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Continuous‑time quantum 
walk based centrality testing 
on weighted graphs
Yang Wang1,2, Shichuan Xue1,2, Junjie Wu1* & Ping Xu1*

Centrality measure is an essential tool in network analysis and widely used in the domain of computer 
science, biology and sociology. Taking advantage of the speedup offered by quantum computation, 
various quantum centrality measures have been proposed. However, few work of quantum centrality 
involves weighted graphs, while the weight of edges should be considered in certain real-world 
networks. In this work, we extend the centrality measure based on continuous-time quantum walk to 
weighted graphs. We testify the feasibility and reliability of this quantum centrality using an ensemble 
of 41,675 graphs with various topologies and comparing with the eigenvector centrality measure. 
The average Vigna’s correlation index of all the tested graphs with all edge weights in [1, 10] is as high 
as 0.967, indicating the pretty good consistency of rankings by the continuous-time quantum walk 
centrality and the eigenvector centrality. The intuitive consistency of the top-ranked vertices given 
by this quantum centrality measure and classical centrality measures is also demonstrated on large-
scale weighted graphs. Moreover, the range of the continuous-time quantum walk centrality values 
is much bigger than that of classical centralities, which exhibits better distinguishing ability to pick 
the important vertices from the ones with less importance. All these results show that the centrality 
measure based on continuous-time quantum walk still works well on weighted graphs.

Random walks, as a fundamental tool, have been widely used in the fields of economics, computer science and 
natural sciences. Based on quantum mechanics, quantum walks are proposed as the quantum analog of classical 
random walks1–4. Both discrete-time1,3,4 and continuous-time2 versions are introduced corresponding to their 
classical counterpart. Benefited from the superposition of quantum systems, quantum walks have fundamentally 
different behavior compared to classical random walks, and become an essential tool in quantum computation 
and quantum algorithms. Childs proves that universal computation can be implemented by continuous-time 
quantum walks (CTQWs)5, and Lovett et al. present a version on discrete-time quantum walks (DTQWs)6. 
Moreover, quantum walks provide efficient quantum algorithms in a variety of scientific disciplines, such as 
search algorithm7–9, element distinctness10,11 and graph isomorphism12,13.

Vertex centrality ranking algorithm is another promising application of quantum walks. Vertex centrality is 
an integral tool in graph theory and network analysis, quantifying the importance of each node. The higher of 
the centrality measures, the more important of the corresponding nodes in the network. Centrality analysis has 
been widely used in ranking the webpages on the Internet14,15, identifying the most influential people in social 
networks16, finding out critical infrastructure nodes in urban networks17, and searching for super spreaders of 
infectious diseases18. There are several classical centrality measures including degree centrality, closeness central-
ity, betweenness centrality, eigenvector centrality and PageRank centrality. In general, distinct centrality measures 
underline different characteristics of the network, and are used in different scenarios.

As quantum walk outperforms its classical counterpart in many algorithmic applications19,20, various cen-
trality algorithms based on quantum walks have been proposed. Quantum PageRank algorithm is proposed by 
Paparo and Martin-Delgado using Szegedy’s quantum walks (SQWs)21. Compared to the classical algorithm, 
the quantum PageRank algorithm is more sensitive, i.e., capable to highlight the secondary hubs and resolve the 
degeneracy of low lying nodes22. The SQW allows unitary evolution on directed and weighted graphs, but the 
Hilbert space required is N2-dimension for a graph with N nodes. To physically implement quantum centrality 
in a smaller state space, Izaac et al. propose a quantum centrality measure based on CTQW. This CTQW-based 
centrality measure using a significantly smaller Hilbert space compared with the quantum PageRank algo-
rithm, while taking advantage of the quantum speedup compared with the continuous-time random walk23. 
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The CTQW-based centrality is limited to undirected network structures in the original study. The following 
works extend the CTQW-based centrality to directed networks24 and experimentally demonstrate the quantum 
centrality ranking on directed graphs25,26.

