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Abstract: Despite its effectiveness in treating inflammatory diseases and various malignancies,
methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative
stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin
(PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced
hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a
single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver
damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as
well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated
increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide
(NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and
catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP
and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in
the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression,
pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax)
expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU
treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates
Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great
therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration
in upcoming studies.
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1. Introduction

Drug-induced liver injury (DILI) is a term used to describe any injury to the liver by
drugs or other xenobiotics that can lead to chronic liver disease and/or acute liver failure,
with an estimated incidence between 13.9–19.1 cases per 100,000 persons exposed per
year [1,2]. The two mechanisms of DILI are intrinsic, which is dose-dependent and occurs
shortly after exposure, and idiosyncratic, which is more unpredictable and has a longer
latency period [2]. Liver toxicity related to drugs can mimic any form of acute or chronic
hepatobiliary conditions, such as acute viral hepatitis, biliary obstruction, acute fatty liver
and chronic hepatitis, and cirrhosis [3]. A plethora of drugs can cause liver injury, including
anticancer drugs, anesthetics, antimicrobial medications, non-steroidal anti-inflammatory
drugs, and acetaminophen, among others [2,3]. Among hepatotoxic drugs, methotrexate
(MTX) is a commonly used anticancer and immunosuppressive drug for treating a variety
of malignancies and autoimmune diseases [4–7]. It is a folate antimetabolite that can
cause significant toxicity, including hepatotoxicity, acute kidney injury (AKI), pulmonary
damage, myelosuppression, and mucositis, limiting its clinical usage [8–10]. Although
chronic MTX toxicity is more documented in patients receiving MTX, acute MTX toxicity
can be a life-threatening emergency in the form of multiorgan failure [11,12]. Hence, there
is a need to develop effective pharmacotherapies to prevent and decrease the devastating
complications of MTX, including hepatotoxicity.

Following its administration, MTX distributes to extravascular compartments, in-
cluding synovial fluid, and to the non-fatty tissues of the body, including liver, kidney,
and joint tissues [13,14]. In some organs (e.g., the liver and kidney), MTX can be con-
verted by folylpolyglutamate synthetase to active polyglutamate derivatives which are
selectively retained in cells longer than MTX [13,15]. Moreover, MTX partly undergoes
hydroxylation by hepatic aldehyde oxidase to 7-hydroxymethotrexate with a long half-
life of 24 h in humans [16,17]. MTX is mainly excreted by the kidney as a result of both
glomerular filtration and tubular secretion. Extrarenal routes of MTX excretion, including
biliary excretion and secretion into human breast milk and saliva, may occur [13,18]. Even
though the molecular mechanisms behind the hepatotoxicity of MTX have not yet been
fully understood, experimental and clinical investigations are consistent with the idea that
excessive reactive oxygen species (ROS) generation, oxidative stress, inflammation, DNA
damage, and caspase-3 activation play a key role in the development of MTX hepatotoxic-
ity [8,9,15,19]. It has been reported that MTX metabolites, including MTX-polyglutamate,
can cause ROS overproduction, steatosis, and fibrosis in the liver [15]. Indeed, increased
ROS production induces oxidative damage to DNA, lipids, and proteins, as well as an
inflammatory response via nuclear factor kappa-B (NF-κB) activation and the production of
pro-inflammatory cytokines, resulting in liver apoptosis and injury [10,15,20–22]. Thus, the
activation of antioxidant and cytoprotective pathways can show a robust protective strategy
against the development of MTX hepatotoxicity. Among these protective strategies is the
activation of the redox-regulated transcription factor nuclear factor (erythroid-derived
2)-like 2 (Nrf2), which can protect against cellular oxidative damage through the regula-
tion of the basal and inducible expression of a plethora of antioxidant and cytoprotective
genes [23,24]. Therefore, the activation of Nrf2 may show a promising feasible approach
for the prevention/treatment of MTX-induced liver injury.

