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Abstract. Multiple myeloma (MM) is one of the most frequent 
malignant hematopoietic diseases, the pathogenesis of which 
remains unclear. It is well known that miRNAs are aber-
rantly expressed in many tumors, thus, investigating the target 
genes of miRNAs contributes to understanding the functional 
effect of miRNAs on MM. In this study, plasma samples of 
147 patients with MM and 15 normal donors were collected. 
Using high-throughout microarray and limma package to 
screen the differentially expressed genes. Furthermore, to 
accurately predict the optimal target genes of MM, the logFC, 
targetScanCS and targetScanPCT values of known genes in 
four miRNAs (i.e. has-miR-21, has-miR-20a, has-miR-148a 
and has-miR-99b) were used to compute the targetScore 
values. As a result, 171 genes with larger difference were 
screened out using t-test, F-test and eBayes statistics analysis. 
Furthermore, 34 potential target genes associated with MM 
were selected by integrating the differentially expressed genes 
(DEGs) and the genes obtained by targetScore algorithm. 
Additionally, combining with the mutated genes in MM and 
the obtained DEGs, 41 consistently expressed genes were 
obtained. Finally, 5 optimal target genes, including SYK, 
LCP1, HIF1A, ALDH1A1 and MAFB, were screened out by 
the intersection of 34 DEGs and 41 mutated genes. In a word, 
this novel target gene prediction algorithm may contribute to 
improve our understanding on the pathogenesis of miRNAs in 
MM, which open up a new approach for future study.

Introduction

Multiple myeloma (MM) is a malignant tumor of plasma cells 
occurring in bone marrow (BM), characterized by clonal 
proliferation of malignant plasma cells and over-production of 
monoclonal immunoglobulin (M-protein), and leads to severe 
osteolytic lesions (1,2). MM has become the second most 
frequent hematological malignancy in the world, and each year, 
there are over 14,000 new cases in the US alone (3). Due to 
the obscure symptoms and unknown pathogenesis, identifying 
the molecular biomarkers of early diagnosis, preventive and 
personalized therapy, is very important and urgently needed.

MicroRNAs (miRNAs), a class of small non-coding RNAs 
with approximately 22 nucleotides, can play a regulatory role 
in biological processes, such as cell differentiation, prolifera-
tion and apoptosis (4,5). Researches have demonstrated that 
miRNAs which can be a potential biomarker for the diagnosis, 
prognosis and treatment of myeloma, play a vital role in the 
onset, development, relapse and drug resistance of MM (6). It 
is highly demanded to identify the target genes of miRNAs, 
since the intricate functional mechanism of miRNAs in 
diseases and the regulatory role of miRNAs on the expres-
sion of target genes can be displayed by suppressing protein 
translation or inducing mRNAs recession (7,8). Therefore, 
the identification of target genes contributes to further under-
standing the pathogenesis of miRNAs in MM.

Although a large number of the interactions between the 
miRNAs and mRNAs have been confirmed, the accurate 
prediction of miRNA target genes is still a challenge due to 
the limitation of prediction algorithms (9). For example, the 
prediction approach based on evolutionary conservation is 
only applied to the conservative functional target sites (10). 
Therefore, the comparison of differential gene expression based 
on genome-wide becomes a promising candidate approach to 
identify the specific miRNA regulation, which depends on the 
combination of expression profiling and sequence information, 
rather than solely relying on evolutionary conservation. In 
this study, a new prediction algorithm called targetScore was 
proposed, which was specifically developed to detect the target 
genes of a specific miRNA in exceptional cell-circumstance 
and operates on the whole gene set to more closely model the 
overall possibility instead of only on a pre-filtered set of genes. 
Consequently, target genes of four miRNAs (i.e. miR-148a, 
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miR-99b, miR-20a, miR-21) associated with MM were 
predicted with the targetScore approach, which contributes to 
enhance the understanding of MM pathobiology and provide a 
novel way for future study in MM.

