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Abstract: In recent years, there has been increasing evidence that gut microbiota is associated with
the onset and exacerbation of various diseases, such as gastrointestinal cancer. For instance, it is
well known that local inflammation of the intestinal tract in colorectal cancer that is caused by the
increased number of Fusobacterium, due to changes in the intestinal bacterial flora, is involved in
carcinogenesis. In contrast, gut bacteria or their products, pathogen-associated molecular patterns,
not only cause intestinal inflammation but also invade the bloodstream through dysbiosis and gut
barrier dysfunction, thereby leading to systemic inflammation, namely bacterial translocation. The
involvement of bacterial translocation in the carcinogenesis of gastrointestinal cancers and their
prognosis is increasingly being recognized. The Toll-like receptor signaling pathways plays an
important role in the carcinogenesis of such cancers. In addition, bacterial translocation influences
the treatment of cancers such as surgery and chemotherapy. In this review, we outline the concept of
bacterial translocation, summarize the current knowledge on the relationship between gut bacteria
and gastrointestinal cancer, and provide future perspectives of this field.

Keywords: bacterial translocation; gastrointestinal cancer; synbiotics; pathogen-associated
molecular patterns

1. Introduction

In recent years, many gut bacterial species and metabolites correlated with carcinogen-
esis have been identified. Several studies have also reported about the involvement of gut
bacteria in carcinogenesis outside the gastrointestinal tract, including the hematopoietic
system [1,2]. In humans, the highest abundance of commensal bacteria is found in the
colon [3]. Among all the gut bacteria, those belonging to the genus Fusobacterium have
been extensively studied for their possible association with colorectal cancer [4]. The
transplantation of Fusarium nucleatum into mice alters the tumor microenvironment and
activates E-cadherin and β-catenin signaling, which leads to the regulation of the oncogenic
response [1]. Patients with colon cancer who have a high amount of F. nucleatum have been
reported to have a poorer prognosis [5].

The relationship between gut microbe-induced inflammation and carcinogenesis has
recently emerged as a topic of interest. For instance, lipopolysaccharides (LPSs) are report-
edly involved in the carcinogenesis of colorectal cancer through the activation of nuclear
factor kappa B (NF-κB) and β-catenin via Toll-like receptor (TLR) 4 in the gut, which is
predominantly colonized by gram-negative bacilli [6,7]. In other words, LPS, as a typical
example of pathogen-associated molecular patterns (PAMPs), and TLR4, as a pattern recog-
nition receptor (PRR), can initiate signaling pathways that subsequently activate a series of
immune and inflammatory responses in the host that are induced by microbial infection as
well as carcinogenesis (Figure 1) [8,9].
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Figure 1. TLR4/MyD88/NF-κB pathway involved in the carcinogenesis of colorectal cancer. LPS, 
lipopolysaccharide; TLR, Toll-like receptor; IRAK, IL-1 receptor associated kinase; TAK1, trans-
forming growth factor β activated kinase 1; IKK, IκB kinase. 

The association between local inflammation of the gastrointestinal tract and gastroin-
testinal cancer is adequately established; moreover, bacterial translocation, a type of sys-
temic inflammation caused by gut bacteria, has now been shown to be associated with gas-
trointestinal cancer. The concept of bacterial translocation was defined by Berg et al. as “the 
passage of viable bacteria from the gastrointestinal tract through the epithelial mucosa into 
the lamina propria and then to the mesenteric lymph nodes and possible other organs” [10]. 
Gastrointestinal cancer itself is also a cause of bacterial translocation, and it is important to 
prevent and treat bacterial translocation to terminate the negative feedback loop between 
bacterial translocation and gastrointestinal cancer. In addition, systemic infections caused 
by bacterial translocation can contribute to a delay in cancer treatment. 

In this review, we have summarized the current knowledge on bacterial translocation 
and gastrointestinal cancer, including treatment strategies for bacterial translocation. We 
have also provided an outlook on the desired future treatments. 

2. Search Strategy 
In this study, the PubMed/Medline database was searched for articles published from 

1974 to 2021. The search terms were as follows: “bacterial translocation” and “cancer (or car-
cinoma).” From 266 manuscripts searched in the literature database, 64 were selected for this 
review. Any literature on oral bacteria and cancers other than gastrointestinal cancer was ex-
cluded. As their contents were not applicable to this review, 193 manuscripts were excluded. 
In addition, nine manuscripts were excluded because they were not written in English. Fur-
thermore, the articles cited in the references of the selected articles were reviewed. 