Extensive evidence suggests that using natural substances with antioxidant and anti-
inflammatory characteristics can effectively treat MTX-induced liver injuries [25–28]. Plants
are considered as one of the main sources of medically relevant active compounds, in-
cluding polyphenols. Among them, the pomegranate (Punica granatum L.) is a small
tree that is cultivated in the tropics and deciduous in subtropical and temperate zone
areas [29]. It possesses high amounts of phenolic compounds, including hydrolyzable
tannins, flavonol glucosides, phenolic acids, ellagic acid derivatives, and flavonoids in
its various parts such as fruits, seeds, leaves, and peels [30,31]. Pomegranate is known
for its potential health-promoting properties, including antioxidant, anti-inflammatory,
anticancer, antihypertensive, antiatherosclerosis and antimicrobial activities [29,32]. Puni-
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calagin (PU, C48H28O30) is one of the major active pomegranate polyphenols possessing
antioxidant and anti-inflammatory properties, among others [33–35]. PU was shown to
attenuate diabetes-induced cardiac pathology in rats via modulating myocardial oxidative
injury, inflammation, and apoptosis [36]. It has also been demonstrated that PU attenuated
acetaminophen-induced liver damage and histological changes by reducing oxidative
stress [37]. PU was reported to protect against diabetic liver injury in mice through the
attenuation of oxidative stress and restoration of antioxidants [38]. Moreover, PU prevented
cyclophosphamide-induced liver injury by inhibiting oxidative/nitrosative stress, inflam-
mation, and apoptosis [39]. PU also showed a protective action against acrylamide-induced
neurotoxicity and hepatotoxicity by modulating oxidative stress and apoptosis in rats [40].
PU protected rats against cisplatin-induced renal damage by lowering oxidative stress,
inflammation, and apoptosis while increasing Nrf2 and antioxidant levels [34]. Moreover,
another study found that PU mitigated carbon tetrachloride (CCl4)-induced liver damage
by improving antioxidative activities and autophagy via the Akt/FOXO3a and P62/Nrf2-
signaling pathways [41]. In addition, PU attenuated methionine-induced brain damage [42]
and protected against streptozotocin-induced pancreatic injury and insulitis [43] in rodents
by modulating oxidative stress, inflammation and apoptotic cell death. PU, like all other
ellagitannins, is hydrolyzed in the small intestine to form ellagic acid, which is then metab-
olized by intestinal bacteria via numerous decarboxylation steps to produce urolithins [44].
Similar to PU, ellagic acid and urolithins have shown significant antioxidant activity and
protective effects against oxidative stress-mediated tissue damage [45–48]. While PU and
ellagic acid are poorly bioavailable due to their rapid degradation or low water solubility,
urolithins are the most bioavailable ellagitannin derivatives absorbed from the intestine and
distributed in the body fluids and tissues, appearing as the actual metabolites responsible
for beneficial bioactivities obtained from PU and other ellagitannins ingestion [49,50].

Despite its multiple therapeutic effects, the protective action of PU against MTX-
induced hepatotoxicity is yet to be studied. Therefore, we hypothesized that treatment
with PU would be a novel strategy for protecting the liver from the adverse effects of MTX.
In this study, we have investigated the effect of PU on oxidative stress, inflammation, and
apoptosis, hinting at a putative role for Nrf2 in the protection of MTX-induced hepatotoxic-
ity in mice. This study underscores the potential of PU for the prevention of hepatotoxicity
induced by MTX.

2. Results
2.1. PU Prevents MTX-Induced Liver Injury in Mice

To investigate the protective effect of PU on MTX-induced liver injury, we evaluated
liver function markers levels (Figure 1A–D) and histological changes (Figure 2) in both
PU-treated and untreated mice. MTX resulted in a significant (p < 0.05) increase in serum
aspartate aminotransferase (AST) (Figure 1A), alanine transaminase (ALT) (Figure 1B),
alkaline phosphatase (ALP) (Figure 1C), and lactate dehydrogenase (LDH) (Figure 1D)
activities when compared to control mice. The treatment of MTX-intoxicated mice with PU
significantly (p < 0.05) ameliorated serum AST, ALT, ALP, and LDH activities. PU alone
had no effects on the liver enzymes in the healthy mice.
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Figure 1. PU ameliorates liver function in mice exposed to MTX. PU reduced the blood levels of 
(A) AST, (B) ALT, (C) ALP, and (D) LDH activities in MTX-injected mice. Results are expressed as 
mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 
0.05) vs. MTX. 

Figure 1. PU ameliorates liver function in mice exposed to MTX. PU reduced the blood levels of
(A) AST, (B) ALT, (C) ALP, and (D) LDH activities in MTX-injected mice. Results are expressed
as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant
(p < 0.05) vs. MTX.

The effect of PU on MTX-induced liver injury was further evaluated by examining
the hematoxylin and eosin (H&E)-stained liver sections of both PU-treated and untreated
mice. As shown in Figure 2A,B, histological examination of liver sections from control and
PU-treated mice demonstrated normal hepatic cells arranged in cords and separated with
sinusoids around the central vein. Examination of sections from the liver of MTX-treated
mice showed congestion of hepatic blood vessels and marked granular hepatic vacuolation
associated with marked nuclear pyknosis (Figure 2C). These histopathological changes
were remarkably attenuated when MTX-injected mice were treated with both doses of PU
(Figure 2D,E).

2.2. PU Attenuates Oxidative Stress and Enhances Antioxidants Defenses in Liver of
MTX-Treated Mice

The levels of hepatic malondialdehyde (MDA) and nitric oxide (NO) were significant
(p < 0.05) in the mice intoxicated with MTX (Figure 3A,B, respectively); meanwhile, this
group exhibited a significant decrease (p < 0.05) in the liver-reduced glutathione (GSH)
contents (Figure 3C), as well as superoxide dismutase (SOD) and catalase (CAT) activ-
ities (Figure 3D,E, respectively). The PU treatment of MTX-injected mice significantly
(p < 0.05) ameliorated MDA and NO levels and restored antioxidants in the MTX-induced
liver. Normal mice that received PU alone had no effects on MDA and NO contents and
antioxidants.
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Figure 2. PU ameliorates MTX-induced histopathological alterations in the liver. Image of hepatic 
sections from (A) control mice showing normal hepatic cells (arrowhead) arranged in cords and 
separated with sinusoids around the central vein (CV); (B) PU-treated animals demonstrating 
normal hepatocytes (arrowhead) around the central vein (CV), (C) MTX-treated animals demon-
strating congestion of hepatic blood vessels (arrow) and marked granular hepatic vacuolation as-
sociated with marked nuclear pyknosis (arrowhead); (D) MTX-administered mice pre-treated with 
25 mg PU showing marked decreased hepatic vacuolation which restricted mostly centrilobular 
(arrowhead) (CV indicates central vein); and (E) MTX-administered animal group pre-treated with 
50 mg PU demonstrating noticeable decrease in hepatic vacuolation with few cellular apoptosis 
(arrowheads) (CV indicates central vein) (H&E, X200, Scale bar = 50 µm). 

