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Abstract

Background: Transcription factor (TF) networks play a key role in controlling the transfer of genetic information
from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network
topologies using a range of experimental and theoretical methodologies. Less work has focused on using these
models to examine how TF networks respond to changes in the cellular environment.

Methods: In this paper, we have developed a simple, pragmatic methodology, TIGER/ (Transcription-factor-activity
Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to
changes in cellular environment. The methodology was tested using publicly available data comparing gene
expression profiles of a mouse p38a (Mapk14) knock-out line to the original wild-type.

Results: Using the model, we have examined changes in the TF network resulting from the presence or absence of p38a.
A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified
by our analysis, for example between p38a and HNF3, and between p38a and SOX9, and these are strongly supported

by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38a. To provide a
computational methodology to the biomedical communities that has more user-friendly interface, we also developed a
standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/.

Conclusions: We therefore believe that our computational approach can identify new members of networks and new
interactions between members that are supported by published data but have not been integrated into the existing network
models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line
experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.
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Background

Integrated functional genomics attempts to utilize the vast
wealth of data produced by modern large scale genomic
and post-genomic projects to understand the functions of
cells and organisms [1]. The rapidly increasing amount of
high throughput sequencing data makes it essential to de-
velop new analytical tools that can systematically process
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and integrate those datasets. This presents both challenges
and opportunities to the computer science community.
Transcription factor (TF) proteins bind to promoter ele-
ments on genomic DNA at TF binding sites (TFBS), to help
control the transfer of genetic information from gene to
mRNA [2]. Understanding the mechanisms underlying
mRNA transcription is one of the “grand challenges” in
modern biology. Experimental techniques allow direct
measurement of individual gene transcription, but the
contribution of multiple TFs is hard to determine [3-5].
Measuring the concentration of TF proteins and their af-
finity for the promoter region of genes is difficult because
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concentrations are low and protein-DNA interactions are
subject to multiple controls, resulting in measurement
artifacts [6—8]. Post transcriptional regulation compounds
these difficulties because other molecules modify mRNA
stability and hence the signals from the TFs [3, 9-11]. In
such a complex environment, in-silico techniques can
provide insights and hypotheses into the underlying TF
regulatory activity, although they clearly have limitations.

Reverse-engineering of TF network and TFBS information
A number of techniques are available to uncover the top-
ology of the TF network—the networks of complex reac-
tions and interactions in the cell that control transcript
levels [12]. One strategy is to use principals of reverse-
engineering and use gene expression data to infer regula-
tory interactions [13, 14]. Various reverse-engineering
methods can reduce the dimensionality of the classic com-
binatorial search problem and utilize genome sequence
data to enhance the sensitivity and specificity of predictions.
However, they have difficulties in describing regulatory con-
trol by mechanisms other than TFs. Reverse-engineering of
TF networks in the lower eukaryotes has been well devel-
oped [15—17]. However, the problems in mapping the regu-
latory mechanisms in cells of higher eukaryotes have made
such global studies either impossible or impractical. Some
recent studies have begun to address this issue [18—20], but
have tended to focus only understanding which TFs bind to
which genes—not looking in detail at the nature of the TF/
TEBS interaction. A recent study [21] identified key
biological features in transcriptional changes, however this
method has difficulties in inferring the dynamics of the
interactions. Furthermore, TF concentrations were not con-
sidered during the identification of the features.

To date, various reverse-engineering methods can reduce
the dimensionality of the reverse-engineering problem and
utilize genome sequence data to enhance the sensitivity and
specificity of predicted interactions. However, they have diffi-
culties in describing regulatory control by mechanisms other
than TFs. To address this issue TFBSs information is
required to complement the gene expression data. We used
a list of 132,654 TFBSs between 20,920 genes and 174 TFs
that had been identified by searching an alignment of five
mammal species for conserved 5 and 3’ regions [22].
Connectivity data is notorious for high false positive rates;
however, our connectivity data is robust against the problem
because it extracts binding information from well conserved
upstream regions. A more detailed explanation is addressed
in the Methods and Results section and a schematic diagram
of the connectivity data is presented in Fig. 1.