3. Pathogen-Associated Molecular Patterns 
The intestinal tract is one of the largest immune organs in the body with gut-associ-

ated lymphoid tissue and contains lymphocytes, plasma cells, and macrophages, which 
produce mediators such as cytokines. In the past, the clinical diagnosis of bacterial trans-
location required culture detection of enteric bacteria from the bloodstream and mesen-
teric lymph nodes. However, even if bacteria are not identified in the blood or tissues, 
systemic inflammation may be triggered via the production of mediators from the intes-
tinal tract. There are two main types of stimulants that are involved in the initiation of 
events in inflammation: PAMPs, which are components of bacteria and viruses; and dam-
age-associated molecular patterns (DAMPs), such as high-mobility group box chromoso-
mal protein 1, which are released by damaged cells and the extracellular matrix [11].  

Figure 1. TLR4/MyD88/NF-κB pathway involved in the carcinogenesis of colorectal cancer. LPS,
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The association between local inflammation of the gastrointestinal tract and gas-
trointestinal cancer is adequately established; moreover, bacterial translocation, a type
of systemic inflammation caused by gut bacteria, has now been shown to be associated
with gastrointestinal cancer. The concept of bacterial translocation was defined by Berg
et al. as “the passage of viable bacteria from the gastrointestinal tract through the epithelial
mucosa into the lamina propria and then to the mesenteric lymph nodes and possible other
organs” [10]. Gastrointestinal cancer itself is also a cause of bacterial translocation, and it is
important to prevent and treat bacterial translocation to terminate the negative feedback
loop between bacterial translocation and gastrointestinal cancer. In addition, systemic
infections caused by bacterial translocation can contribute to a delay in cancer treatment.

In this review, we have summarized the current knowledge on bacterial translocation
and gastrointestinal cancer, including treatment strategies for bacterial translocation. We
have also provided an outlook on the desired future treatments.

2. Search Strategy

In this study, the PubMed/Medline database was searched for articles published from
1974 to 2021. The search terms were as follows: “bacterial translocation” and “cancer (or
carcinoma).” From 266 manuscripts searched in the literature database, 64 were selected
for this review. Any literature on oral bacteria and cancers other than gastrointestinal
cancer was excluded. As their contents were not applicable to this review, 193 manuscripts
were excluded. In addition, nine manuscripts were excluded because they were not
written in English. Furthermore, the articles cited in the references of the selected articles
were reviewed.

3. Pathogen-Associated Molecular Patterns

The intestinal tract is one of the largest immune organs in the body with gut-associated
lymphoid tissue and contains lymphocytes, plasma cells, and macrophages, which produce
mediators such as cytokines. In the past, the clinical diagnosis of bacterial translocation
required culture detection of enteric bacteria from the bloodstream and mesenteric lymph
nodes. However, even if bacteria are not identified in the blood or tissues, systemic inflam-
mation may be triggered via the production of mediators from the intestinal tract. There are
two main types of stimulants that are involved in the initiation of events in inflammation:
PAMPs, which are components of bacteria and viruses; and damage-associated molecular
patterns (DAMPs), such as high-mobility group box chromosomal protein 1, which are
released by damaged cells and the extracellular matrix [11].

In recent years, the concept of bacterial translocation has evolved to include not only
the translocation of bacteria and endotoxins but also the translocation of PAMPs and
DAMPs [12,13]. Indeed, microbial-specific DNA has been detected using polymerase chain
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reaction (PCR) techniques in the blood of patients after highly invasive surgeries, such as
hepatectomy and esophagectomy, and such techniques were shown to be more sensitive
than blood culture for providing confirmation of bacterial translocation [14,15]. Therefore,
the concept of bacterial translocation is changing; previously, it was considered to relate
to the entry of enteric bacteria into the bloodstream and tissues. However, this may be
interpreted as triggering a systemic inflammatory response via intestinal immune cells by
gut bacteria. This change, which expands the concept of bacterial translocation to include
PAMPs and DAMPs, may aid in understanding the pathogenesis of some cases that have
troubled clinicians in the past, wherein bacterial translocation was suspected but could not
be diagnosed because the blood cultures were negative.