2.2. PU Attenuates Oxidative Stress and Enhances Antioxidants Defenses in Liver of 
MTX-Treated Mice. 

The levels of hepatic malondialdehyde (MDA) and nitric oxide (NO) were signifi-
cant (p < 0.05) in the mice intoxicated with MTX (Figures 3A,B, respectively); meanwhile, 
this group exhibited a significant decrease (p < 0.05) in the liver-reduced glutathione 
(GSH) contents (Figure 3C), as well as superoxide dismutase (SOD) and catalase (CAT) 
activities (Figures 3D,E, respectively). The PU treatment of MTX-injected mice signifi-
cantly (p < 0.05) ameliorated MDA and NO levels and restored antioxidants in the 
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contents and antioxidants. 

Figure 2. PU ameliorates MTX-induced histopathological alterations in the liver. Image of hepatic
sections from (A) control mice showing normal hepatic cells (arrowhead) arranged in cords and
separated with sinusoids around the central vein (CV); (B) PU-treated animals demonstrating normal
hepatocytes (arrowhead) around the central vein (CV), (C) MTX-treated animals demonstrating
congestion of hepatic blood vessels (arrow) and marked granular hepatic vacuolation associated
with marked nuclear pyknosis (arrowhead); (D) MTX-administered mice pre-treated with 25 mg PU
showing marked decreased hepatic vacuolation which restricted mostly centrilobular (arrowhead)
(CV indicates central vein); and (E) MTX-administered animal group pre-treated with 50 mg PU
demonstrating noticeable decrease in hepatic vacuolation with few cellular apoptosis (arrowheads)
(CV indicates central vein) (H&E, X200, Scale bar = 50 µm).
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Figure 3. PU reduces hepatic levels of oxidative stress markers in mice exposed to MTX. 
Pre-treatment with PU decreased hepatic (A) MDA and (B) NO levels, elevated (C) GSH level, and 
(D) SOD and (E) CAT activities in MTX-injected mice. Results are expressed as mean ± SEM, (n = 6). 
a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs. MTX. 
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MTX-intoxicated mice when compared to the control animal group. This was indicated 
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as pro-inflammatory cytokine levels, interleukin-6 (IL-6) (Figure 5A), and tumor necrosis 
factor-alpha (TNF-α) (Figure 5B). Treatment of MTX-injected mice with both doses of PU 
significantly (p < 0.05) ameliorated NF-κB p65 expression and IL-6 and TNF-α levels in 
the liver. However, PU alone did not affect the above-mentioned markers in healthy 
mice. 

Figure 3. PU reduces hepatic levels of oxidative stress markers in mice exposed to MTX. Pre-treatment
with PU decreased hepatic (A) MDA and (B) NO levels, elevated (C) GSH level, and (D) SOD and
(E) CAT activities in MTX-injected mice. Results are expressed as mean ± SEM, (n = 6). a indicates
significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs. MTX.

2.3. PU Suppresses the MTX-Induced Hepatic Inflammation in Mice

Inflammatory response plays a crucial role in the pathogenicity of MTX-induced
liver toxicity. Inflammation was significantly elevated in the hepatic tissue of MTX-
intoxicated mice when compared to the control animal group. This was indicated by
a considerable (p < 0.05) rise in the hepatic NF-κB p65 expression (Figure 4A–F) as well
as pro-inflammatory cytokine levels, interleukin-6 (IL-6) (Figure 5A), and tumor necrosis
factor-alpha (TNF-α) (Figure 5B). Treatment of MTX-injected mice with both doses of PU
significantly (p < 0.05) ameliorated NF-κB p65 expression and IL-6 and TNF-α levels in the
liver. However, PU alone did not affect the above-mentioned markers in healthy mice.