Materials and methods

Microarray data information. The expression profile of genes 
associated with MM can be gained from the public functional 
genomics data repository named Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/geo/), and microarray 
data of GSE6477 based on the GPL96 Platform was imported. 
Eventually, 162 genechips about the expression data from 
different stages of plasma cell neoplasm can be used for further 
analysis, containing 73 genechips from newly diagnosed 
myeloma of human bone marrow plasma cells, 28 genechips 
from relapsed myeloma, 24 genechips from smoldering 
myeloma 22 genechips from monoclonal gammopathy of 
undetermined significance, and 15 genechips from normal 
donors were adopted as a control group. Furthermore, expres-
sion profile data of 12,437 genes were detected by mapping 
between the probe and the gene (11,12).

Differentially expressed genes (DEGs) analysis. For the gene 
expression profile obtained from the GSE6477, an R software 
package called limma was used to analyze the expression 
of known genes and detect the genes with larger differential 
expression. In order to identify the DEGs, the expression 
matrix of genes was subjected to t-test and F-test using the 
limma package, and the lmFit function was used to linearly 
fit the data. Furthermore, using empirical eBayes command 
in limma package to calculate the consensus pooled vari-
ance of genes, and adjust the associated p-value. Ultimately, 
117 DEGs with logFC absolute values ≥2 and P-value <0.05 
were acquired.

The calculation of targetScore values. TargetScore value is 
an integrative probabilistic score for target gene prediction 
of specific miRNA. Assuming there are N known genes, and 
x = (x1, x2,......., xN)T is regarded as the log fold-change (xf) 
or sequence scores (xl) value of known genes. Accordingly, 
x ∈ (xf, x1, x2,......., xL) is defined as the sequence scores of genes 
in L sets. Consequently, the targetScore value of known genes 
can be computed from the following formula:

  (1)

is assigned as the posterior distribution of the latent variable 
to predict miRNA target genes for a given x. The value of 
posterior distribution can be calculated by integrating the prior 
probabilities and likelihood functions. It is worth mentioning 
that the targetScanCS and targetScanPCT values of the 
given genes as the parameter of prior probabilities can be 
acquired from experimental data. Additionally, the Variational 
Bayesian Formula and Gaussian Mixture Model (VB-GMM) 
can be applied to calculate the maximum likelihood functions 

of genes, then avoids the overlap of data (13). Besides, a 
Variational Bayesian Expectation-Maximization (VB-EM) 
algorithm is used to optimize the parameters of the VB-GMM. 
A ‘target component’ can be represented by the mixture 
component related to miRNAs in the negative fold-change 
and sequence score. Therefore, interaction between miRNAs 
and target mRNAs can be inferred by analyzing the posterior 
distribution of the target component of the latent variables. As 
a sigmoid-transformed fold-change, the targetScore value of 
latent variables can be computed by weighting the averaged 
posterior values of all diagnostic target components (14). This 
algorithm is available at www.genelibs.com/gb.

Results

Identifications of DEGs in MM. One hundred and sixty-two 
samples containing MM disease and control group were 
obtained from the GEO database for further analysis. The 
limma package was used to screen the genes with differen-
tial expression. Eventually, 117 expression genes with larger 
difference that satisfying P-value <0.05 and logFC absolute 
value >2 were obtained for subsequent study. The distribution 
of DEGs between the P-values and logFC values is shown in 
Fig. 1. It is worth mentioning that a gene with logFC value 
lower than minus 2 is a downregulated differentially expres-
sion gene, and a gene with logFC value greater than positive 
2 is an upregulated DEGs. Consequently, 101 downregulated 
DEGs and 16 upregulated DEGs were confirmed. The relevant 
parameters of top 10 DEGs with the smallest P-value were 
selected and listed in Table I. It can be seen from Table I 
that the logFC values of the DEGs are negative values and 
the absolute values are >2. Moreover, P-values and adjusted 
P-values of the DEGs are far lower than 0.05, indicating that 
the DEGs obtained by the GEO and limma package have a 
very important statistical significance.

The acquisition of targetScore values. Acquiring the logFC, 
targetScanCS and targetScanPCT values of the miRNAs, 
miR-148a, miR-99b, miR-20a and miR-21 from the real data, 
and then import these results into equation (1) to compute the 
targetScore values. Consequently, a total of 312 latent target 

Figure 1. Volcano plot of the aberrantly expressed genes screened from 
162 MM samples.
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genes of miR-148a were selected with a targetScore values 
>0.5, 247 latent target genes of miR-99b were selected with a 
targetScore values >0.3, 154 latent target genes of miR-20a were 
selected with a targetScore values >0.3, and 121 latent target 
genes of miR-21 were selected with a targetScore values >0.4. 
Theoretically, the greater the values of targetScore, the greater 
the probability of the miRNA targets. Therefore, the optimal 
target genes can be confirmed by further screening.

