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the Digital Brain tumour atlas,  
an open histopathology resource
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Currently, approximately 150 different brain tumour types are defined by the WHO. Recent endeavours 
to exploit machine learning and deep learning methods for supporting more precise diagnostics based 
on the histological tumour appearance have been hampered by the relative paucity of accessible 
digital histopathological datasets. While freely available datasets are relatively common in many 
medical specialties such as radiology and genomic medicine, there is still an unmet need regarding 
histopathological data. Thus, we digitized a significant portion of a large dedicated brain tumour 
bank based at the Division of Neuropathology and Neurochemistry of the Medical University of 
Vienna, covering brain tumour cases from 1995–2019. A total of 3,115 slides of 126 brain tumour types 
(including 47 control tissue slides) have been scanned. Additionally, complementary clinical annotations 
have been collected for each case. In the present manuscript, we thoroughly discuss this unique dataset 
and make it publicly available for potential use cases in machine learning and digital image analysis, 
teaching and as a reference for external validation.

Background & Summary
Brain tumours account for a large fraction of years of potential life lost as compared with tumours from other 
sites1, and have a significant negative impact on patients’ quality of life2. Overall, they are relatively uncommon 
neoplasms with an incidence of approximately 24 per 100.000 person-years3. Current diagnostic guidelines 
published by the WHO define approximately 150 distinct brain tumour types and assign grades I to IV, based on 
malignancy and potential to malignant transformation or progression. They are mainly differentiated by their 
histopathological phenotypes and molecular alterations4. While the majority of tumours is diagnosed solely 
based on histopathology, an integrated approach is mandatory for 19 tumour types.

Still, more accurate diagnostic distinctions are needed in order to i) better assess individual patients’ prog-
noses and ii) support more robust therapeutic decisions4,5. Recently, diagnostic algorithms trained on DNA 
methylation data have been shown to significantly increase diagnostic accuracy6. Similar advances focusing on 
histopathological data have been hampered, so far, by the lack of freely available histopathology datasets7. Most 
available histopathology data such as those available through TCGA8, IvyGAP9,10 or TCIA11 focus on only a few 
diagnostic entities. They mostly consist of digitized fresh frozen tissue sections, which feature relatively poor 
tissue morphology as compared to formalin-fixed and paraffin-embedded tissues. Still, even with these lim-
ited data, computational algorithms have been successfully trained - amongst others - for survival prediction12, 
detection of tumour-infiltrating lymphocytes13, and assessments of tumour microvessels14. However, larger data-
sets encompassing an even wider range of brain tumours and featuring improved cellular and morphological 
characteristics are necessary to further develop these algorithms and extend their applicability to the entire 
spectrum of brain tumour types.

Thus, we set out to compile a comprehensive resource of digitized Haematoxylin-eosin(H&E)-stained brain 
tumour whole slide images (WSIs) with clinical annotations (Fig. 1). We aimed to capture the complete spec-
trum of brain tumours as encountered in day-to-day medical diagnostic practice. Importantly, we managed to 
specifically digitize slides of exceedingly rare pathologies, which are usually, if ever, seen only a few times in a 
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pathologist’s lifetime. By performing a manual review of each slide, we ensure high scan quality and actuality of 
provided diagnoses. We envisage this dataset to be used for advancing digital pathology-based machine learning 
and for teaching purposes. Importantly, this dataset can be used for (1) inter-tumour comparisons thanks to 
the wide inclusion of distinct brain tumour types as well as (2) within-tumour-type investigations thanks to the 
inclusion of a large number of samples for the common tumour types.

Methods
Sample acquisition. H&E stained tumour slides from FFPE tissues, which were collected for routine diag-
nostics in the time interval of 1995–2019 have been obtained from the biobank of the Division of Neuropathology 
& Neurochemistry, Medical University of Vienna. We digitized each slide in high magnification (40x objective, 
228 nm/pixel) using a Hamamatsu NanoZoomer 2.0 HT slide-scanner. Each slide was manually reviewed to 
ensure high scan quality and sufficient diagnostic tumour tissue. Samples with equivocal diagnoses or missing 
molecular work-up otherwise needed to assign an integrated WHO 2016 diagnosis were excluded. A subset of 
glioblastoma scans (n = 381) has been published previously as part of the GBMatch study15.