Identifying regulation type by combining TFA and TFC
analysis

Transcription factor activities (TFAs) are the intensity of
the interactions between a certain transcription factor
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(TF) and its targets at a certain experimental point [23].
Thus, the estimated strength of TFAs between each TF
and its target gene are useful to know which TF is acting
on which gene at a given time point or experiment con-
dition. However, simply knowing the regulatory activities
under a single experimental condition provides limited
information about the transcriptional network. To
understand the mechanism of regulatory interactions,
we developed a method that identifies statistically sig-
nificant differences in TFAs under two different condi-
tions. The significant differences indicate the changing
level of TFAs between two conditions, so varying trends
of TFAs in whole experimental process are easily de-
tected and can be used to identify TF-specific regulatory
patterns (up and down-regulation).

A highly concentrated TF induces more gene expres-
sions rather than a lower concentrated TF. High-affinity
binding sites induce the gene expressions at any level of
TF concentration (TFCs), but low-affinity binding sites
require high level of TF concentration for induction
[24]. Thus, we might assume that TF concentration level
is an important factor for investigating TFAs, and TFA
investigation with considering TFC provides more
reliable and accurate results closer to the complex reality
of biology. To address this problem we proposed a prob-
abilistic variational inference method to infer the
concentration of each TF protein (TFC) and the regula-
tory intensities (TFA) of each TF and gene pair [4].

Aside from the method, there have been some notable
attempts to infer TFAs based on integrating gene ex-
pression data and TFBSs information. The approaches
use various well-known statistical inference techniques
such as network component analysis [25], support vector
machine [26], multivariate regression plus backward
variable selection [27] and partial least squares [28].
However, the TFAs, which are inferred by these
methods, do not contain any information on the
strength and the sign of the physical interaction between
a TF and its target genes. Moreover, the regulatory inter-
actions can change easily in response to changing ex-
perimental conditions and over time. Since the methods
are not fully probabilistic, they are not ideal for investi-
gating the stochastic interactions. A linear regression
based probabilistic method to model the full probability
distribution of each TFA on each gene was developed
[23]. The limitation of this method, however, is that it
does not infer the TFAs and TFCs separately. This is a
serious problem in subsequent analysis and prediction.

Methods

Transcription regulatory circuits and mathematical model
Transcription regulatory circuits can be thought of as
having trans- and cis-inputs that are transformed into
genetic information at mRNA level [29]. These circuits
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Fig. 1 Schematic diagrams for understanding basic concepts of this study a The four components of transcription. The transcriptional regulators
interact with their targets genes to regulate gene expression at the mRNA level. The cellular environment controls the concentration of TFs, C. The TFs
bind to specific sites close to the target genes, described in model by the connection matrix, T. The TFs bind to their different target genes with
varying strengths to regulate transcription. The strength of each of these pair-wise interactions is described by a weight matrix W. This all finally results
in the transcription of MRNA at particular concentration, € b A schematic of a transcriptional regulatory circuit. The circuit takes trans- and cis-inputs to
transform the genetic information at mRNA level. The four components for transcription (as described above) are the key elements for the circuit
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are a key component in the regulation of mRNA levels
in the cell, and have a number of components (shown in
Fig. 1): TFs, whose concentration can change, bind to
TFBSs upstream of genes with a strength that is a func-
tion of the particular TF-gene interaction, to control the
concentration of mRNA produced. A number of math-
ematical models have been developed which attempt to
describe these interactions [15-17, 19, 21, 30]. For ex-
ample Sanguinetti et al. [4] model the log gene expres-
sion in the form:

e=TWc+v (1)

Where:

i) e is a set of logged gene expression measurements.

ii) T is a binary matrix capturing the connection
topology—the specific set of TFBS upstream of
genes and the TFs that bind to them. If TF fbinds
upstream of gene gthen T = 1.

iii) W is a weight matrix that captures the nature of the
interaction strengths between TF-gene pairs in
regulating expression of a specific gene.

iv) ¢ is the vector of concentrations of each of the TFs.

v) v is a vector of independent and identically
distributed variables modeling the noise in the
system. The model assumes that a spherical
Gaussian term could explain all noise on gene
expression profiling data.