Screening of the optimal target genes. In order to identify the 
optimal target gene, the intersection of latent target genes from 
the four miRNAs was plotted and shown in Fig. 2A. It can be 
seen from Fig. 2A that a total of 147 potential target genes were 
identified from the genes of the four miRNAs by integrating 
the bioinformatical analysis. Noting that 1 and 23 consistently 
expressed genes with intersection above four and three miRNAs 
were confirmed, respectively. Then taking the intersection of 
the genes screened by targetScore value for the four miRNAs 
and genes selected by differential expression. Consequently, 
34 optimal target genes associated with MM were identified 
(as showed in Fig. 2B). Besides, inspired by the above results, 
we used the Cytoscape software to construct the interaction 
network between miRNAs and target mRNAs. Consequently, 
the interaction network between mRNAs and miRNAs, 
including hsa-miR-99b, hsa-miR-20a, hsa-miR-148a and 

hsa-miR-21, was constructed (data not shown). Subsequently, 
we integrated mRNAs associated with these four miRNAs. As 
a result, the co-expressed genes between these miRNAs were 
displayed in Fig. 3, which showed that a miRNA regulated 
by multiple miRNAs may be closely associated with certain 
diseases. Furthermore, the optimal target genes (blue node) 
were screened out. It is worth mentioning that latent target genes 
among these interactions were validated (red node). There are 
consistently expressed genes between the optimal target genes 
and the validated genes, such as TGFBI, HIF1A, TGFBR2. 
Furthermore, the relevant biological parameter information, 
including P-value, targetScore, targetScanCS, targetScanPCT, 
and logFC, was filtered and listed in Table II.

Gene mutations in the MM. Identifying the mutated genes in 
MM is great promise for personalized treatment, whereby the 
patients who are associated with MM and occurred specific 
gene mutations would be considered using the appropriate 
targeted for treatment (15,16). In order to confirm the 
meaningfully mutated genes, Lohr et al (17) have selected 
203 patients with multiple myeloma to identify parallel 
sequencing of paired tumor/normal samples. Consequently, 
879 mutated genes associated with MM were verified (17). 
Then integrating the genes obtained by targetScore and the 
mutated genes, total of 41 consistently expressed genes were 

Figure 2. (Α) Identification of 147 possible target genes with at least 2 miRNAs intersection, and (B) 34 consistently expressed genes by the interaction of 
DEGs and targetScore value genes.

Table I. The relevant parameters of top 10 DEGs with the smallest P-value.

DEGs logFC AveExpr t P-value adj.P.Val B

RNASE2 -3.919468 8.845879 -17.63099 1.07E-39 1.33E-35 77.958873
CLC -4.696261 7.664386 -13.052750 3.72E-27 2.31E-23 50.463704
PRG3 -3.546961 8.184811 -12.19434 9.35E-25 3.88E-21 45.159977
RNASE3 -3.870937 8.008265 -10.85179 5.10E-21 1.59E-17 36.885963
PRG2 -5.654262 8.129576 -10.70904 1.27E-20 3.15E-17 36.011896
ELANE -4.391511 5.948464 -9.631113 1.12E-17 1.98E-14 29.480459
DEFA4 -2.035331 8.836430 -9.494378 2.61E-17 4.05E-14 28.663198
MPO -2.329628 7.083587 -9.196154 1.64E-16 2.26E-13 26.891907
LYVE1 -3.327286 6.777089 -8.601285 6.07E-15 7.55E-12 23.411790
EPX -2.80708 8.27019 -8.414076 1.86E-14 2.10E-11 22.333413
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extracted (as shown in Table Ⅲ), including 1 target gene with 
36 mutations, 2 target genes with 5 mutations, 5 target genes 
with 4 mutations, 5 target genes with 3 mutations, 10 target 

genes with 2 mutations and 18 target genes with 1 mutation. 
Furthermore, 5 optimal target genes (SYK, LCP1, HIF1A, 
ALDH1A1, MAFB) were confirmed by intersecting the genes 
in Tables II and Ⅲ, the venn plot of gene intersection was 
shown in Fig. 4.