Except for the direction of connections in networks, the weight of connections is also an essential factor in 
real-world networks. For instance, Radicchi et al. define the weighted citation network between authors, and 
use it to analyze the scientific impact of physicists27. Another example is to identify the super spreaders in an 
outbreak of infectious disease18. The close contacts and accidental meetings usually face different infection risks, 
and should be marked differently in contact tracing to better control the spread of the virus. These two examples 
can be abstracted to centrality ranking problem, where the prominent physicists in citation networks and the 
super spreaders of infectious diseases are denoted by higher centrality measure. The weight or the number of 
connections between two nodes effect the centrality ranking in these cases.

In this work, we extend the CTQW-based centrality measure to the weighted graph for the first time. We test 
an ensemble of weighted graphs with various topologies to validate the feasibility and reliability of this quantum 
centrality. The correlation coefficients between the rankings given by CTQW-based centrality and eigenvector 
centrality are pretty high for all the tested graphs, and intuitive consistency of the top-ranked vertices given by 
this quantum centrality measure and classical centrality measures is also demonstrated on large-scale weighted 
graphs. What’s more, we also find the advantage of the CTQW-based centrality in distinguishing the important 
vertices from the ones with less importance.

Results
The time evolution of the CTQW is described by the time-independent Hamiltonian, which is determined by the 
underlying network structure. Specifically for an undirected graph G with n vertices, a quantum walker evolves 
in the walking space spanned by {|1�, |2�, . . . , |n�} , which is an orthogonal basis corresponding to n vertices. The 
Schrödinger equation governs the evolution of CTQW on graph G2,22:

where the Hamiltonian is the adjacent matrix ( H = A ) and

To extend the CTQW-based centrality measure to weighted graphs, it should be noted that the elements in 
the adjacent matrix A denote the weight of each edge. Solving the Schrödinger equation with � = 1 , we get the 
state of the quantum walker at time t:

|ψ(t)� is a superposition state in the walking space, where the probability amplitude on node i at time t is 
αi(t) = �i|ψ(t)� . The probability of the walker at node i is Pi(t) = |αi(t)|2.

For the centrality measure based on CTQWs, the evolution starts from the initial state |ψ(0)� = 1√
n

∑n
i=1 |i� . 

The quantum walker propagates on graph G following Eq. (3). The CTQW-based centrality is calculated by the 
long-time average of the walker located at each vertex22:

In Fig. 1, we use a simple example to demonstrate the numerical simulation of the CTQW-based centrality 
on a weighted graph. Figure 1a gives a typical 5-node network, and the weights are marked on each edge. The 
probability on each vertex as a function of evolution time is shown in Fig. 1b. The dotted line denotes the average 
probability and is the CTQW-based centrality of each vertex. According to these centrality values, the ranks of 
node 1 to node 5 are 2, 3, 3, 3, 1 respectively, which are the same as the order given by eigenvector centrality. The 
previous works show that the CTQW-based centrality correlates well with the eigenvector centrality, and works 
excellently as a centrality measure on unweighted graphs23,24. The simple example in Fig. 1 shows the possibil-
ity that the CTQW-based centrality may still work on weighted graphs. We now generalize the CTQW-based 
centrality to the weighted graphs and study the performance of this quantum centrality measure.

To validate our proposal’s feasibility, we conduct statistical analysis over an ensemble of randomly generated 
weighted graphs, including connected, planar, Eulerian, vertex critical, edge critical, self-complementary, cubic 
planar, hypo-Hamiltonian, Erdős-Rényi and scale-free graphs, 41,675 graphs in total. The original graphs are 
undirected and unweighted. So we add a weight w = 2 on a randomly chosen edge to all graphs in each group. 
The tested graphs are listed in Table 1. Figure 2 intuitively shows the correlation of the eigenvector and CTQW-
based centralities in the ranking problem. Referring to the time analysis of the centrality based on DTQWs28, 
all the CTQW-based centralities of weighted graphs in this paper are calculated over the same timescale, i.e., 
t = 20π instead of t → ∞ . To quantitatively evaluate the agreement between the rankings by eigenvector and 
CTQW-based centralities, we employ Kendall’s τ correlation coefficient29 (see “Methods” for the calculation of 
τKendall ). τKendall takes values from −1 to 1, wherein τKendall = 1 denotes the same ranking orders by different 
centrality measures. Two rankings with τKendall at or above 0.9 are considered effectively equivalent30,31, at least 

(1)i�
d

dt
|ψ(t)� = H|ψ(t)�,

(2)Aij =
{

wij for node i and j connected with weight wij ,
0 for node i and j not connected.

