 0.93 0.91 0.81 0.97
SVM 0.91 0.82 0.88 0.87 0.74 0.94
DT 0.89 0.87 0.91 0.88 0.76 0.93
NN 0.91 0.83 0.89 0.87 0.75 0.88

10-fold CV regression:
REPTree (r = 0.80) 0.96 0.86 0.91 0.91 0.83 –
SVR (r = 0.72) 0.92 0.84 0.89 0.88 0.77 –

the following exceptions: RF (use 100 trees), SVM (C = 10.0, build logistic models and
use radial basis function (RBF) kernel), DT (average of 10 bagged (bootstrap aggregated)
iterations), NN (implement one hidden layer), and SVR (C = 10.0, use RBF kernel).
Table 4 reflects significant prediction improvements over previous results (Table 3), with
the REPTree model performing especially well (Fig. 9A).

Two control data sets were generated by randomly shuffling the 2136 activity class
output attribute labels (classification) or the actual activity values (regression) among the
feature vectors for the Gal4 variants in the original data sets. Applying 10-fold CV with
these controls performed no better than random guessing, as observed in Fig. 9B for ROC
curves obtained using the classification algorithms, and supported with these additional
10-fold CV performance results for all algorithms: RF (BAR = 0.51, MCC = 0.02); DT
(BAR = 0.52, MCC = 0.04); SVM (BAR = 0.50, MCC = 0.00); NN (BAR = 0.50, MCC =
0.01); REPTree (r =−0.02, BAR= 0.50, MCC= 0.03); and SVR (r =−0.06, BAR= 0.49,
MCC=−0.03). For a more systematic approach to evaluating statistical significance, 1,000
classification and 1000 regression control data sets were generated by random shuffling of
the Gal4 variant activity categories and values in the original data sets, respectively, and
10-fold CV testing results employing the original Gal4 variant data sets (Table 4) were
compared to those obtained with the control data sets (Fig. 9C displays outcomes with the
RF algorithm): RF, SVM, and DT (BAR = 0.50 ± 0.01, MCC = 0.00 ± 0.03); NN (BAR =
0.50± 0.01, MCC= 0.00± 0.02); REPTree (r =−0.01± 0.03); SVR (r= 0.00± 0.03). The
results in every case suggest that the p-value for predictive power of each original model is
less than 0.001.

Learning curves (Fig. 10) were subsequently created to visualize the impact of Gal4
variant data set size on model performance. For each classification algorithm, 10-fold CV
was applied to ten stratified random samples of 300 Gal4 variants each, with each sample
selected from the full set of 2136 Gal4 variants, and mean BAR, MCC, and AUC values and
standard deviations were calculated over the ten sets. Subsequent iterations doubled the
number of variants selected for each of the ten sets over their previous steps, with the final
iteration employing 2,100 Gal4 variants with each sample. The plots reveal that as few as
300 Gal4 residue replacements, well-distributed at positions throughout the structure, are
capable of achieving good predictive performance; furthermore, the plots become relatively
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Figure 8 Gal4 structure-function relationships. The structural and computational mutagenesis data
used here are based on tessellation of the complete homodimeric structure of Gal4. The plots represent
(A) the Gal4 structure-function correlation, (B) the Gal4 CMP-potential profile correlation, and (C) char-
acteristics of Gal4 structural/functional residue groups.

Full-size DOI: 10.7717/peerj.4844/fig-8
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Figure 9 Evaluating the significance of Gal4 prediction performance. Computational mutagenesis that
uses the tessellated Gal4 homodimer generates two distinct feature vectors for each Gal4 variant, repre-
senting the specific residue substitution at the same position in both monomers. (A) Scatter plot compar-
ing REPTree 10-fold CV predictions obtained for the Gal4 variant activity values versus their experimen-
tally measured values yields a correlation of r = 0.80. (B) 10-fold ROC curves obtained with the four clas-
sifiers by using the original data set as well as a control set generated by a single random shuffling of the
activity class output attributes among the 2136 Gal4 variants in the data set. (C) Distribution of 10-fold
CV RF prediction performance over 1,000 random activity class label permutations, compared with results
using the original data set (BAR, balanced accuracy rate; MCC, Matthew’s correlation coefficient).

Full-size DOI: 10.7717/peerj.4844/fig-9
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Figure 10 Classifier learning curves. Learning curves made using the (A) random forest, (B) support
vector machine, (C) decision tree, and (D) neural network classification algorithms. For each classifier, the
plots reveal the degree to which performance is enhanced as the number of Gal4 variants in the training
set is increased. Each point represents the average over ten runs of 10-fold CV, and the error bars indicate
the standard deviation.