4. Pattern Recognition Receptors

Shared receptors, including membrane-bound or endosomal PRRs, have been iden-
tified for PAMPs and DAMPs. PRRs can detect the presence of bacterial products and
trigger intracellular signaling cascades that result in an inflammatory response [16]. PRRs
include TLRs, nucleotide-binding oligomerization domain (NOD)-like receptors, retinoic
acid-inducible gene I (RIG-I)-like receptors (RLRs), and C-type lectin receptors. PRRs are
expressed by various types of immune cells such as macrophages, neutrophils, monocytes,
and dendritic cells (Figure 2).
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Figure 2. Mechanisms by which gut bacteria induce inflammatory and immune responses via PAMPs
and PRRs. PAMPs, pattern recognition receptors; LPS, lipopolysaccharide; PRRs; pattern recognition
receptors; TLRs, Toll-like receptors; NLR, NOD-like receptors; RLR, RIG-I-like receptors.

Immune cells use the TLRs expressed on the cell surface to recognize bacteria. There
are 10 functional TLRs in humans (TLR1–10) and each TLR recognizes and binds to a
different PAMP as a ligand. Because gut bacteria are composed of LPS, peptidoglycan,
flagellin, and CpG DNA, it is believed that they are recognized by immune cells via TLRs.
Peptidoglycan is recognized by TLR2, LPS is recognized by TLR4, flagellin is recognized
by TLR5, and CpG DNA is recognized by TLR9. Table 1 presents the exogenous and
endogenous ligands of TLRs (Table 1). Mice lacking myeloid differentiation primary-
response protein 88 (MyD88), a downstream signaling molecule of TLRs, not only present
with low levels of intestinal IgA antibody but also exhibit reduced mucus acidity, intestinal
epithelial cell proliferation, and antimicrobial substance production. This indicates the
importance of the recognition of gut bacteria by TLRs [17].
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TLR2 recognizes the most diverse range of ligands among all TLRs and responds not
only to PAMPs but also to DAMPs. This broad response is attributed to the fact that TLR2
forms a heterodimer with TLR1 and TLR6. The TLR2 heterodimer induces an intracellular
signaling cascade that leads to the MyD88-dependent activation of activator protein-1 and
NF-κB and the formation of inflammasomes [18]. TLR4 is a receptor for gram-negative
LPS and its main PAMP lipid A. In response to LPS, TLR4 interacts with three different
extracellular proteins: LPS-binding protein, cluster of differentiation (CD)14, and myeloid
differentiation protein 2. TLR4 signaling involves two pathways: the MyD88-dependent
pathway and the MyD88-independent pathway. In the MyD88-independent pathway, the
Toll-interleukin-1 receptor domain-containing adaptor inducing the interferon (IFN)-β-
related adaptor molecule leads to IFN-β production and IFN-inducible gene expression via
the activation of IFN-regulatory factor 3 [19].

The cell surface receptor TLR5 forms homodimers and recognizes flagellin, a major
component of bacterial flagellar filaments, in both gram-positive and gram-negative bacte-
ria. TLR5 activation induces the production of proinflammatory cytokines through signal
transduction via MyD88. Depending on the cell type, TLR5 and flagellin elicit different
innate immune responses. The TLR5–flagellin interaction induces the production of high
levels of IL-8 in epithelial cells but causes the secretion of proinflammatory cytokines,
such as tumor necrosis factor (TNF), in monocytes and dendritic cells [20,21]. TLR9 is
expressed within the endosomal compartments and recognizes a specific unmethylated
CpG-oligodeoxynucleotide sequence that distinguishes microbial DNA from mammalian
DNA. Similar to many other TLRs, TLR9 signaling is MyD88-dependent and acts on the
transcription factors activator protein-1, NF-κB, and IFN-regulatory factor 7 [22].

Table 1. Exogenous and endogenous ligands of Toll-like receptors (TLR) and main gastrointestinal
cancers implicated in TLRs.

