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ABSTRACT: Over the past decade, chemists have embraced
visible-light photoredox catalysis due to its remarkable ability to
activate small molecules. Broadly, these methods employ metal
complexes or organic dyes to convert visible light into chemical
energy. Unfortunately, the excitation of widely utilized Ru and Ir
chromophores is energetically wasteful as ∼25% of light energy is
lost thermally before being quenched productively. Hence,
photoredox methodologies require high-energy, intense light to
accommodate said catalytic inefficiency. Herein, we report
photocatalysts which cleanly convert near-infrared (NIR) and
deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin−orbit coupling (SOC) of
Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0).
Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions
which usually require 15−50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR
photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.

■ INTRODUCTION

The renaissance of synthetic photochemistry in recent years
has emerged from major advances in our understanding of the
photophysical principles that dictate the interplay between
light and matter. While traditional photochemistry relies on the
photoexcitation of stoichiometric reagents to overcome
challenging thermodynamic barriers, modern photoredox
catalysis uses a photon-absorbing moleculea photocata-
lystto create electronically excited states capable of redox or
energy transfer reactions.1,2 While synthetic photoredox
continues to revolutionize organic chemistry and beyond, key
weaknesses remain, including reaction scalability, functional
group selectivity, and catalyst robustness.3

One major advance toward improving the scalability of
photocatalytic reactions is flow chemistry, in which parallel
microreactors overcome the limitations of photon attenuation
as described by the Bouguer−Lambert−Beer (BLB) law.4

While this strategy is a viable solution from an engineering
perspective, it does not address the fundamental inefficiencies
inherent to the photocatalysts’ photophysical processes.5 There
are two major issuesfirst, light penetration into reaction
medium is limited by large extinction coefficients (ε)
associated with the photoexcitation of the photocatalyst’s
ground state to excited singlet state (S0 → S1 transition) via
metal-to-ligand charge transfer (MLCT). For reference, the ε
of [Ru(bpy)3]

2+ is very large at ∼14 400 M−1 cm−1 (450 nm).
Second, accessing the catalytically relevant MLCT triplet state
(T1) requires spin-forbidden intersystem crossing (ISC) from
excited singlet to excited triplet state (S1 to T1), which is

mediated by spin−orbit coupling (SOC) (Figure 1a). While
rapid and efficient ISC is present for many Ru(II) and Ir(III)
photocatalysts, it remains a wasteful nonadiabatic process for
photoredox with ∼15−25 kcal/mol lost thermally to solvent.6

We hypothesize that we could bypass these fundamental
issues by leveraging a spin-forbidden S0 → T1 excitation
(Figure 1b). S0 → T1 excitation has been reported for Ru(II),7

Ir(III),8 and Fe(II),9 but with inconsequential extinction
coefficients for photoredox catalysis. While this concept has
been applied to excitation of reagents,10,11 identifying new
photocatalysts with strong SOC will allow direct access to
long-lived redox-active T1 states via S0 → T1 excitation and
minimize ISC-specific energy loss. Fundamentally, this creates
a two-state system paradigm for transition metal-based
photoredox catalysis by direct S0 → T1 excitation, obviating
the limitations associated with accessing the T1 state by initial
S0 → S1 excitation.

6

Os(II) polypyridyl complexes (Figure 1b) display significant
S0 → T1 excitation in the DR and NIR regions (660−800
nm)12 which is typically attributed to strong SOC induced by
Os. When compared to Ru(II) tris-bipyridyl species, Os(II)
analogues have relatively shorter excited state lifetimes (τ =
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600 ns for Ru(bpy)3
2+ vs 19 ns for Os(bpy)3

2+ in water13) due
to SOC effects14 and energy gap considerations.15 However,
Os-based bis-terpyridines have dramatically improved emission
lifetimes relative to their Ru congeners (τ = 250 ps for

Ru(tpy)2
2+ vs 269 ns for Os(tpy)2

2+ in MeCN16) due to a large
energy gap between the 3MLCT and deactivating 3MC (metal
centered triplet) states.17 While the luminescence quantum
yield for Os(tpy)2

2+ is slightly lower than for Ru(bpy)3
2+,18

these complexes have been used as triplet sensitizers for singlet
oxygen generation19 and for photon upconversion.20 Their use
as photoredox catalysts has yet to be examined and would be
interesting due to their red-centered maximum absorption,
which enables high solution penetration, as dictated by the
BLB law (ε ∼ 500 M−1 cm−1 (740 nm), which is ∼30× lower
than [Ru(bpy)3]

2+ at 450 nm). Thus, we envisioned that
Os(II) chromophores could catalyze photoredox reactions
with improved light penetration (Figure 1c) and a broader
material penetration profile21,22a particularly attractive tool
for the emerging fields of photopolymerization23 and photo-
enzymatic catalysis.24 For instance, NIR light will penetrate up
to 200% further than blue light through most tissues with
minimal phototoxicity, which lends itself well to materials
applications.22