Full-size DOI: 10.7717/peerj.4844/fig-10

flat for data sets containing more than 1,200–1,500 Gal4 variants, indicating that a data
set smaller than all 2,136 Gal4 variants may be sufficient for training accurate predictive
models.

DISCUSSION
As mentioned at the start of the last section making use of the Gal4 homodimeric structure
tessellation, each Gal4 variant in this scenario is represented in the data set by two separate
feature vectors. The two vectors have distinctive sets of 27 input attributes corresponding
to one particular mutated position located within each of the two separate Gal4 monomers,
and both feature vectors having the same activity (category or value) output attribute. These
2,136 Gal4 variant feature vectors in the data set were then separated into two equal-sized
subsets according to which Gal4 monomer contained the mutated position representing
the feature vector. The two subsets of feature vectors enabled the evaluation of 10-fold CV
prediction performance for each isolated chain (A and B) following dimeric tessellation
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Table 5 Chain-specific Gal4 variant prediction performance. Feature vector input attributes based on
in silicomutagenesis using tessellation of the Gal4 dimer. The full data set was split into two subsets of
1,068 Gal4 variants each by monomeric chain.

Method Se Sp PPV BAR MCC AUC

A chain, 10-fold CV classification:
RF 0.87 0.82 0.87 0.84 0.69 0.91
SVM 0.89 0.82 0.88 0.86 0.72 0.89
DT 0.87 0.82 0.88 0.84 0.69 0.90
NN 0.90 0.82 0.88 0.86 0.72 0.87

A chain, 10-fold CV regression:
REPTree (r = 0.64) 0.96 0.59 0.77 0.77 0.61 –
SVR (r = 0.66) 0.91 0.83 0.88 0.87 0.74 –

B chain, 10-fold CV classification:
RF 0.88 0.81 0.87 0.85 0.70 0.91
SVM 0.89 0.83 0.88 0.86 0.72 0.89
DT 0.89 0.83 0.88 0.86 0.72 0.90
NN 0.90 0.82 0.88 0.86 0.72 0.87

B chain, 10-fold CV regression:
REPTree (r = 0.63) 0.93 0.62 0.78 0.77 0.59 –
SVR (r = 0.66) 0.90 0.81 0.87 0.86 0.72 –

(Table 5). The algorithms all performed well on both subsets, though the prediction results
in Table 5 were not as impressive as those obtained with the dimeric data set (Table 4); on
the other hand, the 10-fold CV results using both subsets were equivalent to prior LOOCV
prediction results based on Gal4 variant feature vectors obtained from tessellation of the
isolated A chain (Table 3). To assess the degree of similarity between the two subsets of
feature vectors, RF classification and SVR regression models were trained using one subset,
and the models were subsequently used for predicting the activity (class or value) output
attributes of the Gal4 variants in the other (test) subset based on the 27 input attributes
in their respective feature vectors (Table 6). Though the RF models performed well at
correctly classifying the Gal4 variants, the SVR models were relatively weaker with respect
to specificity (proportion of all unaffected Gal4 variants that were correctly predicted) after
converting the predicted activity numerical values to classes based on the −2.0 threshold;
hence, differences exist between pairs of feature vectors for the same Gal4 variant occurring
at the same position in separate chains, which reflects the sensitivity of protein structure
tessellations to the most subtle shifts in C-alpha coordinates.

As the algorithm reporting the best performance results (Table 4), the RF 10-fold CV
predictions for Gal4 variants were further segregated based on the depth and secondary
structure of the mutated residue positions (Table 7), as well as the polarities of the
native and replacement amino acid residues of the Gal4 variants (Table 8). Of the 27 input
attributes for each Gal4 variant feature vector, the non-EP score attributes assist predictions
by characterizing the structural location (e.g., depth) and environment (e.g., secondary
structure) of the mutated position, while EP scores at the mutated position and its six
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Table 6 Gal4 monomers predict one another. Feature vector input attributes based on in silicomutage-
nesis using tessellation of the Gal4 dimer. The full data set was split into two subsets of 1,068 Gal4 variants
each by monomeric chain. Variants from one chain were predicted using a model trained with the variants
from the other chain.

Method Se Sp PPV BAR MCC AUC

A chain—training/B chain—testing:
RF 0.96 0.71 0.82 0.83 0.71 0.96
SVR (r = 0.60) 0.95 0.54 0.75 0.75 0.56 –

B chain—training/A chain—testing:
RF 0.96 0.85 0.90 0.90 0.82 0.98
SVR (r = 0.66) 0.94 0.56 0.75 0.75 0.56 –

Table 7 Mean RF 10-fold CV prediction performance based on depth and secondary structure.