Discussion

In order to seek for the causes and possible mechanisms of 
multiple myeloma formation and development, a large number 
of basic and clinical studies have been performed in the past 
few decades. However, the pathogenesis of MM is still unclear, 
and individual differences in treatment outcomes of MM are 
greater. In addition, the prognosis evaluation index cannot 
accurately reflect the complexity of the disease, causing a 
still high mortality of MM in the world (18). Therefore, it 
may be the key to effectively solve the clinical treatment 
problem by deeply studying the pathogenesis and prognostic 
factors of MM disease. Numerous studies have suggested that 
miRNAs have the potential for diagnosis and prognosis in 
cancers, and on the basis of cell properties and developmental 
stage of tumors, the expression profile of miRNAs can be 

Figure 3. Interaction network of co-expressed genes between mRNs and miRNAs. miRNAs are represented in yellow, mRNAs are represented in other colours 
(green, red and blue). Notably, the red nodes represent the genes that have been validated, and blue nodes are the optimal target genes.

Figure 4. Optimal target genes obtained by the intersection of the 34 DEGs 
and the 41 mutated genes.



ONCOLOGY LETTERS  17:  4375-4382,  2019 4379

used to distinguish cancer with higher accuracy (19,20). As 
a molecular biomarker of disease diagnosis, the abnormal 
expression of the miRNAs have been demonstrated to cause 
the drug resistance of MM cells (21). Therefore, mRNAs as 
the downstream part of miRNAs, the target genes associated 
with MM are considered for studying the mechanism of 
miRNAs in MM.

miR-21 as a member of oncogenic miRNAs, is aberrantly 
expressed in hematological malignancies, like myeloma (22). 
Similarly, the altered expression levels of other miRNAs 
(miR-148a, miR-99b and miR-20a) in MM patients have been 
investigated by Huang et al (23). Demonstrating that miR-21, 
miR-148a, miR-99b and miR-20a are potential prognostic 
biomarkers of MM disease, and their aberrant expression 
provides the possible potential for identification, classification 
and prognosis determination of the tumor. For example, the 

expression levels of miR-20a and miR-148a were associated 
with the prognosis of MM and the expression of miR-99b was 
affected by the karyotype of MM disease (23).

In this study, we used microarray technology to improve 
the demand for the genome-wide, and gene expression levels 
of 162 samples, including 73 new MM patients, 24 smoldering 
MM patients, relapsed MM patients and 15 normal donor 
controls, were adopted. Furthermore, a new target prediction 
algorithm called targetScore with high accuracy, that does 
not rely on the genetic conservatism was used. Eventually, 
approximately 22% (i.e. 147) predicted target genes regulated 
by at least 2 miRNAs were identified. Particularly, gene 
HLA-DPB1 is generally regulated by 4 miRNAs, which 
provides instructions for the preparation of proteins, and 
plays an important role in the immune system. Additionally, 
integrating the analysis of miRNAs-mRNAs expression data 

Table II. Analysis results of 34 optimal target genes selected by intersecting the targetScore and differential expression values.