(3)|ψ(t)� = e−iHt |ψ(0)� =
n

∑

i=1

αi(t)|i�.

(4)c
(CTQW)
i = P̄i = lim

t→∞

1

t

∫ t

0
|�i|ψ(t)�|2dt.
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empirically32,33. It can be seen that among all generated weighted graphs listed in Table 1, the τw=2
Kendall between 

the eigenvector and the CTQW-based centrality measures are pretty high except for the cubic planar and scale-
free graphs.

To find the reason causing the imperfect correlation, the eigenvector and the CTQW-based centralities of 
the cubic planar graph and the scale-free graph with the minimum τKendall are shown in Fig. 3. We can see that 
the correlation is lowered by the discordances in low-lying vertex centralities while the important vertices with 
large centralies ranked the same by the eigenvector and the CTQW-based centrality measures. However, the 
low-lying centrality usually give little information and we care more about the top-ranked vertexes in most cases. 
The calculation of τKendall does not make any distinctions and equally penalizes discordances both at high and 
low rankings. There have been many researches to cover this flaw of τKendall in certain applications31,34–38, and we 
further employ a weighted variant of Kendall’s correlation coefficient introduced by Vigna38, τVigna , to evaluate 
the agreement between the rankings by eigenvector and CTQW-based centralities. The Vigna’s rank correlation 
coefficient gives more weight to the discordances at high rankings, whose usefulness has been validate on social 
networks and web graphs38. The average τVigna for each graph set is listed in Table 1. The correlation coefficient 
values increase especially for the cubic planar and scale-free graphs as expected. The average τVigna of all the 
tested 41,675 graphs is 0.963, which indicates a consistent ranking order with eigenvector centrality achieved 
on large-scale test. Hence, it is reasonable to utilize our CTQW-based centrality measure to solve the centrality 
problem on weighted graphs.

The above analysis based on correlation coefficients has shown the excellent consistency of the rankings by 
CTQW-based centrality and eigenvector centrality. However, from the correlation coefficients we are still not 
sure if the top-ranked vertices hold the exactly same ranking order. So it is proper to give an intuitive demon-
stration of the consistence details. As most cases especially concern the top ranks, we pay more attention to the 
top-ranked vertices. Figure 4 intuitively demonstrates the consistence of rankings by PageRank, eigenvector 
and CTQW-based centralities on ensembles of the large-scale weighted graphs. Concretely, we consider two of 
the most paradigmatic network topologies: Erdős-Rényi graphs39 and scale-free networks40. An Erdős-Rényi 
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Figure 1.   (a) A typical 5-node network. (b) Probability distribution on each vertex i along the evolution time t, 
where the three red vertices show identical behaviours. The dotted line denotes the average probability, thus the 
CTQW-based centrality of each vertex c(CTQW)
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Figure 2.   (a) A randomly generated Erdős-Rényi graph ER(10, 0.3) with an additional weight w = 2 added on 
a random edge. (b) The eigenvector centralities (dotted red line) and CTQW-based centralities (solid blue line) 
for vertices of the graph in (a).
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graph denoted by ER(n, p) is comprised of n vertices with edges randomly distributed following the Bernoulli 
distribution with probability p. For such a network, the vertex degree distribution P(k) (the fraction of vertices 
with degree k) follows binomial form, i.e., most vertices have a degree close to the mean number of connections, 
n · p . A scale-free network SF(n, m) is generated by Barabási-Albert algorithm41 with n vertices and the prob-
ability of k-degree vertex p(k) ∝ 1

km . In a scale-free network, most vertices have only a few connections with 
others, and a few vertices are connected with a large number of other vertices, which are called hub vertices. 
We take the eigenvector centrality measure as the benchmark and sort the vertices by the eigenvector centrality 
values. The average CTQW-based centrality, eigenvector centrality and PageRank centrality of each vertices 
over the ensemble of ER(100, 0.3) and the ensemble of SF(100, 2) are shown in Fig. 4a,b respectively. The 100 
vertices are ranked by their eigenvector centralities, so the eigenvector centrality (grey dotted line) decreases 