BAR MCC %

Depth
Buried 0.90 0.81 65
Undersurface 0.96 0.91 12
Surface 0.86 0.74 23
Secondary Structure
Helix 0.91 0.81 49
Coil 0.91 0.81 51

Table 8 Mean RF 10-fold CV prediction performance based on side chain polarities of the native and new amino acids at the mutated position.

New/native Polar Apolar Charged All

BAR MCC % BAR MCC % BAR MCC % BAR MCC %

Polar 0.92 0.84 13 0.89 0.75 11 0.92 0.85 6 0.91 0.81 30
Apolar 0.88 0.78 13 0.88 0.75 8 0.93 0.85 6 0.89 0.79 27
Charged 0.92 0.85 20 0.91 0.81 16 0.84 0.68 7 0.90 0.81 43
All 0.91 0.83 46 0.90 0.78 35 0.89 0.79 19 0.90 0.81 100

closest neighbors assist predictions by characterizing the effects of each type of residue
replacement at that position.

An array identifying 10-fold CV predictions made by the RF classifier (Table 4) for all
2,136 Gal4 variants based on the tessellated dimer is shown in Fig. 11A. Similarly, Fig. 11B
shows 10-fold CV predictionsmade by the RF classifier (Table 5) for the subset of 1068 Gal4
variants corresponding to the isolated A chain subsequent to dimeric tessellation. The array
in Fig. 11A reflects significantly fewer errors in the dimerization domain (residues 50–65)
of both chains relative to the array for the isolated A chain in Fig. 11B, which more closely
resembles the array obtained from LOOCV predictions made by the RF classifier using a
data set of Gal4 feature vectors generated by tessellating the monomeric A chain (Fig. 7).
For positions 50–65, the isolated A chain (Fig. 11B) generated 61 incorrect predictions,
while the A chain as part of a complete dimer (Fig. 11A) led to only 31 incorrect predictions.
Significant prediction improvements occurred at residues A52, T55, L61, and L64 as well as
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Figure 11 Comparing prediction performance arrays. (A) RF 10-fold CV predictions with a Gal4
dimeric feature vector data set, consisting of 2,136 variants, obtained by computational mutagenesis that
uses the tessellated Gal4 homodimer. Each Gal4 variant is represented by two distinct feature vectors in
the data set, corresponding to the specific residue substitution at the same position in both monomers,
which can form two equally-sized subsets of 1,068 Gal4 variant feature vectors, one for each chain. (B)
RF 10-fold CV predictions with the subset of 1,068 Gal4 feature vectors for chain A of the Gal4 dimer.
Significant improvements are observed when Gal4 variant predictions in chain A are generated as part of
predictions for variants from both chains as opposed to in isolation.

Full-size DOI: 10.7717/peerj.4844/fig-11
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modest improvements at H53 and R63. These corrections at interface positions introduced
into RF algorithm learning via tessellation of the complete dimeric structure also have
a positive influence on predictions at residues E8, Q9, and L19 that interact with the
DNA, a molecular structure which cannot be directly modeled with this residue-based
approach. Regarding the combined predictions for both chains of Gal4 (Fig. 11A), 103 of
the 199 total incorrect predictions were due to substitutions creating substantial structural
rearrangements: sharp backbone kinks, P (32 errors); bulky aromatic or long side chains:
W (16 errors), R (15 errors), Y (13 errors); very small or no side chains: G (14 errors), A
(13 errors). The remaining types of residue substitutions displayed fewer errors. Results
presented in Fig. 11 strongly support modeling and analyses based on computational
mutagenesis data derived from the tessellation of a biologically functional form of the
protein structure under consideration, which in this case is the Gal4 homodimer.