Typically, we have knowledge of e (from gene expres-
sion profiling experiments, such as microarray or RNA-
seq) and would like to infer the set of TFC ¢, and TFA
W giving rise to this signal. Given T and e Sanguinetti

et al. [4] then show how it is possible to solve for ¢ and
W using a discrete time state space model (Eq. 1) with

expectation-maximization (EM) algorithm. In the model,
elements of the ¢ matrix indicate the concentration level
of a given TF protein (TFC) at a specific time. Elements
of the W matrix represent the regulatory intensity

(TFA) between a given TF protein and its binding affin-
ity to its target genes. The baseline expression level is
the mean vector. The measurement noise v follows
zero-mean ii.d. Gaussian noise. To estimate the ¢ and
W matrices, the model used posterior estimation of
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Bayer’s theorem. During this estimation, EM algorithm
allowed the model to efficiently approximate the log
likelihood. However, it is rare to have a complete know-
ledge of T —we simply do not know the binding sites

for all TFs in a typical higher eukaryotic cell. Recent ex-
perimental techniques, such as ChIP-chip and ChIP-seq
can provide useful data to help construct the connection
topology T [31], however they have clear limitations if

we are looking for a complete topology [32, 33]. A num-
ber of theoretical techniques are also available to
uncover the connection topology [34-36]. The tech-
niques generally use principals of reverse-engineering
and use gene expression and genome sequence data to
infer regulatory interactions.

Gene expression data

Gene expression datasets were downloaded from Gene
Expression Omnibus (accession number GSE7342 for p38a
and GSE36890 for STATS5) [37, 38]. The expression profil-
ing data of GSE7342 dataset was normalized by the robust
microarray average (RMA) method. The read counts of
GSE36890 dataset was normalized to the reads per kilo-
base of exon per mega-base of library size (RPKM).

Generating T, the connection topology
In this paper we have taken a conservative strategy for
generating T which looks at upstream region of genes

that are well-conserved in multiple mammalian ge-
nomes. We used a published catalogue of common regu-
latory motifs that were overrepresented in gene
upstream regions [22]. These motifs were identified by
constructing genome-wide alignments for four mamma-
lian species in promoter regions and 3’ UTRs relating to
well-annotated genes from the RefSeq database. The
same TFs were assumed to bind the same TEBSs in mice
since the TEBS had been discovered in an alignment of
human, mouse, rat and dog promoter regions. TFBS up-
stream of human 13,330 RefSeq genes were predicted.
Mouse genes corresponding to the published list of hu-
man genes [22] were identified using Ensembl mouse
gene annotation.

Estimation of statistically significant changes

We were specifically interested in any TF activity that
exhibits statistically significant changes between the two
conditions. In particular, we are interested in changes
that may be due to a change in activity of the TF, and
not just in its concentration. We therefore scaled the
TFEA by the predicted TFC as a measure for changes in
activity [24]. A joint analysis of TFA and TFC should
provide more robust predictions of those TFs whose ac-
tivity has changed for reasons beyond those of a simple
change in concentration. To compare two different
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conditions, the normalized TFA by TFC in wild-type
condition were subtracted by the normalized TFA in
knock-out condition. We therefore determined those in-
teractions for which:

Fe. |
o Uwr
The value of the Cutoff was chosen such that all
differences at the 95% confidence interval were consid-
ered significant (+2 standard deviations). +2SD limit is
widely chosen as a normal limit because it fits well into

two important categories: (1) confident interval and (2)
testing hypothesis.

Wer
¢

} > Cutoff (2)
KO

Gene Ontology (GO) analysis

GO analysis was performed by using DAVID [39]. The
sets of genes showing significant changes identified in
Eq. 2 were submitted to DAVID using the default
parameters in order to obtain the GO term classifica-
tions of each gene. Our computational pipeline utilized
the results to investigate the functionality of genes and
their regulatory TFs. The detailed methods and the
result figures of GO analysis are supplied in Additional
file 1: Supplementary Text and Figure S1-S3.