TLRs Exogenous Ligands Endogenous Ligands Cancer Citation

TLR1 Triacyl lipopeptide,
LPS, Peptidoglycan HSP, HMGB1, and Proteoglycans

TLR 2 LPS, Peptidoglycan HSP, HMGB1, Proteoglycans GC, CRC [23,24]

TLR 3 Double-stranded RNA mRNA and tRNA EAC, ESCC [25,26]

TLR 4 LPS

Fibronectin, Polysaccharide
fragments of heparan sulfate,

HSP, Surfactant protein A in the
lung epithelium 1, Neutrophil

elastase, HMGB1, Biglycan

EAC, ESCC, GC, CRC [27–30]

TLR 5 Flagellin GC, CRC [31,32]

TLR 6 Diacyl lipopeptide, Zymosan CRC [33]

TLR 7 Single-stranded RNA Single-stranded RNA complex EAC, ESCC, CRC [25,34,35]

TLR 8
Single-stranded RNA,

imidazoquinolines,
guanosine analogs

Single-stranded RNA complex EAC, CRC [25,35]

TLR 9 Unmethylated CpG DNA Chromatin–IgG complex ESCC, GC, CRC [34,36,37]

TLR 10 HIV-1 proteins

TLR 11 Uropathogenic Escherichia coli

LPS, lipopolysaccharide; HSP, heat shock proteins; HMGB1, high-mobility group protein 1; GC, gastric cancer;
EAC, esophageal adenocarcinoma; ESCC, esophageal squamous cell carcinoma; CRC, colorectal cancer.

With the advancement of immunological research, many new adjuvants have been
developed. In particular, the usefulness of TLR ligands as therapeutic medicine has already
been investigated in many clinical trials. For instance, monophosphoryl lipid A, a TLR4
ligand, has been used as a vaccine adjuvant for cervical cancer. In addition, imiquimod,
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a TLR7 agonist, is effective against basal cell carcinoma. TLRs may contribute to cancer
therapeutics or vaccine adjuvants [38,39].

Recent findings indicate an association with gastrointestinal cancers in other PRRs as
well. The NOD-like receptor family recognizes non-self signals, activates NF-κB, and binds
to caspase-1, resulting in the formation of a complex known as the inflammasome. Inflam-
masomes activate proinflammatory cytokine signaling and are involved in maintaining
gut microbiota [40,41]. NF-κB plays a central role in NLR-mediated inflammation and car-
cinogenesis of gastrointestinal cancers, particularly in inflammatory bowel disease-related
colorectal cancer [42,43].

Unlike TLRs, RIG-I-like receptors recognize virus-derived non-self RNA in the cyto-
plasm and induce the production of IFNs and proinflammatory cytokines [44]. A member
of the RIG-I-like receptors, RIG-I, has attracted attention for its antitumor activity. RIG-I-
deficient mice were reported to be susceptible to colitis-associated colorectal cancer, with
reduced IgA and regenerating islet-derived protein 3 gamma levels, and disrupted intesti-
nal microbiota [45]. In addition, Poly(I:C), which is an agonist RLR, induces apoptotic
signaling pathways in human gastric adenocarcinoma cells [46].

C-type lectin-like receptors have various functions, such as cell adhesion, phagocy-
tosis, complement activation, and innate immune responses, and recognize DAMPs and
PAMPs on the surface of fungi, bacteria, and viruses [47]. Lectin-like oxidized low density
lipoprotein receptor-1, one of the C-type lectin-like receptors, promotes the migration and
invasion of gastric cancer cells and is overexpressed in human colon cancers [48,49].

5. Bacterial Translocation and Carcinogenesis

As mentioned in the introduction, evidence on the relationship between intestinal
bacteria and the carcinogenesis of gastrointestinal cancers is beginning to accumulate.
However, in the carcinogenesis of gastrointestinal cancers in which intestinal bacteria are
indigenous, showing the extent to which bacterial translocation is involved is challenging.
Many studies have been conducted on gut microbiota and cancer of the liver and pancreas,
which is an organ located outside the gastrointestinal tract. Unlike gastrointestinal cancers,
which are driven by changes in the local environment that result from dysbiosis and
chronic inflammation, liver and pancreatic cancers are more likely to be associated with
bacterial translocation.

The liver is an organ that receives portal blood flow from the gastrointestinal tract,
and the relationship between chronic liver disease and gut bacteria has been adequately
characterized. A metagenomic analysis revealed that chronic liver disease was associated
with dysbiosis of the gut microbiota [50]. A previous report showed that knockout mice
lacking functional TLR-4 and sterilized with non-absorbable antibiotics in the intestinal
tract have reduced levels of adiposity, oxidative stress, and liver inflammation [51]. The
development of hepatocellular carcinoma (HCC) is closely associated with chronic inflam-
mation, including hepatitis C virus infection and the consumption of alcohol. In addition,
patients with nonalcoholic fatty liver disease, a liver disease that precedes HCC, have been
shown to have higher levels of LPS and LPS-binding protein [52].