■ RESULTS AND DISCUSSION

We began our studies using Os(bptpy)2(PF6)2 (Os3) as the
photocatalyst (Figure 2) and performed reactions under NIR
light irradiation (Figure 3a). While there are several examples
of NIR photoredox catalysis or NIR-initiated photopolymeri-
zation25−28 using high-powered LEDs, the bulk of photoredox
catalysis requires blue or near-UV light. Notably, a recent
paper from Gianetti29 describes a helical carbenium photo-
catalyst for red light driven photoredox catalysis (640 nm).
To elucidate the disparity of visible vs NIR light driven

reactions, we draw comparisons to Ru(bpy)3(PF6)2 which
absorbs blue light (63.3 kcal/mol) with high efficiency.
However, during ISC it loses 16.8 kcal/mol providing T1
energy of 46.5 kcal/mol, which is similar to the T1 energy of
Os3 (40.8 kcal/mol) (Figure 1a,b). From a purely energetic
standpoint, this rationalizes the wide oxidizing and reducing
capabilities of our NIR photoredox platform despite longer-
wavelength light stimulus.
We were excited to achieve a variety of photopolymeriza-

tions, ranging from cationic polymerization of cyclohexene
oxide (CHO) 2,30 atom transfer radical polymerization of 5
(ATRP),31 or reversible addition−fragmentation chain transfer
polymerization (RAFT) of methyl methacrylate (MMA) 827

Figure 1. (a) Jablonski schematic for [Ru(bpy)3]
2+. (b) Schematic

depicting a S0 → T1 excitation. (c) Comparison of blue and NIR light
penetration.

Figure 2. Selected scope of photocatalysts with S0 → T1 transition and their respective redox potentials vs Ag/AgCl in MeCN. Note: The Os(II)*/
Os(I) redox couple represents a ligand-centered reduction.
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(Figure 3a). We next explored transformations that proved

challenging with our recently reported method employing

triplet fusion upconversion for NIR photoredox catalysis.32 We

found that NIR-irradiated Os3 is capable of catalyzing alkene

chlorotrifluoromethylation33 of 13 in 81% yield. To test the

catalyst’s stability (Figure S2) under oxidative conditions, we

also performed aryl boronic acid oxidation34 and oxygen

sensitization (Figure 3b).35 A more oxidizing dipyrimidine

Figure 3. (a) Polymerizations achieved with NIR light. (b) Scope of oxidative and reductive photoredox reactions (yields with * determined by 1H
NMR). (c) Scope of metallaphotoredox reactions including Cu, Co, Ni, and Pd. See Figure S7 for a comparison to original published conditions.

Figure 4. (a) Light penetration comparison of 450 and 740 nm light into reaction mixture. (b) Comparison of 450 nm with Ru(bpy)3(PF6)2 and
740 nm light with Os4 at increasing reaction scale.
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scaffold (Os1) catalyzes a cation radical [2 + 2] cyclo-
addition,36 an intramolecular Smiles reaction,37 and radical
methylation.38 In particular, the Smiles reaction is known to be
radical-initiated by direct blue light irradiation.39 No rearrange-
ment is observed using NIR light in the absence of Os which
eliminates the possibility of a light-activated radical initiation
pathway.
Next, we directed our attention on achieving NIR-metal-

laphotoredox to expand our scope to cross-couplings, C−H
functionalization, and cycloadditions. We observed that NIR
irradiation of Os3 induces the Cu-click reaction.28 The lack of
azide radical decomposition of 24 to benzyl amine40 is
promising for chemical biology applications41 as this
undesirable pathway is observed under high-energy light
irradiation42 (Figure 3c). While we found Os3 to be a
competent photocatalyst for the Cu-click, it inefficiently
activates Co(II) and Pd(II) complexes. Thus, we tuned the
terpyridine ligand scaffold to obtain the necessary reduction
potentials required to activate Co and Pd (Table S1). We find
that Os(tpy)2(PF6)2 (Os4) is 120 mV more reducing and
enables Pd-catalyzed C−H arylation43 and Co-catalyzed [2 + 2
+ 2] cycloaddition of alkynes44 (Figure 3c). Importantly,
diazonium 31, Pd, and Co intermediates are all competent
chromophores for blue light absorption;45,46 however, using
NIR light to selectively activate Os4 circumvents light-initiated
substrate degradation47 and enables lowering of catalyst
loading (see Figure S7).
Ni-metallaphotoredox is particularly impactful,48 yet we