Table 1.   The average correlation coefficients for graphs with different topologies. The superscript w = 2 
denotes only one weighed edge w = 2 , and w(i,j) ∈ [1, 10] denotes the weight of arbitrary edge in [1, 10].

Graphs n Group size τw=2
Kendall τw=2

Vigna τ
w(i,j)∈[1,10]

Kendall τ
w(i,j)∈[1,10]

Vigna

Connected

4 6 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

5 21 0.983± 0.003 0.982± 0.003 0.943± 0.013 0.966± 0.005

6 112 0.963± 0.009 0.975± 0.004 0.974± 0.004 0.983± 0.002

Planar
7 646 0.940± 0.009 0.959± 0.005 0.933± 0.008 0.954± 0.004

8 5974 0.932± 0.008 0.957± 0.004 0.927± 0.007 0.954± 0.004

Eulerian
8 184 0.940± 0.010 0.958± 0.006 0.947± 0.008 0.966± 0.003

9 1782 0.943± 0.007 0.961± 0.004 0.947± 0.004 0.965± 0.002

Vertex critical 10 5284 0.966± 0.002 0.978± 0.001 0.963± 0.002 0.976± 0.001

Edge critical 12 17431 0.966± 0.001 0.978± 0.001 0.967± 0.001 0.979± 0.001

Self-complementary
12 720 0.963± 0.002 0.973± 0.001 0.959± 0.002 0.972± 0.001

13 5600 0.956± 0.002 0.969± 0.002 0.962± 0.001 0.974± 0.001

Cubic planar
16 233 0.613± 0.054 0.822± 0.013 0.828± 0.026 0.911± 0.007

18 1249 0.542± 0.063 0.790± 0.015 0.816± 0.027 0.905± 0.008

Hypo-Hamiltonian 26 2033 0.835± 0.023 0.930± 0.004 0.852± 0.013 0.929± 0.003

ER(100, 0.3) 100 200 0.991± 0.000 0.995± 0.000 0.989± 0.000 0.994± 0.000

SF(100, 2) 100 200 0.614± 0.004 0.842± 0.001 0.576± 0.005 0.821± 0.002

Figure 3.   (a) The cubic planar graph with the minimal τw=2
Kendall of all the tested cubic planar graphs. (b) The 

eigenvector centralities (dotted red line) and CTQW-based centralities (solid blue line) for vertices of the graph 
in (a). (c) The ranking orders for the vertices of the graph in (a) by the eigenvector centrality measure and 
CTQW-based centrality measure. (d) The scale-free network SF(100, 2) with the minimal τw=2

Kendall of all the tested 
SF(100, 2) with only one edge weighted 2. (e) The eigenvector centralities (dotted red line) and CTQW-based 
centralities (solid blue line) for vertices of the graph in (d).
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monotonically. It is obvious that the vertices with the top 10 eigenvector centralities are also top of the CTQW-
based and PageRank centrality rankings, and the Pagerank (blue triangle) and the CTQW-based (red circle) 
centrality values also present monotone decreasing tendency, which means that the ranking orders are the same 
as the eigenvector centrality. Moreover, Fig. 4a,b show distinctive centrality distributions corresponding to the 
topological features of Erdős-Rényi and scale-free networks. The centrality values of the most important vertices 
in scale-free networks are almost one order of magnitude higher than those in Erdős-Rényi graphs, i.e. the few 
hub vertices in scale-free network show a more dominant role in the whole network. These features indicate the 
reliability of the CTQW-based centrality on weighted graphs in ranking the top-ranked vertices.