Results

Estimating the responses to perturbation of transcription
networks

We have developed a strategy which used forward-
engineering to construct the connection topology (see
Fig. 1, Methods, and Additional file 1: Supplementary
Text and Figure S1-S3), based on a previous study of
regions upstream of genes conserved in multiple mam-
malian genomes [22]. The structure of this network of
transcriptional regulatory interactions between TFs and
the genes whose transcription they control is described
by a binary matrix T € R™*™, where u is the number of
TFs and m is the number of genes; An element (i, j) of
the matrix is ‘1’ if TF i binds to the upstream control
region of gene j, ‘0’ otherwise. We have then employed
a mathematical model to integrate the connection top-
ology data and a gene expression dataset from a higher
eukaryote in which we are interested in modeling the
changes that occur in the TF network in response to a
change in the cellular environment (Fig. 2). Our
approach could be seen as complementary to ‘Integra-
tive methods, as defined in [40], as it provides a strat-
egy for creating an approximate connection topology if
more detailed information is not available. The connec-
tion topology that is being used for this analysis
contains many approximations and is certainly incom-
plete. However, it should be noted that we are looking
at the differences between the models, for example
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Fig. 2 Overview of our strategy and work-flow of our computational pipeline with a plain example. Our strategy uses a computational pipeline based
on a reverse-engineering technique. The pipeline takes as inputs the results of transcription (gene expression data € and connectivity information T
and outputs the sources of transcription (strengths W and concentrations C). The pipeline is composed of five parts: Construction: RMA normalization
of gene expression profiling data € and a binary matrix containing connection topology T is constructed using by forward-engineering strategy.
Computation: The gene expression profiling data and connectivity data are utilized to infer TF-gene interaction strengths W and TF concentration
levels C. Investigation: Once the strengths and concentrations are inferred, the actual TF activities are estimated by normalizing the strengths on the
concentrations. The statistically significant changes in the TF-gene interactions strength, TF concentration levels, and TF activities are calculated. lllustration:
The changes are illustrated in round limpet-like plot or in the scattered plots that shows the changes between individual TF and genes. Identification: The
candidate TFs are identified, and Gene Ontology (GO) analysis are performed on the genes that are regulated by the candidate TFs. The literature is
reviewed to find the supporting evidence, and the individual links between the candidate TFs and their potential biological functions are identified and

summarized in a table. Based on the table, we finally construct the comprehensive TF network for p38a

between a wild-type and knock-out state, and those dif-
ferences will be in parts of the model for which we do
have data.

The results of our approach provide a set of TFs and
their target genes which are related by significant up- or
down-regulation in transcription. It provides a clear
indication of the changes in TFA and TFC of TFs that
are controlling transcriptional regulatory mechanisms in
response to a specific stimulus. We therefore showed an
“integrated” approach for network inference, based on a
forward-engineered connection topology, can produce
plausible and testable hypotheses about the responses to
perturbation of transcription networks in higher
eukaryotes.

lllustrating interpretable images of complex data

The visualization tools then make patterns apparent that
would be difficult to detect in numerical data (Fig. 2).
To distinguish regulation patterns between different
experimental conditions, recognizing at a glance is

important. However, computing results are formed in
large numerical matrix, thus it is not only difficult to
navigate through the whole matrix but also impossible
to present the results in one page.

Figure 3 shows a graphical representation of the
significant changes in TFA matrices W (n by m) and
TFC vectors ¢ (n) obtained from this analysis. The pat-
terns of the responses to perturbation of TF networks
are readily observed in this single-shot image that pre-
sents approximately 2000 significant changes of varying
TF activities on the 132,654 TFBSs after deleting p38a.
In upper part of the plots, the TFs place in the
functional group order. The genes, which have at least
one significant interaction with TFs, locate in bottom
part of the plots. A line in the plots presents a regulatory
interaction (normalized TFA by TFC) between a TF and
its target gene, and line color indicates a significant
difference between the strengths of the regulatory inter-
action of two conditions. For example, we can easily find
in visualized format (Fig. 3) that TF group three has
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Fig. 3 Global view of the significant changes in TF activities. Our visualization tools make it possible to distinguish specific features and trends in
each condition. a The changes in TF activities underlying absence of p38a are presented in the limpet-like plots. In the upper part of the limpet
plots, the TFs are placed in order of functional group (Fig. 3c). Genes that have at least one significant change are located in the bottom of the
plots. A line presents how much the TF activity of a certain gene is changed between the wild-type mice and the knock-out mice. If a value of
the change is greater than zero, it is displayed in blue indicating that the TF-gene pair has significantly higher TF activation in the wild-type mice
(Down-regulation after deleting p38a); while, if the change is less than zero, it is displayed in red indicating that the pair has significantly higher
TF activation in the knock-out mice (Up-regulation in deleting p38a). b The legend for the line color is present. ¢ The perimeters of the plots are
broken into different colored regions corresponding to different functional groups listed in the key

distinct patterns (down-regulation at E13.5, up-regulation
at E15.5) between two time points.