Up to this point, the Gal4 variants used to train all models have been represented as
feature vectors consisting of 27 input attributes characterizing the structure (and sequence)
of the local environment surrounding the mutated position. Among these attributes are
the EP scores for only the mutated position and its six closest neighbors, obtained from
the residual profile of the mutant. By selecting only seven EP score components from the
residual profile vectors, and supplementing them with 20 additional features, the goal was
to employ a diverse and universally applicable set of attributes to fully characterize local
environments of mutated positions. As a final exercise based on the dimeric tessellation
of Gal4, we considered the complete residual profile vectors as an alternative to the set of
27 input attributes for the Gal4 variant feature vectors. In particular, recall that each Gal4
variant defines the same residue substitution at two C-alpha positions simultaneously in the
dimeric tessellation, from which the computational mutagenesis generates a single residual
profile vector consisting of EP scores at all 178 positions in the dimer (residues 8–96 for
both chains sequentially). The first (last) 89 components of this 178D vector correspond to
the EP scores for every position in the A chain (B chain) due to the simultaneous mutation
at the same position in both chains; hence, the 178D vector was split to form two 89D
residual profile vectors of EP scores representing the same variant in the two chains. These
89D vectors of EP scores were used as alternative input attributes for the feature vectors
representing the Gal4 variants, generating a data set of 2,168 Gal4 feature vectors (16
Gal4 variants at position 44 in each chain that previously could not be represented using
the approach of 27 input attributes can now be included) for training predictive machine
learningmodels. Three additional input attributes, corresponding to a variant ID (wild-type
residue, position number, and replacement residue), were added to each feature vector
to create a second data set. The top half of Table 9 summarizes 10-fold CV performance
results using these data sets with classification and regression algorithms. Lastly, the 2,168
Gal4 feature vectors in each of these two data sets were split into two equally-sized subsets
of 1,084 Gal4 feature vectors by their Gal4 chain membership. Results obtained by using
one subset for model training and the other subset for testing (prediction) are shown in the
bottom half of Table 9. All performance results in Table 9 are consistent with prior results
using the 27 input attributes and indicative of accurate and reliable predictive models.
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Table 9 Gal4 variant prediction performance with residual profile vector input attributes.

Method Input attributes Se Sp PPV BAR MCC AUC

10-fold CV classification:
RF EP scores 0.93 0.89 0.92 0.91 0.82 0.97

EP scores+ variant ID 0.97 0.95 0.97 0.96 0.92 0.99
SVM EP scores 0.83 0.69 0.79 0.76 0.53 0.85

EP scores+ variant ID 0.89 0.87 0.90 0.88 0.75 0.93
DT EP scores 0.91 0.88 0.91 0.89 0.79 0.95

EP scores+ variant ID 0.90 0.88 0.91 0.89 0.78 0.96
NN EP scores 0.78 0.79 0.84 0.79 0.56 0.82

EP scores+ variant ID 0.81 0.79 0.84 0.80 0.59 0.83

10-fold CV regression:
REPTree EP scores (r = 0.72) 0.90 0.75 0.84 0.83 0.67 –

EP scores+ variant ID (r = 0.80) 0.94 0.78 0.85 0.86 0.74 –
SVR EP scores (r = 0.53) 0.86 0.62 0.76 0.74 0.50 –

EP scores+ variant ID (r = 0.72) 0.91 0.77 0.84 0.84 0.69 –

A chain—training/B chain—testing:
RF EP scores 0.95 0.91 0.94 0.93 0.86 0.98

EP scores+ variant ID 0.99 0.98 0.99 0.98 0.97 1.00
REPTree EP scores (r = 0.63) 0.78 0.81 0.85 0.79 0.58 –

EP scores+ variant ID (r = 0.63) 0.94 0.56 0.75 0.75 0.56 –

B chain—training/A chain–testing:
RF EP scores 0.93 0.91 0.93 0.92 0.83 0.98

EP scores+ variant ID 0.98 0.98 0.98 0.98 0.96 1.00
REPTree EP scores (r = 0.65) 0.75 0.83 0.86 0.79 0.57 –

EP scores+ variant ID (r = 0.60) 0.94 0.54 0.74 0.74 0.54 –

CONCLUSION
In summary, structural tessellation of a Gal4 monomer combined with a computational
mutagenesis that relies on a 4-body potential were used to quantify environmental changes
in Gal4 upon single residue substitutions. Structure-function relationships in Gal4 were
revealed as these data were compared with experimental measurements of activity changes
upon mutation. Additionally, these data were used to generate Gal4 variant feature
vectors for training predictive models of Gal4 variant activity using a variety of machine
learning algorithms, with relatively consistent results. The fact that Gal4 is functional
as a homodimer and contains a dimerization domain led to a reassessment, whereby
a substantial improvement in results was observed upon taking into consideration the
tessellation of the complete dimeric structure of Gal4. In particular, structure-function
correlations were strengthened, and significant improvements were observed in model
predictions for Gal4 variants at the dimer interface, which also positively influenced
predictions within the DNA binding domain. The methodology is widely applicable to
the development of predictive models for other proteins with solved structures for which
diverse training sets of variants with known function are available.
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