2.4. PU Mitigates the MTX-Induced Apoptosis in the Liver

To further assess the preventive impact of PU on MTX-injured liver, we determined the
expression levels of Bax, Bcl-2, and caspase-3 in hepatic tissue by immunohistochemistry
(IHC) staining. There was a significant (p < 0.05) decline in the level of Bcl-2 expression
(Figure 6A–F), with concordant marked (p < 0.05) elevation of the expression levels of Bax
(Figure 7A–F) and caspase-3 (Figure 8A–F) in liver of MTX-injected mice. This imbalance
in the hepatic contents of Bax, Bcl-2, and caspase-3 were remarkably (p < 0.05) ameliorated
when mice were pretreated with both doses of PU before MTX exposure. PU alone did not
affect the expression levels of the above-mentioned apoptosis regulatory proteins in the
liver.
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Figure 4. PU attenuates hepatic inflammatory reaction in MTX-administered mice. Photomicro-
graphs of microscopic field from liver of (A) control and (B) PU-treated mice showing minimal 
immunoexpression of NF-κB p65 in the hepatic tissues (arrowheads); (C) MTX-injected mice 
demonstrating marked immunoexpression of cytoplasmic and nuclear hepatocytes’ NF-κB p65 
(arrowheads); (D) MTX-injected mice pre-treated with 25 mg PU demonstrating decreased 
hepatocytes’ NF-κB p65 immunoexpression (arrowheads); and (E) MTX-injected animals 
pre-treated with 50 mg PU demonstrating noticeable decreased hepatocytes’ NF-κB p65 immuno-
expression (arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis of hepatocytes’ NF-κB 
p65 immunostaining demonstrating significant rise of NF-κB p65 in MTX-injected mice and sig-
nificant decline of NF-κB p65 in mice pretreated with both doses of PU before MTX injection. Re-
sults are expressed as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b in-
dicates significant (p < 0.05) vs. MTX. 

Figure 4. PU attenuates hepatic inflammatory reaction in MTX-administered mice. Photomicro-
graphs of microscopic field from liver of (A) control and (B) PU-treated mice showing minimal
immunoexpression of NF-κB p65 in the hepatic tissues (arrowheads); (C) MTX-injected mice demon-
strating marked immunoexpression of cytoplasmic and nuclear hepatocytes’ NF-κB p65 (arrowheads);
(D) MTX-injected mice pre-treated with 25 mg PU demonstrating decreased hepatocytes’ NF-κB p65
immunoexpression (arrowheads); and (E) MTX-injected animals pre-treated with 50 mg PU demon-
strating noticeable decreased hepatocytes’ NF-κB p65 immunoexpression (arrowheads) (IHC, X200,
Scale bar = 50 µm). (F) Image analysis of hepatocytes’ NF-κB p65 immunostaining demonstrating
significant rise of NF-κB p65 in MTX-injected mice and significant decline of NF-κB p65 in mice
pretreated with both doses of PU before MTX injection. Results are expressed as mean ± SEM, (n = 6).
a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs. MTX.
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as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 
0.05) vs. MTX. 
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Figure 5. PU reduces hepatic (A) IL-6 and (B) TNF-α in MTX-injected mice. Results are expressed
as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant
(p < 0.05) vs. MTX.
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Figure 6. PU attenuates hepatic Bcl-2 in MTX-injected mice. Image of microscopic field of hepatic 
tissue from (A) control and (B) PU-treated mice showing high level of hepatocytes Bcl-2 immuno-
expression (arrowheads), (C) MTX- injected mice showing marked decrease in hepatocytes’ Bcl-2 
immunoexpression (arrowheads); (D) MTX-injected mice pre-treated with 25 mg PU demonstrat-
ing increased Bcl-2 immunoexpression within the hepatic tissues (arrowheads); and (E) 
MTX-injected mice pre-treated with 50 mg PU showing noticeable increase in hepatocytes’ Bcl-2 
immunoexpression (arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis of hepatic Bcl-2 
immunostaining demonstrating significant decline of Bcl-2 level in MTX-injected mice and signif-
icant elevation of Bcl-2 level in both doses of PU-pretreated mice exposed to MTX. Results are ex-
pressed as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates sig-
nificant (p < 0.05) vs. MTX. 

Figure 6. PU attenuates hepatic Bcl-2 in MTX-injected mice. Image of microscopic field of hepatic
tissue from (A) control and (B) PU-treated mice showing high level of hepatocytes Bcl-2 immuno-
expression (arrowheads), (C) MTX- injected mice showing marked decrease in hepatocytes’ Bcl-2
immunoexpression (arrowheads); (D) MTX-injected mice pre-treated with 25 mg PU demonstrating
increased Bcl-2 immunoexpression within the hepatic tissues (arrowheads); and (E) MTX-injected
mice pre-treated with 50 mg PU showing noticeable increase in hepatocytes’ Bcl-2 immunoexpression
(arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis of hepatic Bcl-2 immunostaining
demonstrating significant decline of Bcl-2 level in MTX-injected mice and significant elevation of
Bcl-2 level in both doses of PU-pretreated mice exposed to MTX. Results are expressed as mean ±
SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs.
MTX.
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Figure 7. PU decreases hepatic Bax in MTX-administered mice. Image of hepatic microscopic field 
of (A) control and (B) PU-treated mice showing scanty hepatocytes’ expression of Bax (arrow-
heads); (C) MTX-injected mice showing marked immunoexpression of Bax within the hepatic tis-
sues (arrowheads); (D) MTX-injected mice pre-treated with 25 mg PU demonstrating decreased 
Bax immunoexpression within the hepatic tissues (arrowheads); and (E) MTX-injected mice 
pre-treated with 50 mg PU demonstrating noticeable decline in hepatocytes’ Bax immunoexpres-
sion (arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis of hepatic Bax immunostain-
ing demonstrating significant elevation of Bax level in MTX-injected mice and significant decline of 
Bax level in MTX-exposed mice pretreated with both doses of PU. Results are expressed as mean ± 
SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs. 
MTX. 