It has been suggested that LPS and flagellin cause inflammation and oxidative stress
in the liver and promote HCC in animals [53,54]. Similarly, flagellin in high doses activates
TLR5 signaling, which is involved in inflammation and oxidative stress, and contributes
to the progression and severity of liver injury [55]. Furthermore, it was reported that
the epithelial-to-mesenchymal transition in HCC cells could be induced by LPS [56]. In
addition, a positive association between the response of IgA and IgG antibodies to LPS
and flagellin and the risk of HCC in humans has been determined from multicenter
studies [57,58]. In other words, the disruption of gut microbiota has the ability to promote
the growth of endotoxin-producing bacteria and a leaky gut, ultimately transferring bacteria
and bacterial metabolites to the liver, and inducing liver damage and carcinogenesis via
the activation of the TLR-4 and NF-κB pathways [59,60].
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In the study of pancreatic cancer, the presence of bacterial flora, including Fusobac-
terium, has been demonstrated in the tissues of patients with pancreatic ductal adenocarci-
noma (PDAC), although most of the normal pancreatic tissue was found to be sterile [61].
Survival after PDAC surgery can be correlated with the composition of the tumor micro-
biome [62]. Bacterial dysbiosis associated with PDAC reportedly results in the suppression
of both innate and adaptive immune systems [63]. The underlying mechanism for this was
believed to be that PAMPs from gut bacteria activate TLR2 and TLR5 in tumor-associated
macrophages, inducing a decrease in CD8+ cells and an increase in myeloid-derived sup-
pressor cells. In addition, it was reported that fungi migrating from the gut lumen to the
pancreas were involved in the pathogenesis of PDAC [64]. The ablation of the mycobiome
has been shown to inhibit the progression of PDAC. In particular, Malassezia species are
strongly involved in the progression of PDAC; their transfer from the intestinal tract into
tumors is believed to cause the activation of complement C3 via a mannose-binding lectin,
which binds to the glycans of the fungal wall, leading to tumor growth.

The discovery of the involvement of gut bacteria in cancer of the pancreas, which was
believed to be a sterile organ, has been instrumental in identifying the relationship between
bacterial translocation and carcinogenesis, which is now expected to be examined from the
perspective of the relationship between carcinogenesis prevention and gut microbiota.

It is difficult to directly and clearly ascertain whether gastrointestinal cancer is caused
by local inflammation or the bacterial translocation of gut microbiota. However, in patients
with colorectal cancer, distant metastasis has been shown to be considerably more com-
mon in patients with high serum level of procalcitonin. [65] Procalcitonin is expressed by
bacterial pathogens in multiple organs and is a clinically important biomarker to indicate
the presence of bacterial infection [66]. Some reports have shown that procalcitonin and
IL-6 are associated with the liver metastasis of cancer [67]. It is not surprising that bacterial
translocation is involved in the hematogenous metastasis of gastrointestinal cancers, just as
bacterial translocation is involved in the development of liver and pancreatic cancers. Since
distant metastasis of cancer is a major determinant of patient prognosis, further research in
this area is needed.

6. Bacterial Translocation and Cancer Surgery, Perioperative Management

Although surgery is the first choice for curative treatment of gastrointestinal cancers,
it is an invasive treatment. Complications associated with infection in the perioperative
period of gastrointestinal cancers are known to lead to poor long-term prognosis [68].
Postoperative complications may also delay the initiation of adjuvant therapy and interfere
with appropriate cancer treatment, leading to a poor prognosis.

A prospective observational study showed that subjecting mesenteric lymph node
tissues from patients with aortic dissection to bacterial culture exhibited a considerably
higher rate of infectious complications in the positive cases than in the negative cases,
suggesting that surgical invasion itself can cause bacterial translocation [69]. Herein, we
discuss bacterial translocation and its prevention in the perioperative period of radical
gastrointestinal cancer surgery.