Modelling the changes of transcription factor network in
p38a deficient mice

The computational pipeline as highlighted in Fig. 2 was
applied to a published study of the effect p38a knock-
out in mouse embryos [37]. This study developed four
gene expression profiling datasets (Gene Expression
Omnibus, accession number GSE7342) comprising of
two time points at days 13.5 and 15.5 of embryonic de-
velopment (E13.5 and E15.5) for p38a knock-outs and
their wild-type controls. This data set was chosen for
this study as it includes experimental measurements of
gene expression in the wild-type and knock-out mice
and showed that p38a deficient mice have significantly

different phenotype. Thus, the experimental datasets
were used as positive controls for our theoretical study.
The TF-gene interaction strengths (TFAs) W and TF

concentration levels (TFCs) ¢ in each of these four data

sets were then inferred to produce four weight matrices
of TFAs:

L4 PR L4 S L4 e L4
—lwrarzs’ |=lwraris5’ |=lkoar3s’ |=lkoaEiss

and four concentration vectors of TFCs:

[Q]WT@EIS.S’ [E]WT@Elasa [E]KO@EB.Sv [Q]KO@Els.s

From the TFA weight W and connection topology
T matrices, the average strength of TFA, S; for each

TF in the datasets was calculated:
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By comparing the average strengths between wild-type
and knock-out mice, it is possible to see which of the
TFs have significantly changed as a consequence of the
removal of p38a.

Figure 4a, b show the changes in TFA strengths 8¢ be-
tween wild-type and knock-out mice at E13.5 and E15.5.
It can be seen that a number of TFs show a significant
signal (>2 s.d.) in this data. These are shown with more
detail in Table 1. Figure 4c, d show the inferred TFCs ¢
obtained for the E13.5 and E15.5 time points. Again,
from this graph it is possible to see that a number of
TFs appear to be responding to the p38a status. These
are shown in more detail in Table 2.

Transcriptional regulatory network for p38a

Gene Ontology (GO) analysis on the target genes of the
TFs with strongly changed activity showed enrichment
for three GO terms and provided insight into the
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functional role of the TFs (see Methods, Tables 1 and 2,
and Additional file 1: Supplementary Text and
Figure S1-S3). The three GO terms are the regulations
of the apoptosis (programmed cell death), the downward
spiral of the developmental process, and the immune sys-
tem development. The JNK-c-Jun pathway stimulates the
apoptosis, and the I-kB kinase/NF-kB cascade acts as a
suppressor of the JNK-c-Jun pathway [41]. Inhibition of
p38a MAPK retards another JNK-c-Jun pathway inhibitor
NEF-kB cascade, but promotes JNK-c-Jun pathway which
induces the apoptosis by expressing the Bcl2 protein fam-
ily [20, 42]. On the other hand, developmental process re-
lated genes are down-regulated in the p38a knock-out
mice. The study of p38a MAPK [37] reported that the
p38a knock-out mice die within days after birth. We do
not have enough gene expression profiling data (either
other time points in the embryonic period or postnatal
period) to investigate TFAs in whole developmental
process of the p38a knock-out mice; we cannot confirm
but suppose that it might be the reason of the death of the
knock-out mice. Further, the genes interact with the TFs
which are reported as crucial TFs in the developmental
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Fig. 4 a, b The average strength of changes in TF-gene interaction S and TF concentration levels ¢ between wild-type and knock-out mice. The
figures clearly show not only which TFs have strong interaction strengths or high concentrations (gray-colored TFs) but also which TFs have
significant changes in their interaction pattern or concentration (blue- or red-colored TFs). The dotted lines indicate the standard deviation (=2)
centered on the median value of the straight lines. (figure a for time point E13.5 and figure b for time point E15.5). Five TFs (shown in red) interact
particularly strongly with their target genes in the p38a knout-mice. In contrast, six TFs (shown in blue) interact less-strongly in the p38a
knock-out than wild-type. ¢, d The TF concentration levels & of wild-type and knock-out mice. TF concentration levels are plotted. The strongest
signal was observed in E13.5, only. Deleting p38a induces a down regulation of AREB6, PITX2, STAT1 and SOX9
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Table 1 TFs showing significant changes in interaction strength between wild-type and knock-out mice

Trans name TF group Cis name Regul-ation type GO analy-sis Known biological functions Ref.