Figure 7. PU decreases hepatic Bax in MTX-administered mice. Image of hepatic microscopic
field of (A) control and (B) PU-treated mice showing scanty hepatocytes’ expression of Bax (ar-
rowheads); (C) MTX-injected mice showing marked immunoexpression of Bax within the hepatic
tissues (arrowheads); (D) MTX-injected mice pre-treated with 25 mg PU demonstrating decreased
Bax immunoexpression within the hepatic tissues (arrowheads); and (E) MTX-injected mice pre-
treated with 50 mg PU demonstrating noticeable decline in hepatocytes’ Bax immunoexpression
(arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis of hepatic Bax immunostaining
demonstrating significant elevation of Bax level in MTX-injected mice and significant decline of Bax
level in MTX-exposed mice pretreated with both doses of PU. Results are expressed as mean ± SEM,
(n = 6). a indicates significant (p < 0.05) vs. control, while b indicates significant (p < 0.05) vs. MTX.



Int. J. Mol. Sci. 2022, 23, 12334 10 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 8. PU decreases hepatic caspase-3 in MTX-injected mice. Images of hepatic microscopic 
fields from (A) control and (B) PU-treated animals demonstrating slight immunoexpression of 
caspase-3 within the hepatic tissues (arrowheads); (C) MTX-administered mice showing marked 
immunoexpression of caspase-3 within the hepatic tissues (arrowheads); (D) MTX-intoxicated mice 
pre-treated with 25 mg PU demonstrating decreased caspase-3 immunoexpression within the he-
patic tissues (arrowheads); and (E) MTX-injected mice pre-treated with 50 mg PU showing no-
ticeable decreased hepatocytes’ caspase-3 immunoexpression (arrowheads) (IHC, X200, Scale bar = 
50 µm). (F) Image analysis of hepatocytes’ caspase-3 immunostaining of mice demonstrating sig-
nificant elevation in MTX-injected mice and significant decline in mice treated with both doses of 
PU. Results are expressed as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while 
b indicates significant (p < 0.05) vs. MTX. 
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Since targeting Nrf2 is suggested to attenuate oxidative damage and inflammation, 

changes in its expression in the liver of both PU-treated and untreated mice were 
determined by IHC staining (Figure 9A–F). MTX-treated mice demonstrated 
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Figure 8. PU decreases hepatic caspase-3 in MTX-injected mice. Images of hepatic microscopic
fields from (A) control and (B) PU-treated animals demonstrating slight immunoexpression of
caspase-3 within the hepatic tissues (arrowheads); (C) MTX-administered mice showing marked
immunoexpression of caspase-3 within the hepatic tissues (arrowheads); (D) MTX-intoxicated mice
pre-treated with 25 mg PU demonstrating decreased caspase-3 immunoexpression within the hepatic
tissues (arrowheads); and (E) MTX-injected mice pre-treated with 50 mg PU showing noticeable
decreased hepatocytes’ caspase-3 immunoexpression (arrowheads) (IHC, X200, Scale bar = 50 µm).
(F) Image analysis of hepatocytes’ caspase-3 immunostaining of mice demonstrating significant
elevation in MTX-injected mice and significant decline in mice treated with both doses of PU. Results
are expressed as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b indicates
significant (p < 0.05) vs. MTX.

2.5. PU Upregulates Hepatic Nrf2/Heme Oxygenase 1 (HO-1) in MTX-Treated Mice

Since targeting Nrf2 is suggested to attenuate oxidative damage and inflammation,
changes in its expression in the liver of both PU-treated and untreated mice were de-
termined by IHC staining (Figure 9A–F). MTX-treated mice demonstrated significantly
(p < 0.05) downregulated hepatic expressions of Nrf2 as compared to the control animal
group. Such downregulation of the hepatic Nrf2 expression was significantly (p < 0.05)
attenuated by PU pre-treatment (Figure 9A–F) of MTX-injected mice. In addition, both
doses of PU significantly (p < 0.05) attenuated HO-1 in the mouse liver (Figure 9G). Normal
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mice that received PU alone had no effects on Nrf2 expression and HO-1 content in the
liver.
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and LDH, as well as various histological abnormalities in liver tissues. Clinically, ele-
vated blood liver enzymes are frequently linked with MTX therapy, indicating hepato-
cellular degeneration and necrosis [15]. MTX administration has been associated with 
acute hepatocellular necrosis, steatosis, cholestasis, fibrosis, and cirrhosis [2,52]. The lo-
calization of histopathological changes in the pericentral hepatocytes may suggest that 
MTX is more abundant in this region than in the periportal and midzonal lobular zones. 
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which enhances MTX polyglutamate production by folylpolyglutamyl synthatase and 
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Figure 9. PU upregulates hepatic Nrf2/HO-1 signaling in MTX-injected animals. Images of hepatic
microscopic fields from (A) control and (B) PU-treated mice showing noticeable immunoexpression
of hepatocytes’ Nrf2 (arrowheads); (C) MTX-injected mice demonstrating considerable decrease in
hepatocytes’ Nrf2 immunoexpression (arrowheads); (D) MTX-injected mice pre-treated with 25 mg
PU demonstrating an elevation of Nrf2 immunoexpression within the hepatic tissues (arrowheads);
and (E) MTX-injected animals pre-treated with 50 mg PU showing marked increase in Nrf2 immuno-
expression within the hepatic tissues (arrowheads) (IHC, X200, Scale bar = 50 µm). (F) Image analysis
of hepatic Nrf2 immunostaining showing remarkable upregulation in MTX-injected mice treated
with both doses of PU. (G) PU markedly attenuates hepatic levels of HO-1 in MTX-injected mice.
Results are expressed as mean ± SEM, (n = 6). a indicates significant (p < 0.05) vs. control, while b
indicates significant (p < 0.05) vs. MTX.