Patients who have undergone surgical invasion have been known to develop transient
systemic inflammatory response syndrome (SIRS) after surgery. The duration of SIRS after
gastrointestinal cancer surgery is known to be associated with long-term prognosis [70].
Serum levels of cytokines, such as TNFα, IL-1β, IL-6, IL-10, and IL-2R, are increased in
SIRS, and among these, IL-6 in particular is known to be involved in cancer progression
and C-reactive protein synthesis in the liver [71]. As a clinically convenient technique,
C-reactive protein has also been widely reported as a biomarker for the estimation of the
association between SIRS and the long-term prognosis of cancer [72]. The gut microbiota
of patients with SIRS differed from those of healthy volunteers, namely Bifidobacterium
and Lactobacillus were decreased, whereas pathogenic Staphylococcus and Pseudomonas were
markedly increased, as shown in studies of patients with severe infections and trauma [73].
In the perioperative period, it has been shown that surgical invasion and fasting can increase
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intestinal permeability and induce gut barrier dysfunction [74]. In addition, direct evidence
suggests that microbiome changes occur before and after gastrointestinal surgery. Clinical
studies have shown a significant increase in Pseudomonas, Enterococcus, Staphylococcus,
and Enterobacteriaceae after performing a resection of colon in patients with colorectal
cancer [75]. In the perioperative period of gastric cancer surgery, the relative abundances
of the genera Akkermansia, Escherichia/Shigella, Lactobacillus, and Dialister were considerably
altered [76].

In summary, gastrointestinal cancer surgery provides an environment in which bac-
terial translocation can occur owing to the disruption of the intestinal barrier function
and changes in the gut microbiota. After surgical manipulation of the bowel, bacteria
that were not found immediately after laparotomy were detected in mesenteric lymph
node samples [77]. Furthermore, the reverse transcription–quantitative PCR results of
mesenteric lymph node tissues and blood revealed that bacterial translocation occurred
in more than 50% of the patients after esophagectomy [78]. Based on these results, the
analysis of trace amounts of bacteria in the blood contaminated during surgery may be
useful for perioperative infection management [79].

An interesting comparison was made between laparoscopic surgeries, a minimally
invasive procedure, and open surgery for colorectal cancer, but there was no significant
difference in the incidence of postoperative bacterial translocation between the two proce-
dures [80]. Although laparoscopic surgery is less invasive than open surgery, the decrease
in portal blood flow owing to insufflation pressure may promote bacterial translocation by
producing free oxygen radicals and inhibiting mucosal integrity [81]. The perioperative
prevention of bacterial translocation may need to be comprehensive and extend beyond
surgical techniques. Furthermore, the use of propofol as an intraoperative anesthetic may
inhibit the activation of the NF-κB pathway by downregulating miR-155 expression and
protect the intestinal barrier by reducing the production of inflammatory cytokines in
mice [82].

In terms of prevention, the usefulness of probiotics in the perioperative period is a
topic of interest in this field, and several randomized controlled trials have been conducted
to this end. In particular, the perioperative administration of synbiotics has been shown
to reduce infectious complications in highly invasive surgeries, including hepatectomy
for cholangiocarcinoma and liver transplantation [83,84]. Another study showed that
the administration of synbiotics after hepatectomy improved gut integrity in patients
with cirrhosis [85]. Similarly, in the field of gastrointestinal surgery, the administration of
synbiotics reduced postoperative infection and decreased the detection rate of bacteria in the
mesenteric lymph node tissues and blood of patients after esophageal cancer surgery [86,87].
In gastric and colorectal cancer surgery, the administration of synbiotics was effective in
preventing changes in the gut microbiota [88,89].

As bacterial translocation also worsens the prognosis of cancer, surgeons and other
medical professionals involved in surgery should be aware of the risk of bacterial transloca-
tion induced by surgery and work towards preventing it.