It is worth noting that the range of the CTQW-based centrality is larger than the eigenvector centrality 
and PageRank centrality, which means the better distinction of the vertex centrality ranks. We use the range 
R = cmax − cmin to evaluate the distribution of the centrality values. RCTQW for CTQW-based centrality measure 
is almost twice the REV and RPR for eigenvector and Pagerank centrality measures on the randomly generated 
Erdős-Rényi and scale-free graphs. It is reasonable to utilize the distinguishing ability of CTQW-based centrality 
measure to pick the important vertices from the ones with less importance.

It has been shown that the CTQW-based centrality measure works well on weighted graphs with w = 2 added 
on one randomly-chosen edge. The weighted graphs must be more complicated in the real world, so we further 
investigate the CTQW-based centrality by varying weight and choosing more weighted edges. First, we generate 
an Erdős-Rényi graph ER(100, 0.3) and assign different weights from 1 to 10 to the edge connecting vertex 12 
and 69. Then we conduct the numerical simulations to observe the changes of CTQW-based centrality values for 
each vertex. The results are shown in Fig. 5a, where different weight cases correspond to lines of different colors. 
It can be seen that there is little influences on vertices other than the endpoint vertex 12 and 69 of the randomly 
chosen edge with additional weights. From the insets of Fig. 5a, it is clear that the centrality values rise up as the 
weight increasing. Besides varying the weight of a certain edge, we also considering the case of multiple weighted 
edges. For the ER(100, 0.3), we randomly choose 5 edges and add the weight w = 2 to these edges in succes-
sion. The calculated CTQW-based centralities are shown in Fig. 5b, which also indicates that the weight mainly 
influence the centralities of the corresponding endpoints. This conclusion is in line with the intuitive cognition.

Based on the above analysis, we finally test an ensemble of graphs whose each edge is given a random 
weight w ∈ [1, 10] . The original graphs are the same as those listed in Table 1, but the weight of each edge is 
newly generated. Numerical analysis based on τKendall and τVigna is conducted on these new weighted graphs, 
and the results are shown in Table 1. It is clear that the correlation coefficients are still reasonably high with 
τ̄
w(i,j)∈[1,10]
Vigna = 0.967 , which indicates the excellent consistency of the rankings by CTQW-based centrality and 

eigenvector centrality. Figure 4c,d further intuitively demonstrate the rankings by PageRank, eigenvector and 
CTQW-based centralities on the new weighted ER(100, 0.3) and SF(100, 2) graphs respectively. The reliability 
in ranking the top-ranked vertices and the distinguishing ability of CTQW-based centrality still holds in these 
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Figure 4.   The average CTQW-based, eigenvector and PageRank centralities for vertices over an ensemble of 
200 Erdős-Rényi graphs ER(100, 0.3) with only one weighted edge w = 2 (a), scale-free networks SF(100, 2) 
with only one weighted edge w = 2 (b), ER(100, 0.3) with all edges weighed in [1, 10] (c), and SF(100, 2) with all 
edges weighed in [1, 10] (d), The vertices are sorted by the eigenvector centrality measure and the shaded areas 
represent one standard deviation from the average centralities among 200 graphs. It is obvious that the range of 
CTQW-based centrality measure RCTQW is much bigger than other measures.
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large-scale graphs with all random-weighted edges. In conclusion, it is reasonable to extend the CTQW-based 
centrality to the weighted graphs.

Discussion
In summary, we extend the CTQW-based centrality to weighted graphs for the first time, which expands the use 
of CTQW-based centrality measure to more realistic applications. Based on the numerical analysis on various 
weighted graphs, we testify the feasibility and reliability of this quantum centrality. The correlation coefficients 
between the rankings by CTQW-based centrality and eigenvector centrality are pretty high, and the ranks of 
top-ranked vertices given by this quantum centrality and the classical centralities consist well according to the 
intuitive demonstrations. Furthermore, we find that the CTQW-based centrality measure show better distin-
guishing ability to pick the important vertices from the ones with less importance. All the excellent results are 
obtained using an instance simulation time for CTQW-based centralities. For the precise analysis of this quantum 
centrality efficiency, further investigation is needed to compare with the classical algorithms.