3. Discussion

The antifolate metabolite MTX is one of the most effective and widely used drugs in
the management of a range of malignancies and autoimmune disorders [4,51]. However, it
can induce multi-organ toxicity, including hepatotoxicity, which involves increasing ROS
generation and activating pro-inflammatory and cell death pathways, limiting its clinical
use [8,9,19]. Therefore, the development of efficient promising protective approaches to
prevent MTX hepatotoxicity is needed. In this study, we demonstrated that PU mitigated
MTX-induced liver injury via attenuating oxidative tissue injury, inflammatory response,
and cell death, and upregulating Nrf2 in the liver tissue of mice.

Consistent with several studies [19,52–54], MTX-induced liver damage was demon-
strated in this study by increased serum levels of transaminases (ALT and AST), ALP, and
LDH, as well as various histological abnormalities in liver tissues. Clinically, elevated
blood liver enzymes are frequently linked with MTX therapy, indicating hepatocellular
degeneration and necrosis [15]. MTX administration has been associated with acute hepa-
tocellular necrosis, steatosis, cholestasis, fibrosis, and cirrhosis [2,52]. The localization of
histopathological changes in the pericentral hepatocytes may suggest that MTX is more
abundant in this region than in the periportal and midzonal lobular zones. This could be
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attributable to increased glutamate uptake by pericentral hepatocytes, which enhances
MTX polyglutamate production by folylpolyglutamyl synthatase and boosts intracellular
MTX accumulation [55]. Furthermore, since the pericentral area is the furthest zone from
the arterial blood supply, it has relatively lower levels of oxygen and GSH, making it
more vulnerable to hypoxia and oxidative damage [56,57]. PU pre-treatment, on the other
hand, demonstrated a potent hepatoprotective effect against MTX-induced hepatotoxi-
city, as shown by reducing both serum markers and histopathological features of liver
injury. These findings are consistent with numerous previous reports that showed the
hepatoprotective potential of PU against liver injury induced by drugs and chemicals like
cyclophosphamide [39], acetaminophen [37], and tetrachloromethane [41].

Increased oxidative damage of the liver has been described as an important primary
mechanism leading to the development of MTX-induced hepatotoxicity [21,22,27]. In hepa-
tocytes, the enzyme folylpolyglutamyl synthetase converts MTX to MTX polyglutamates by
adding up to six glutamate residues to MTX and increasing its intracellular retention, which
triggers ROS overproduction and oxidative damage in liver tissue [13,15]. In turn, gamma-
glutamyl hydrolase converts MTX polyglutamates back to MTX by removing glutamates
from the polyglutamates, which are subsequently eliminated from cells by ATP-binding
cassette transporters [58]. Furthermore, at a high dose of MTX, the amount of MTX is
converted to the toxic metabolite 7-hydroxymethotrexate by the action of aldehyde oxidase
as a dose-dependent alternate pathway [16,17,50]. Oxidative stress can cause potentially
harmful events in the cell, including LPO, protein oxidation, and oxidative DNA damage,
which are considered crucial factors in triggering the pathologic changes associated with
MTX hepatotoxicity [5,19,26,53,59]. Herein, the liver of MTX-treated mice showed increased
MDA and NO contents, along with a marked decline in GSH content and SOD and CAT ac-
tivities. LPO is considered a destructive process that affects cellular membranes and causes
membrane permeability and fluidity changes with significant biological consequences [60].
Furthermore, protein oxidation causes protein unfolding, aggregation, or fragmentation, as
well as enzyme and other protein inactivation, all of which result in protein degradation
and, ultimately, cell death [61]. Importantly, peroxynitrite, a powerful oxidant formed by
the interaction of superoxide anion with NO, aggravates oxidative damage by further oxi-
dation of cellular components such as lipids, DNA, and proteins, resulting in cell death [62].
Therefore, attenuating oxidative stress and enhancing antioxidant defenses might represent
powerful therapeutic tools for the prevention of hepatotoxicity induced by MTX. In the
present study, PU treatment of MTX-injected mice markedly attenuated MDA and NO
contents and boosted antioxidants in the liver. Consistent with our findings, PU decreased
MDA and restored GSH contents and CAT and SOD activities in the kidney of a rat model
of cisplatin-induced induced AKI [34]. Another study showed that PU treatment reduced
the MDA level and increased SOD and glutathione peroxidase (GPx) activities in the liver of
CCl4-induced hepatic injury [41]. PU was also able to prevent cyclophosphamide-induced
oxidative tissue injury in the liver by decreasing MDA and NO levels and increasing total
antioxidant capacity (TAC) in rats [63].