Target genes logFC targetScanCS targetScanPCT targetScore P-value

SYK -2.396184 -0.03 0 0.547351 6.72E-06
KCTD12 -2.762166 0 -0.22 0.650777 4.82E-11
C1QA -2.595153 0 -0.22 0.643825 7.46E-08
P2RY13 -2.924695 -0.171 0 0.660584 1.17E-12
PRG2 -5.654262 0 0 0.402927 1.27E-20
TMEM156 -2.149213 0 -0.22 0.619641 7.75E-06
LUM -2.235238 -0.341 0 0.594835 0.000323
HLA-DPB1 -2.169956 0 -0.22 0.620972 2.44E-07
ANXA1 -2.117414 -0.248 0 0.564145 1.03E-05
HMOX1 -2.602141 -0.12 0 0.635262 5.02E-10
CXCL12 -2.248040 -0.079 -0.22 0.904481 3.30E-07
HLA-DPA1 -2.789554 0 -0.22 0.651823 5.23E-10
DPYSL2 -2.023163 -0.189 -0.9 0.800525 0.000448
PID1 -2.417350 -0.154 -0.06 0.904022 1.93E-07
ALDH1A1 -2.596302 -0.337 0 0.643168 1.34E-08
NRP1 -2.108773 -0.425 -0.8 0.891752 2.72E-12
TGFBI -3.190161 -0.346 -0.6 0.960319 5.87E-10
RNASE6 -3.864246 0 -0.04 0.657398 1.42E-06
EPX -2.80708 -0.107 0 0.627697 1.86E-14
PTPN22 -2.278062 0 -0.06 0.613351 1.55E-08
CD27 -2.420251 0 -0.05 0.634639 2.60E-07
LCP1 -2.049416 0 -0.07 0.612925 2.50E-06
GPR137B -2.67012 -0.126 -0.51 0.931729 6.99E-08
PDK4 -2.134344 -0.197 -0.57 0.894196 1.04E-06
HIF1A -2.091514 -0.179 -0.62 0.825931 1.12E-08
CLC -4.696261 0 0 0.400681 3.72E-27
CD5L -2.070227 -0.054 0 0.522844 5.17E-06
HIF1A -2.091514 -0.179 -0.62 0.825932 1.12E-08
RGS1 -2.269436 -0.112 -0.09 0.876758 0.000206
IGLV1-44 -4.651009 0 0 0.400512 2.34E-10
AHR -2.440098 -0.199 -0.03 0.779391 6.36E-06
MS4A6A -2.461868 -0.147 0 0.630938 4.39E-11
MAFB -3.830404 -0.376 -0.89 0.978761 6.50E-09
KLF4 -2.130986 -0.267 -0.38 0.893878 1.85E-06



XUE et al:  OPTIMAL TARGET GENES OF MULTIPLE MYELOMA4380

to predict optimal target genes, namely HLA-DPB1, P2RY13, 
DPYSL2, TGFBI, MS4A6A, KCTD12, TMEM156 and PDK4 
with larger differential expression and higher targetScore 
values (more than 0.5) are selected. As the optimal target 
genes, the interaction of the 8 genes with relevant miRNAs 
was shown in Fig. 3. It is worth mentioning that the inhibitory 
effect of TGFBI gene as the target gene for oncogenic miR-21 
has been verified by Lu et al (24).

For MM patients, the mutations of genes are commonly 
found in subclonal populations. Therefore, the mutated genes 
could become the partial strategy of the targeted treatment, 
and the importance of clinical treatment decisions has 
been reported (25). In this study, through the integration 
of the mutated genes in MM patients and genes predicted 
by targetScore algorithm, 41 possible target genes were 
selected (Table Ⅲ). Moreover, 13 optimal target genes with 

Table III. Characteristics of 41 consistently expressed genes obtained by integrating the targetScore values and mutations of 
genes.