Methods
Kendall’s τ correlation.  Suppose X = �x1, x2, . . . , xn� are eigenvector centralities of vertices in graph G, 
and Y = �y1, y2, . . . , yn� are CTQW-based centralities. The subscript from 1 to n identifies the vertex. The Kend-
all’s τ coefficient is used to measure the agreement between the rankings given by these centrality measures, i.e.,

(5)

τKendall =
∑

i<j sgn
(

xi − xj
)

sgn
(

yi − yj
)

√

∑

i<j sgn
(

xi − xj
)

sgn
(

xi − xj
)

√

∑

i<j sgn
(

yi − yj
)

sgn
(

yi − yj
)

=
∑

i<j sgn
(

xi − xj
)

sgn
(

yi − yj
)

√
n(n− 1)/2− tX

√
n(n− 1)/2− tY

,

m=1
m=2
m=3
m=4
m=5

vertex
0 10 20 30 40 50 60 70 80 90 100

0.020

0.015

0.010

0.025

ce
nt

ra
lit

y 
va

lu
e

(b)

0.005

0.010

0.013

0.016

0.011

0.012

0.009
0.009

0.010

0.012

0.016

0.015

vertex

ce
nt

ra
lit

y 
va

lu
e

w=1
w=2
w=3
w=4

w=7

w=10

w=5
w=6

w=8
w=9

0.030

0.020

0.010

0
0 10 20 30 40 50 60 70 80 90 100

11 12 13

0.010

0.020

13

0.030

68 69 70
0.012

0.020

0.028
(a)

Figure 5.   (a) CTQW-based centralities on an ER(100, 0.3) by traversing weight of an edge from 1 to 10. The 
randomly chosen edge connects vertex 12 and 69. The inset graphs show details of centrality changes near 
vertex 12 and 69. (b) More weighted edges on Erdős-Rényi graphs ER(100, 0.3). The number of weighted edges, 
m, ranges from 1 to 5, and the weight w = 2 is added to the edge (4, 7), (26, 37), (41, 48), (66, 79) and (89, 99) 
in succession. The vertical dotted lines show the endpoint vertices of edges with additional weights. The inset 
graphs give details of centrality changes near these endpoint vertices.
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where n(n− 1)/2 is the total number of pairs (i, j) with i < j and tX (tY ) is the number of tied pairs in the 
ranking X (Y) . For arbitrary pair of vertices 

(

i, j
)

 , the two centrality measures are said to be concordant if 
sgn

(

xi − xj
)

sgn
(

yi − yj
)

> 0 , and discordant if sgn
(

xi − xj
)

sgn
(

yi − yj
)

< 0 . A tie reflects the inability of 
the centrality measure to decide which item should be ranked first, and the tied pair with 

(

xi − xj
)

= 0 or 
(

yi − yj
)

= 0 can be considered neither concordant nor discordant. The coefficient τKendall = 1 if and only if 
there is a perfect correspondence between the rankings of vertices in G with reference to the different centrality 
measures, and τKendall = −1 indicates that the rankings are exactly inverted. Therefore, the coefficient τKendall 
closer to 1 means that the CTQW-based centrality is more consistent with eigenvector centrality measure, and 
is feasible as a evaluation criterion.

The weighted correlation index.  τVigna . Vigna’s Correlation index τVigna for rankings extends Kendall’s 
definition taking into account weights of concordances and discordances between vertices with different ranks 
in the presence of ties. The weight function used in this paper is

ρ(i) is the ranking function associating each vertex with a rank. In this paper, ρX,Y (i) and ρY ,X(i) give a unique 
rank to each vertex. We denote different ranking functions by distinct subscripts. ρX,Y (i) is defined by ranking 
vertices in descending order with respect to X and then Y. For the vertices tied both in X and Y, they can be 
placed in any order. The function ρY ,X(i) is defined analogously. The weighted correlation index is calculated by

The Kendall’s τ coefficient is lowered by the discordances of the vertices with large ranks comparing to Vigna’s 
weighted correlation index.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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