Multiple lines of evidence indicate that the MTX-induced ROS production may trig-
ger an inflammatory response through activating the redox-sensitive factor NF-κB that
induces the release of pro-inflammatory mediators resulting in increased inflammation and
associated oxidative stress, hence promoting the progression of liver injury and dysfunc-
tion [15,53,54]. Consistent with several studies [15,21,22], the liver of MTX-injected mice
showed increased NF-κB p65 expression and TNF-α and IL-6 levels in the liver. Indeed,
increased oxidative stress and inflammation may promote the activation of stress signaling
pathways facilitating apoptotic cell death in the liver [64,65]. In the present study, the MTX-
treated mice showed increased expression of Bax and caspase-3 and decreased expression of
Bcl-2 in the liver. These findings were supported by previous studies where MTX injection
was associated with increased apoptosis in the liver [21,22,53]. The most likely trigger of
MTX-induced apoptosis is sustained ROS production after MTX exposure that culminates
in the dissipation of mitochondrial membrane potential and cytochrome c release which
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ultimately induces the execution phase of caspase-3-dependent apoptosis [15,25,27]. Thus,
prevention of the MTX-induced ROS overproduction and NF-κB activation can attenuate
apoptosis and consequently protect against liver injury and dysfunction induced by MTX.
PU suppressed NF-κB and decreased TNF-α, and IL-6 in the liver of MTX-injected mice,
demonstrating its anti-inflammatory activity. Furthermore, PU prevented MTX-induced
apoptosis in the liver as shown by the decreased Bax and caspase-3 and increased Bcl-
2 expressions. Consistently, PU protected against inflammation and apoptosis where it
suppressed NF-κB, TNF-α, IL-1β, Bax, and caspase-3 and enhanced Bcl-2 in the kidney
of cisplatin-induced nephrotoxicity [34]. Additionally, PU prevented cyclophosphamide
inflammation and apoptosis in the liver through attenuating NF-κB p65, TNF-α, IL-1β,
Bax/Bcl-2 ratio, inducible nitric oxide synthase, and caspases 3 and 9 levels [39]. Fur-
thermore, PU decreased ROS formation and inhibited apoptosis in palmitate-mediated
lipotoxicity in HepG2 cells through modulating cytochrome c release, Bax mitochondrial
translocation, and caspase-3 activation [66]. Taken together, the suppressive effect of PU on
MTX-induced apoptosis in the liver appears to be attributed, at least in part, to its potential
inhibitory effects on ROS overproduction and inflammatory response.

It has extensively been suggested that the activation of Nrf2 is crucial in protecting
against the development of drug-induced hepatotoxicity through the neutralization of ROS
in the cell and the upregulation of antioxidant and cytoprotective genes [53,67,68]. It has
been reported that Nrf2 activation prevented drug-induced liver injury through attenuating
oxidative tissue damage and inflammatory response [67,69]. In contrast to these studies,
Lv et al. [70], using Nrf2-deficient mice, indicated that the inhibition of Nrf2 may be
deleterious and increase susceptibility to acetaminophen-induced hepatotoxicity. Therefore,
interventions aiming at augmenting Nrf2 signaling can be of significant therapeutic benefit
against MTX-induced hepatotoxicity. Accumulating evidence indicates that the use of
Nrf2-activating natural compounds has shown effective therapeutic effects against MTX-
induced liver injury without interfering with its anticancer effectiveness [53,54]. Herein,
PU treatment effectively upregulated Nrf2 in the liver of MTX-injected mice. Accordingly,
a recent study showed that PU treatment prevented cisplatin-induced oxidative tissue
injury and inflammatory response in the kidney possibly via activating Nrf2-signaling
pathway [34]. Similar findings also indicated that PU increased Nrf2 and HO-1 expression
to prevent lipopolysaccharides (LPS)-induced oxidative stress in macrophages by reducing
ROS and NO generation and increasing SOD1 expression [71]. Additionally, PU effectively
ameliorated free fatty acids (FFA)-induced lipotoxicity in HepG2 cells by activating the
Nrf2-signaling pathway [66].

The findings of this study showed the hepatoprotective effects of PU against MTX-
induced liver injury; however, it has some limitations. Although PU attenuated MDA and
NO levels and boosted antioxidant defenses in the liver, we didn’t measure its effect on ROS
generation. This study showed that PU upregulated Nrf2 and HO-1 in the liver of MTX-
intoxicated mice; however, it was unable to evaluate the effect of hepatic expression of other
Nrf2-related antioxidant enzymes. While this study clearly indicated the downregulation
and upregulation of some regulatory proteins as depicted by IHC and ELISA, we did not
validate it by RT-qPCR to demonstrate the relationship between protein and mRNA levels.

4. Materials and Methods
4.1. Animals

Thirty Swiss albino mice weighing 23–25 g were used in this study. All animals
were housed under standard conditions (temperature, 23 ± 2 ◦C; and relative humidity,
50 ± 10%) with a 12 h light/dark cycle. They were allowed to acclimatize for a week before
beginning the experiment, and they were fed a standard chow diet with unrestricted access
to water. Animal handling and related protocols were validated by the panel of animal
research ethics at Al-Hussein Bin Talal University (AHU-198/2019) and were conducted
in compliance with National Institutes of Health legislation (NIH publication No. 85–23,
revised 2011).
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Physiological saline and 0.5% carboxymethyl cellulose (CMC) were used as vehicle
solutions to dissolve the MTX (Shanxi PUDE, Datong, China) and the PU (Santa Cruz
Biotechnology, Dallas, TX, USA), respectively [34].