OLF1 1.Dev EBF1 Down Imm NF-kB — EBF1 — B-cell development [52]

GATA-X 1. Dev GATAT ~6 Down - p38 — HSp27 — GATA1 — Differentiation [53, 54]
— GATA1 — IL9 — Asthma

HNF3 1. Dev FOXM1 Down - p38 — FOXM1 — Apoptosis [45]

RSRFC4 5. Res MEF2 Down Apo, Dev Imm p38 — MEF2 — Development [46, 55]
— Differentiation

NF-«B 6. Lat NF-kB Down Imm p38 — NF-kB — IFNy — STAT1 — Development [56-58]
— ZEB1 — Immune

SOX9 7. Unk SOX9 Down Apop, Dev p38 — SOX9 — Apoptosis [59-62]

PITX2 1. Dev PITX2 Up Apo p38 — PITX2 — Development — Apoptosis [63, 64]

HFH4 1. Dev FOX Up - FOXJ1 — NF-«B [65]

FXR 3. Ste FXR Up Apo, Dev p38 — FXR — Apoptosis [66, 67]

AP1 5. Res c-JUN Up - p38 — JNK — ¢-JUN — Proliferation — Apoptosis [37]

MYC 5. Res MYC Up Apo, Dev p38 — MYC — Apoptosis [68]

The TFs predicted to have significantly different behaviors between the wild-type and knock-out mice. “Trans Name"—the official gene symbol of the TF. “Cis Name"—
the name given to the binding site of the TF. TFs were characterized into different functional groupings (see Fig. 3c for details: Dev—cell-type specific

developmental TFs, Res—signal dependent resident nuclear factors, Lat—signal dependent latent cytoplasmic factors, Ste—signal dependent steroid receptor group,
Unk—unknown). “Regulation Type”, the way in which the TF regulates its target genes in the absence of p38a. “GO Analysis”, provides more functional classification for
the identified TFs (see Methods and Additional file 1: Figure S1 to S3 for details). The abbreviations of the GO terms are: Apo, Apoptosis; Dev, Developmental Process;
Imm, Immune System Development. “Known Biological Functions” summarizes the findings from the recent biological literature as shown in the “References”

The boldface ones are the main node in Fig. 5

process and the immune system development. Our results
are therefore in broad accordance with the experimentally
validated results, so it confirmed that our pipeline pro-
duces reliable results.

Combining the data in Tables 1 and 2 with those ob-
tained from the literature it is possible to build a puta-
tive model for the effects of p38a knock-out (Fig. 5).
This figure shows TFs with a strong response in our
analysis as nodes, with links that demonstrate regulatory
interactions between them. The TF network therefore
comprehensively shows the biological consequences of
p38a knock-out at transcriptional level.

Discussion

We have developed a novel strategy for discovering changes
in transcriptional regulatory networks of higher eukaryotes.
It integrates methods for inferring TF-gene interaction
strengths (TFAs) and TF concentration levels (TFCs); iden-
tifying statistically significant changes in TFAs and TFCs;
analyzing the changes; classifying TFs into functional

groups; and visualizing the changes. To our knowledge, this
is the first ensemble approach for characterizing the tran-
scriptional function of TF proteins and their target genes in
higher eukaryotes. Reverse-engineering of TF networks has
been well developed in the lower eukaryotes [15, 17]. How-
ever, the problems in mapping the regulatory mechanisms
in cells of higher eukaryotes have made such global studies
either impossible or impractical. Some recent studies have
begun to address this issue [16, 19, 30], but have tended to
focus only on understanding which TFs bind to which gen-
es—not looking in detail at the nature of the TF-gene inter-
action. Other studies [5, 21] identified key biological
features in transcriptional changes, however the methods
have difficulties in inferring the dynamics of the interac-
tions. A recent review [40] has categorized techniques for
network inference and listed their limitations.

We validated our computational pipeline using the p38«
gene expression profiling data and our connectivity data.
The study of p38a MAPK [37] used various experimental
methods including a gene expression profiling analysis to

Table 2 TFs showing significant changes in concentration between wild-type and knock-out mice

Trans name TF group Cis name Level GO analy-sis Known biological functions Ref.