7. Febrile Neutropenia

Systemic chemotherapy, including molecular targeted drugs and immune checkpoint
inhibitors, is one of the most effective treatment modalities for unresectable or recurrent
gastrointestinal cancer. In recent years, the relationship between the effects of chemother-
apy and gut bacteria has been adequately studied. The oral administration of an antibiotic
cocktail containing vancomycin, imipenem, and neomycin reportedly impairs the mice
microbiota and the response to intratumorally injected CpG-oligonucleotide immunother-
apy and platinum chemotherapy for subcutaneous tumor [90]. This is associated with the
decreased production of inflammatory cytokines, such as TNF, by leukocytes in the tumor.
CpG-oligonucleotide is the ligand for TLR9. The gut bacteria are also reportedly involved
in the activation of cytotoxic T cells after chemotherapy [91]. However, some bacterial
species have been reported to increase the efficacy of immune checkpoint inhibitors [92,93].
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Immune checkpoint inhibitors are novel agents that regulate antitumor immune
responses by suppressing T-cell activity. They have achieved remarkable clinical efficacy
across multiple types of tumors. Immune checkpoint molecules are located in T cell
membranes; cytotoxic T-lymphocyte–associated antigen 4 and programmed death (PD)-
1 are representative. However, only a limited number of patients can benefit from this
antitumor effect, and differences in gut microbiota may be used to predict the therapeutic
effect. In one example, it was reported that Akkermansia muciniphila was more common in
patients who responded to immune checkpoint inhibitors targeting the PD-1/programmed
death-ligand 1 axis [93]. A. muciniphila is known to maintain the gut barrier mechanism,
suppress inflammation, and improve the metabolic profile [94,95].

One of the most serious adverse events of chemotherapy is febrile neutropenia. Febrile
neutropenia is a condition in which patients with abnormally low numbers of neutrophils
(neutrophil count of <500 cells/mm3 in the blood) develop fever. Bacteremia is present
in at least one-fifth of patients with this condition [96]. Bacterial translocation may occur
alongside intestinal mucosal damage or the immune response to anticancer drugs and
contribute to febrile neutropenia [97,98]. It is recommended that blood-culture tests for
bacteria and fungi are immediately conducted in case of patients with febrile neutropenia.

However, the causative bacteria of febrile neutropenia are unknown in many clin-
ical cases. rRNA-PCR analysis has confirmed the presence of bacteria in the blood of
patients with cancer undergoing chemotherapy, who developed febrile neutropenia at a
substantially higher rate than those without the bacteria [99]. This study also showed that
bacterial translocation occurred in patients with or without chemotherapy. In addition,
plasma endotoxin levels and soluble CD14, an indicator of the early host response to en-
dotoxins, were higher in patients with febrile neutropenia [100]. Notably, the preventive
administration of antimicrobial medicines was somewhat associated with increased plasma
endotoxin levels. With regard to this association, Papanicolas et al. reported that the combi-
nation of chemotherapy and antimicrobial agents might increase the risk of infection of the
bloodstream with multidrug-resistant bacteria [101]. Gut bacteria that exhibit resistance to
antimicrobial agents may be predominant in the chemotherapy-altered intestinal micro-
biota and pass through the treatment-damaged intestinal mucosa into the bloodstream,
exacerbating bacterial translocation.

While infections in patients with neutropenia can progress rapidly, infected patients
cannot be reliably distinguished from non-infected patients at the time of presentation.
Therefore, it is inevitable that broad-spectrum antibiotics will be employed to treat febrile
neutropenia, and there are no current countermeasures to the emergence of resistant bacte-
ria from this treatment. However, there have been attempts to prevent febrile neutropenia
with probiotics [102]. In a phase II study of the probiotic strain Enterococcus faecium M-74 in
patients with acute or chronic leukemia, no severe diarrhea was observed, and the tolerabil-
ity of the probiotic therapy was excellent, but the primary endpoint of febrile neutropenia
could not be prevented [103]. One of the reasons why febrile neutropenia could not be
prevented was that patients with leukemia often had central venous catheters, which are
a common route of infection for bacteria; indeed, the incidence of bacteremia caused by
coagulase-negative staphylococci was high [103]. Several studies have shown that probi-
otics prevent gastrointestinal adverse events, such as diarrhea, during chemotherapy in
many carcinomas, including leukemia, and it certainly appears that probiotics prevent
gastrointestinal disorders associated with chemotherapy [104].