determined that Os1−Os4 are unable to accomplish Ni(II)/
Ni(I) reduction. To address this, we turned to trisleptic Os(II)
complexes which possess a S0 → T1 excitation in the deep red
(DR) region. Os(phen)3(PF6)2 (Os5) enables Ni-catalyzed
Buchwald−Hartwig cross-coupling of aryl bromides and
amines49 under DR irradiation. In light of recent work
addressing poor batch scale performance of Ru(bpy)3(PF6)2
under blue light conditions, this is a particularly exciting area of
potential impact.50,51 The reactions described above demon-
strate novel Os and NIR photoredox catalysis, which are
performed with up to 200× lower catalyst loadings compared
to the literature precedent (for comparisons, see Figure S7).
To highlight the utility of this platform, we investigated the

application of Os(II) photocatalysts to reactions in batch. We
used Stephenson’s arene trifluoromethylation as the model
reaction as it has been studied in batch and flow52,53 with blue
light. Photoredox reactions are typically slower and lower
yielding on large scale due to limited light penetration as
dictated by the BLB law. As the size of reaction vessels
increase, the irradiated surface area to volume ratio decreases
such that photon exposure is limiting. While plug flow reactors
maximize light penetration and improve reaction rates on
kilograms/day scale,54 their suitability toward commercial
manufacturing is still limited.55 From an industrial application
perspective, the ability to use batch reactors is incredibly
advantageous as it does not require specialized equipment and
can be easily implemented in any multipurpose facility.
Our Os catalysts have lower extinction coefficients in the

NIR and DR (∼500 and ∼3500 M−1 cm−1, respectively)
(Figure 4a) and bypass the energy losses associated with ISC
rendering them more suitable for large-scale reactions in batch
reactors. For example, using a catalyst concentration of 0.2 mM
and the experimentally determined ε values at 450 and 740
nm, we estimate that NIR light penetrates approximately 23-
fold further into reaction solution than blue light (Figure 4a).56

According to the BLB law, NIR light should penetrate 12 cm
into reaction solution before 90% of its power is absorbed by
the reaction mixture, whereas blue light can only penetrate
0.52 cm (Figure S5).
We performed Stephenson’s trifluoromethylation on various

reaction scales (Figure 4b) with Ru(bpy)3(PF6)2 excited by
450 nm light and Os4 excited by 740 nm light. When blue light
and Ru(bpy)3(PF6)2 are used, we observe the yield decrease
with increasing reaction scale, aligning with Stephenson’s
results. However, when Os4 and 740 nm light are used, we
observe the yield maintain or increase on larger reaction scale.
We also see an increase in the yield with higher catalyst loading
of Os on small scale (2 mol % Os4, 65% yield on 1 mmol
scale), in contrast to recent findings in which high-powered
laser driven flow chemistry alongside decreased catalyst loading
was used to improve blue light harvesting within a CTSR.55

These findings highlight advantages of Os4’s NIR S0 → T1
excitation which allows deeper light penetration into the
medium.
To fully demonstrate the scalability of our NIR photoredox

platform, we opted to test this system on a 1 mol scale to
showcase this technology in batch-mode. Inherently, the vessel
required to accommodate the 1 mol scale has a large cross-
sectional area (22.5 cm outer diameter) and remains a
significant challenge for blue light excitation. As diagrammed
in Figure 5, we aligned the lamps in an X-like formation around
the reactor, which was affixed with overhead stirring, an

Figure 5. Trifluoromethylation performed on a 1 mol scale in a batch
reactor provided 62.6% yield (see the SI).
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internal temperature probe, condenser, N2 sparge line, and
sampling line. Upon performing the scale-up with NIR light,
we obtained a 62% yield after 22 h of irradiation with eight 740
nm lamps. The reaction stream is dark in color and is
conducted at a high concentration (0.4 M). Surprisingly, the
yield surpasses the yield obtained on the 10 mmol scale
(∼50%) after just 6 h of irradiation.
We find the successful scale-up result fascinating since the

photon flux on large scale is dramatically decreased compared
to the 10 mmol scale. As previously reported and described,52

scaling light irradiance proportionally to reaction volume in a
batch reactor is a tremendous challenge. For example, to
theoretically maintain the same photon flux on a 1 mol scale
from a 10 mmol scale, we would require 200 lamps spaced
around the reactor (see Figure S8). However, with just 8
lamps, we observe comparable or increased yields.57 Taken
together, this result demonstrates an excellent proof of concept
for scalable photoredox catalysis amenable to batch reactors.
By targeting the NIR S0 → T1 excitation, we demonstrate

the photophysical advantages of a two-state photoredox system
where direct activation of T1 from S0 is made possible by SOC.
This is broadly applicable across a variety of oxidative and
reductive synthesis, photopolymerization, and metallaphotor-
edox. Ongoing studies aim to redesign photocatalysts to boost
the S0 → T1 transition, which should improve energy efficiency
of catalyst excitation, scalability, and excitation selectivity. We
believe these findings will lead to the discovery of new
reactions and applications of DR/NIR photoredox catalysis.
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