AREB6 1.Dev ZEB1 Down - p38 — IFNy — ZEB1 — Immune [58]

PITX2 1.Dev PITX2 Down Apo p38 — PITX2 — Development [63, 64]
— Apoptosis

STAT1 6. Lat STAT1 Down - STAT1 — Development [57, 69]
— Immune

SOX9 7. Unk SOX9 Down Apo, Dev P38 — SOX9 — Apoptosis [59-62]

TFs changing their concentration levels significantly between wild-type and knock-out mice. “Level”, the changes of TF concentration level in the absence of p38a. Other col-

umn headings and abbreviations are the same as those in Table 1
The boldface ones are the main node in Fig. 5
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— ==
stimulation inhibition

Apoptosis

(listed in more detail in Tables 1 and 2)

Fig. 5 A comprehensive transcriptional regulatory network for the p38a. The TFs depicted in gray is already known to p38a [41, 51]. The TFs
identified in our analysis were then added to the figure and colored blue if their activity was down regulated in the absence of p38a, and
colored orange if their activity was up regulated in the absence of p38a. Lines in the figure represent interactions that are known in the literature

show that p38a negatively regulates cell proliferation by
antagonizing the JNK-c-Jun pathway. We utilized the pub-
lished gene expression profiling dataset from their study,
to demonstrate that our computational pipeline is able to
infer from the gene expression profiling data the same in-
silico conclusions that the authors obtained from their in-
vitro experiments. Therefore, our analysis focused on the
JNK-c-Jun pathway to validate the accuracy, robustness
and reliability of our strategy. The results are consistent
with the experimentally validated inhibitory effect of p38a
on transcriptional networks [37]. Their published data
confirmed that the most important TF involved in the re-
sponse to the knock-out was c-Jun, with a clear change
observed in both its activation and concentration. In our
theoretical work, we also showed a significant change in
TFA of c-Jun, but we did not see any corresponding
change in the predicted TFC, which is disappointing.

The p38ax MAPK is one of many signal transduction
pathways and works in both cell-type specific and cell-
context specific manner. It plays a pivotal role in converting
extra-cellular signal into a wide range of cellular response
[43]. We classified a set of TFs that responded to the dele-
tion of p38a into functional groups (Tables 1 and 2, Fig. 3¢),
that are either developmental factors (group 2) or extra-
cellular signal dependent factors (group 3). Developmental
factors are also dependent on extra-cellular signals because
cells may require such signals to generate developmental

factors [44]. In Fig. 3a, it can be seen that the main factors
that responded to the knock-out are the extra-cellular sig-
nal dependent factors. None of the TFs that significantly re-
spond in the knock-out are constitutive factors. Our results
are consistent with recent publications on the JNK-c-Jun
pathway (see citations in Tables 1 and 2).

Our analyses generated a comprehensive transcriptional
regulatory network for p38a. The network and a detailed
description are shown in Fig. 5. The nodes in the graph
were generated from our analysis of responding TFs. The
edges in this network were derived from the literature or
GO analysis (citations in Tables 1 and 2). The edges or
links in the network of p38a regulated TFs have mostly
been previously reported, but none of the reports had in-
tegrated all these p38a related TFs into a single compre-
hensive network diagram. Together these results predict a
set of TFs that are in some way regulated by p38a, a set
somewhat larger than that identified in the original paper.
For example, we predict that Foxm1 (HNF3) responds to
the p38a status. Recent papers, published since the ori-
ginal study, provide some support for this hypothesis [45,
46]. Most parts of the network are reported in numerous
biological studies. However, our network reveals novel
links such as p38a—FXR and p38a—MYC. The inferred
links are supported by direct experimental evidence so
validating the approach, but that in addition novel links
have been proposed that are now testable.
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The data shown in Tables 1 and 2 and visualized in
Fig. 5, provide evidence that the methodology described in
this paper is capable of generating plausible hypotheses
about linkage between p38a and a range of different TFs.
The hypotheses presented in this table have been gener-
ated solely from our input data (the connection topology
data and gene expression profiling data), but are well-
supported by the literature. The methodology has there-
fore demonstrated that it can produce plausible and test-
able hypotheses, even if the specific details of those
interactions may not be completely accurate. This is not
surprising given the fact that we only have an incomplete
model of the transcription process. Any in-silico tech-
niques which uses predicted TF/TFBSs interactions can
provide only a limited view of the complete complexity of
transcription control due to the nature of the binding be-
tween the TF and the TFBS and the complex effect of gene
expression on the TFBS—for example dependent on the
epigenetic factors, such as the pattern of histones or DNA
methylation at the binding site—as well as the state and
concentration of the TF itself. Analysis is complicated by
the fact that there are other processes in the cell that act
to control mRNA concentration. Such as the rate of RNAi
regulated mRNA degradation [9, 10] or susceptibility to
attack by RNAses [3, 11]. TFBS can hidden by his-
tones [7, 8], or made more accessible by genomic uncoil-
ing [6]. Furthermore, most TF binding may be cell or
species specific not all sites are functional even if occu-
pied, and many functional sites have low levels of conser-
vation [47]. This rather undermines the commonly
accepted assumption that TFBSs can be discovered by
conservation [22]. However although the exact binding
sites may not be conserved the set of TFs that bind a gene
somewhere probably is.