In contrast, in gastrointestinal cancers, promising results have been shown regarding
the usefulness of synbiotics in preventing febrile neutropenia. In a randomized study of
patients undergoing preoperative chemotherapy for esophageal cancer, the incidence of
febrile neutropenia was significantly lower in the group of patients who were administered
synbiotics for 2 days before chemotherapy compared with the control group [105]: Bifidobac-
terium breve strain Yakult, Lactobacillus casei strain Shirota, and galacto-oligosaccharides
were used in synbiotics group and Streptococcus faecalis was used in control group. This
study showed that synbiotics in addition to prebiotics were more useful for the prevention
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of febrile neutropenia than probiotics alone. Moreover, there may be suitable and unsuit-
able strains for preventing FN. The use of multiple strains may also be effective. Synbiotics
may have more to offer, but it is important to know that they are reportedly not effective
for improving intestinal permeability or the intestinal barrier [106,107].

Thus, bacterial translocation is also deeply involved in chemotherapy. Infectious
adverse events may be fatal for patients undergoing chemotherapy and can also affect long-
term prognosis by delaying cancer treatment and causing the deterioration of nutritional
status. In other words, manipulating gut microbiota may improve the therapeutic outcome
of cancer chemotherapy.

8. Future Perspective

The above summarizes the current knowledge of bacterial translocation and gastroin-
testinal cancers. Carcinogenesis involves the mechanisms of bacterial infection and the
inflammatory response. In this context, PAMPs and TLRs contribute to a great extent. Inva-
sive cancer treatments, such as surgery and chemotherapy, are risk factors for developing
bacterial translocation. Bacterial translocation is an important issue for clinicians because it
affects not only the acute phase of the disease but also the long-term prognosis of cancer.
One of the essential elements to preventing bacterial translocation during cancer treatment
is the use of synbiotics.

The gut microbiota has received much attention in recent years owing to its association
with various diseases [108,109]. The gut microbiota is also involved in the pathogenesis of
diseases that may not appear to be related to them at first glance (Figure 3). For instance,
patients with rheumatoid arthritis, a progressive systemic autoimmune disease, reportedly
showed an increased proportion of Prevotella copri and a decreased proportion of Bacteroides
fragilis in their gut microflora [110]. In addition, this increase in Prevotella spp. was shown
to occur in the pre-clinical stages of rheumatoid arthritis, suggesting that abnormalities in
intestinal immunity are indicative of rheumatoid arthritis [111].
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Furthermore, an association between gut microbiota and pathology has been noted
in neurological and psychiatric disorders. Parkinson’s disease is a neurodegenerative
disorder primarily characterized by the degeneration and loss of dopaminergic neurons
associated with abnormal accumulation of α-synuclein in the substantia nigra. Although
the causal relationship is not clear, gastrointestinal symptoms in Parkinson’s disease may
precede motor symptoms, such as tremor, immobility, and muscle rigidity [112]. Multiple
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analyses using the 16S rRNA gene sequencing of microbial DNA or PCR of microbial DNA
in stool samples have shown that alterations in the gut microbiota occur in patients with
Parkinson’s disease; an increase in Lactobacillaceae, Verrucomicrobiaceae, Lachnospiraceae, and
Enterococcacea, and a decrease in Prevotellaceae are common changes in many studies [113]. A
clinical trial showed that probiotics ameliorated the symptoms of Parkinson’s disease [114].

Research has been ongoing on the brain–gut interaction and the microbiota–gut–brain
axis in recent years, and evidence has accumulated to show that gut microbiota plays an
important role in stress response and the etiology of mental disorders. The possibility
of treatment with probiotics, prebiotics, or microbiota transfer therapy for patients with
depression and patients with autism spectrum disorders is being explored [115,116].

Normally, the intestinal microbiota is adjusted and modified by genetic factors and
environmental factors, such as diet, and is unique to each individual [117,118]. In terms
of routinely used drugs, not only antibiotics but also non-steroidal anti-inflammatory and
proton pump inhibitors have been known to affect the gut microbiota. Therefore, the
intestinal microbiota can be acquired and changed, which represents a promising target for
the treatment of diseases, including cancer.

In contrast, the possibility of crosstalk owing to the coexistence of multiple microor-
ganisms, rather than a single microorganism, is one of the complicating factors in this
research. For instance, carcinogenesis by Helicobacter pylori, which known to be involved in
gastric cancer, has been shown to be considerably inhibited by a lack of commensal flora in
mice [119]. In addition to the development of new therapeutic methods, it is important to
consider the possibility of reducing the risk of bacterial translocation-related carcinogenesis
and resistance to cancer treatment by modifying the gut microbiota to a favorable state. It
is hoped that research in this field will make more headway in the future.
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