4.2. Experimental Design

The included animals were divided into five groups (n = 6). The control mice were
administered with 0.5% CMC for 10 days and injected intraperitoneally (i.p.) once with
physiological saline on day 7. The mice in the second group (PU) were administered
with PU (50 mg/kg) orally for 10 days and one injection (i.p.) of physiological saline on
day 7. Meanwhile, groups III (MTX), IV (PU 25 mg/kg + MTX), and V (PU 50 mg/kg +
MTX) animals were administered orally with 0.5% CMC, 25 mg/kg PU, or 50 mg/kg PU,
respectively, for 10 days and a single dose of MTX (20 mg/kg, i.p.) at day 7. The PU and
MTX doses were determined based on the previous reports of Aladaileh et al. [34] and
Mahmoud et al. [53], respectively.

The animals were anesthetized on the 11th day of the experiment using a ketamine–
xylazine combination (100 mg/kg, 10 mg/kg, respectively, i.p.). A cardiac puncture was
performed for blood sampling, then serum was separated for biochemical assessment.
Instantly, the mice were dissected, and the liver tissues were isolated and washed in
50 mM cold phosphate buffer (PBS) (pH 7.0). Parts of liver specimens were fixed in 10%
neutral buffered formalin for histological examination. The rest of the liver tissues were
homogenized in cold PBS (10% w/v), centrifuged, and the clear homogenate was collected
and stored at −20 ◦C for further analysis of biochemical parameters.

4.3. Estimation of Markers of Liver Function

Activities of liver function enzymes including AST, ALT, ALP, and LDH were de-
termined in the serum of both PU-treated and untreated mice using kits procured from
Spinreact (Girona, Spain).

4.4. Assessment of Oxidative Stress Markers and Antioxidant Contents in Liver Tissues

The hepatic levels of oxidative stress markers including MDA and NO were deter-
mined according to the methods described by Ohkawa et al. [72] and Green et al. [73],
respectively. In addition, the activities of the antioxidant contents including SOD [74] and
CAT [75], as well as the levels of GSH [76] were estimated in the liver of both PU-treated
and untreated mice. A specific ELISA kit (MyBioSource, San Diego, CA, USA) was used for
the measurement of hepatic HO-1 content according to the protocol provided.

4.5. Estimation of Pro-Inflammatory Cytokines in Liver

Following the manufacturer’s instructions of R&D Systems (Minneapolis, MN, USA)
ELISA kits, the levels of pro-inflammatory cytokines, including TNF-α and IL-6, were
estimated in hepatic tissues of both PU-treated and untreated mice.

4.6. Histological Examination of Liver Sections

The formalin-fixed specimens were dehydrated, cleared in xylene, and embedded in
paraffin. Next, 5-µm slices were prepared using a rotary microtome before the sections
were deparaffinization and rehydration. Then, they were subjected to H&E for routine
histopathological examination and the histopathological changes were observed using light
microscopy and evaluated in a blinded manner by a histopathologist.

4.7. Immunohistochemistry

For IHC, the deparaffinized and hydrated sections were treated with 0.05 M citrate
buffer (pH 6.8) for antigen retrieval followed by 0.3% hydrogen peroxide. The nonspecific
antigen-antibody binding was blocked through the addition of normal serum for 20 min.
The sections were washed in PBS and probed overnight at 4 ◦C with anti-NF-κB p65
(ThermoFisher, Waltham, MA, USA), anti-Bax (Abcam, Cambridge, MA, USA), anti-Bcl-2
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(Abcam, Cambridge, MA, USA), anti-caspase-3 (ThermoFisher, Waltham, MA, USA), and
anti-Nrf2 (ThermoFisher, Waltham, MA, USA). After washing in PBS, anti-mouse secondary
antibodies were added to the slides, and DAB was used for color development. Then,
the sections were counterstained with Mayer’s hematoxylin, and examined under a light
microscope. The staining labelling indices of the caspase-3 and NF-κB p65 were presented as
a percentage equivalent field of positive control expression. The immunostaining intensity
of anti-Bcl-2 and anti-Nrf2 antibodies was determined through a percent of the positive
area using image J analysis software (NIH, Bethesda, MD, USA).

4.8. Analysis of Data

The mean and S.E.M are used to express the results of this study. GraphPad Prism
7 software (San Diego, CA, USA) was used to determine all statistical differences among
groups using analysis of variance (ANOVA) followed by Tukey’s post hoc test. A p value
of less than 0.05 was deemed significant.

5. Conclusions

The observations of this study introduced evidence that PU can be of significant
prophylactic benefit against MTX hepatotoxicity by decreasing oxidative tissue injury,
inflammation, and cell death in the liver. These prophylactic effects were associated with
upregulating Nrf2 and boosting antioxidant defenses. Therefore, PU could be suggested as
the potential for a new preventive approach targeting MTX hepatotoxicity and perhaps
other toxic effects, pending further studies exploring its exact protective mechanism(s) to
be conducted.
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