miRNA Genes logFC Target-ScanCS Target-ScanPCT Target-Score Mutation

miR-148a NRAS -0.520168 -0.335 -0.88 0.555780 36
miR-148a ZFHX3 -0.757232 -0.118 -0.28 0.655262 5
miR-148a NID1 -0.729052 -0.157 -0.22 0.644748 5
miR-21 BCL7A -0.814101 -0.216 -0.34 0.465047 4
miR-148a DICER1 -0.500383 -0.15 -0.76 0.547017 4
miR-20a RB1 -1.164287 -0.036 -0.57 0.509868 4
miR-99b SHTN1 -1.687627 0 0 0.312160 3
miR-99b CAMTA1 -0.241022 -0.227 -0.11 0.445970 3
miR-20a SYNE1 -0.671450 -0.189 -0.72 0.442826 3
miR-148a CDKN1B -0.963022 -0.201 -0.83 0.717540 3
miR-20a CYLD -0.448714 -0.045 -0.37 0.406729 3
miR-21 ALDH1A1 -2.596302 -0.337 0 0.643168 2
miR-99b MMP8 -1.486319 0 0 0.301628 2
miR-148a MMP13 -1.390973 -0.365 -0.05 0.799989 2
miR-20a TNFRSF21 -0.767567 -0.283 -0.69 0.457822 2
miR-21 ZFP36L2 -0.738853 -0.122 -0.16 0.453354 2
miR-21 CD36 -1.595103 -0.066 -0.06 0.623486 2
miR-99b HIF1A -2.091514 0 0 0.329239 2
miR-20a PDGFRA -0.556430 -0.192 -0.9 0.424678 2
miR-99b MAF -1.499598 0 0 0.302369 4
miR-21 MEF2A -0.538136 -0.078 -0.06 0.421767 1
miR-148a MAP3K4 -0.472509 -0.366 -0.51 0.534801 1
miR-99b SGK1 -1.491325 0 0 0.301908 1
miR-148a IRS2 -1.239373 0 -0.24 0.536011 1
miR-21 SESN1 -0.851813 -0.097 -0.2 0.470898 1
miR-21 STAT3 -0.756632 -0.222 -0.29 0.456121 1
miR-148a ARL6IP1 -0.604213 -0.403 -0.85 0.593083 2
miR-99b SYK -2.396184 0 0 0.339027 1
miR-20a ANKRD12 -0.751340 -0.089 -0.9 0.455298 1
miR-21 TGFBR2 -0.634521 -0.115 -0.47 0.437027 1
miR-148a PBX1 -0.581344 -0.073 -0.05 0.582475 1
miR-148a CDH1 -1.284355 0 -0.05 0.540909 1
miR-21 KLF6 -1.196904 -0.105 -0.35 0.526831 1
miR-99b MAFB -3.830404 0 0 0.362044 4
miR-148a MED12 -0.485766 -0.163 -0.11 0.540587 1
miR-20a DUSP2 -1.228701 -0.364 -0.96 0.532599 2
miR-99b LCP1 -2.049416 0 0 0.327691 1
miR-20a SHOC2 -0.403998 -0.089 -0.56 0.400203 1
miR-148a TBL1XR1 -0.447336 -0.121 -0.58 0.523952 1
miR-99b LMO2 -1.828608 0 0 0.318704 1
miR-148a EPAS1 -0.983346 -0.152 -0.65 0.722513 1
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more than mutations were selected from the 41 possible target 
genes, including NRAS, ZFHX3, NIDI, BCL7A, DICER1, 
RBI, SHYN1, CAMTA1, SYNE1, CDKN1B, CYLD, MAF 
and MAFB. Specifically, mutations occur frequently in NRAS 
gene, and the number of mutations even reached 36, which 
could cause the cell malignant proliferation and metastasis. In 
addition, studies have shown that the low expression of CYLD 
with a mutation number of 3 is related to disease development 
from monoclonal gammopathy of undetermined significance 
to MM, and the functional detection results indicated that 
the expression of CYLD suppresses the cell proliferation 
and survival of MM disease (26). It is worth mentioning that 
the function mechanism of RBI gene on the tumor has been 
studied, and the results revealed that RBI can be considered 
as the anti-proliferative target of miR-20a (27). Besides, 
in these 41 possible target genes, the targeted functions of 
HIF1A and TGFBR2 on the miR-20a and miR-21 have been 
studied (28,29). Therefore, the above analysis shows that the 
target genes predicted by the targetScore algorithm have a 
higher accuracy.

Our present study revealed the potential target genes of 
miRNAs associated with MM. The biological information 
of relevant target genes was obtained by the GEO database 
and a novel target prediction approach called targetScore. We 
integrated the sequence information and expression profile 
of genes and then we further computed the targetScore value 
of the obtained genes using VB-GMM method. Eventually, a 
total of 121,18 and 154 possible target genes of the miRNAs, 
miR-21, miR-99b and miR-20a with targetScore value >0.4, 
respectively, were detected. Particularly, the number of 
predicted target genes for miRNAs with targetScore >0.5 
reached 312. And 147 target genes were targeted by at least 
2 miRNAs, where 34 of these 147 target genes with larger 
differential expression were selected. Furthermore, 41 target 
genes were screened out by the intersection of the mutated 
genes and genes obtained by targetScore algorithm, and three 
genes, RBI, HIF1A and TGFBR2 as the targets of miR-20a, 
miR-21 have been validated. However, the functional effect of 
target genes obtained in the present study on the pathogenesis 
of miRNAs in MM is not clear, so the pathway and GO enrich-
ment analysis of targets in MM is necessary.
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