p38a deficient mice showed significantly different
phenotype which indicates its role is critical. The p38a
study also provided the gene expression profiling dataset
of wild-type mice as well as p38a deficient mice, so that
we could apply our pipeline on the dataset to investigate
TFAs and TFCs. It allowed us to directly compare our
in-silico results to the experimental in-vitro results, and
it validated our findings. However, the experiment was
done on two time-points that could limit our validation.
Thus, we tested our pipeline on a larger dataset from a
recent STAT5 transcription factor study [38] which is
consisted of 18 samples in five time-points. This study
showed the critical role of STAT5-tetramer in immune
system. To do this, the authors made STAT5-tetramer
deficient mice by generating STAT5A-STAT5B double-
knockin mice. Interleukin 2 (IL2) and IL15 are two of
well-known upstream regulators of STAT5A-STATB, so
they measured IL2- and IL15-induced gene expression
profiling in both wild-type mice and STAT5-tetramer
deficient mice. We downloaded the RNA-seq gene
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expression dataset from this study and analyzed with
our pipeline. TF activities were decreased in STAT5-
tetramer deficient mice (both IL2- and IL15-induced),
particularly at 4, 24, 48 h (Fig. 6). This general trend is
well-corresponded to the experimental findings as the
author reported IL2- and IL15-induced gene expression
were both down-regulated in STAT5-tetramer deficient

IL2 IL15
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Fig. 6 TFA and TFC changes in STATS5-tetramer deficient mice. TFA and
TFC of 65 TFs were estimated from IL2- and IL5-induced RNA-seq
datasets and compared between wild-type and STAT5-tetramer deficient
mice. Thus, TFA or TFC of a given TF is shown in red color if it is higher
in STAT5-tetramer deficient mice than wild-type mice. If the level of TFA
or TFC is higher, the color is darker. The numbers in right-side of
heat-map indicates TF functional group (please see legend in Fig. 3¢)
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mice. However, most TFs were re-activated at the last
time-points which is also exactly same observation in
the experimental result. In particular, STAT5A is in our
TF list so we closely investigated its activation patterns.
STAT5A showed weak activities and concentration level
at control sample, but it dramatically de-activated at 4,
24, 48 h and then re-activated at 72 h. More interest-
ingly, all TFs in cytoplasmic factor group (marked as
number 6 in Fig. 6) including STAT5A have same activa-
tion patterns with STAT5. Moreover, there are a few in-
teresting TFs which are not classified as cytoplasmic
factor but also followed same up- and down-regulated
patterns with STAT5 (e.g. SP1, NFY, E12, MEIS1, PAX4,
AP1, NRF1, TCF11, AP4, GABP, TATA, E4F1). We con-
sidered these are new findings and could lead new
insight and testable hypotheses.

Conclusions

Our objective was to develop an effective computational
pipeline which produces reliable and explicit models of
transcriptional regulatory networks. Even though the
TEBS information is incomplete due to the difficulties in
identifying them, our pipeline predicts new biological
hypotheses on a genome-wide scale by combining TFBS
and gene expression information. TIGERi is publicly
available as a stand-alone GUI software, so ones who
have their own gene expression profiling data could eas-
ily use the TIGERI software to analyze their data on their
fingertips. It would facilitate transcriptional gene regula-
tion researches in the biomedical community.

Our approach can be applied to other gene expression
datasets to provide a display of the transcriptional regu-
latory networks and identify novel candidate genes and
TFs underlying specific phenotypes. For example, our
methodology has been successfully applied to three re-
cent studies [48—50]. The pipeline would be particularly
valuable if it were run on large-scale multi-time point
genomic data. It is also the case that we might expect
the method to become increasingly predictive with im-
proved connection topologies created from large scale
experimentally validated TF/TFBS datasets as opposed
to those generated from simple conservation data.
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