Basic clinical annotations consisting of patient age and sex as well as tumour location and recurrence were 
acquired from local electronic records where available. Tumour locations have been assigned to the following 19 
categories: frontal; parietal; insular; occipital; temporal; cerebellar; brain stem; spinal; lateral ventricle; dienceph-
alon; third ventricle; fourth ventricle; sellar region; cranial nerves; basal ganglia; cerebral, NOS (not otherwise 
specified); posterior fossa, NOS; cranial, NOS; and other.

Fig. 1 Overview of the data acquisition and publication process. First, histological slides and clinical records of 
brain tumour patients were retrieved from the biobank of the Division of Neuropathology and Neurochemistry, 
Medical University of Vienna. Then, slides were digitized using a Hamamatsu slidescanner. Clinical data 
were translated into standardized annotations. At least two experienced neuropathologists checked each slide 
scan to ensure conformity of the diagnosis with the current revised 4th edition of the “WHO Classification of 
Tumours of the Central Nervous System” and sufficient scan quality. Ambiguous cases were excluded and WSIs 
of inferior quality were re-scanned. Finally, data were made available via EBRAINS to the international research 
community. (Brain illustration adapted from Meaghan Hendricks from the Noun Project).

Variable Description

uuid unique sample identifier

pat_id unique patient identifier

diagnosis primary diagnosis according to the WHO Classification of Tumours of the Central Nervous System (2016)

grade WHO grade according to the WHO Classification of Tumours of the Central Nervous System (2016)

subtype further specification of the histopathological subtype which is not a distinct entity as defined by the WHO,  
if applicable

secondary_diagnosis secondary diagnosis in cases where two distinct diagnosis according to the WHO are applicable

control 1 if sample is a control sample without tumour tissue

age patient age at the time of surgery

sex biological patient sex

location list (in square brackets) of all applicable tumour locations; empty if location is unknown

laterality laterality of the tumour (left or right)

cellularity estimated cell density of the tissue (given in 1/mm2)

tissue_area estimated scanned tissue area (in mm2)

recurrence 0 if the entry corresponds to a primary tumour resection; if the entry corresponds to a tumour recurrence, 
the number of the recurrence is given (e.g., 2 corresponds to the second recurrence)

comment notable findings that do not fit in other columns (e.g., important mutations not yet integrated in the WHO 
classification; other non-tumour pathologies in the control samples)

Table 1. Recorded clinical variables and corresponding descriptions.
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This study complies with the relevant ethical, legal and institutional regulations and the study protocol 
has been approved by the Ethics Committee of the Medical University of Vienna (EK1691–2017). Participant 
informed consent has been obtained as by institutional guidelines, necessitating restrictions on commercial use 
of the obtained data.

Estimation of cell density and scanned tissue area. Additionally, the total tissue area and the average 
cellularities were estimated for each scan using a custom MATLAB script (MATLAB R2017b, MathWorks) with 
a similar approach as previously published15,16. In summary, H&E stained WSIs were first colour-deconvoluted 
into separate Haematoxylin and Eosin channels17. Then, global, Phansalkar and Otsu thresholding were applied 
to the Haematoxylin channel to identify nuclei18,19. Watershedding was used to separate densely clustered cells20. 
Only cells with a minimum size of 4 pixels were kept. The total tissue area was determined by averaging all colour 
channels, thresholding at a threshold of 220, followed by binary close and open operations.

Fig. 2 Descriptive statistics of the ‘Digital Brain Tumour Atlas’ patient cohort (not including control patients). 
(a) The age distribution by sex shows a bimodal distribution with most patients belonging to the higher-age 
categories. Since some uncommon tumour types like medulloblastoma occur mainly in children and have been 
strategically over-sampled, there is also a peak in younger patients. (b) The distribution of the different WHO 
grades shows a slight predominance of grade I and grade IV tumours. Of note, some tumour entities are not 
assigned WHO grades (‘NA’) and very few tumour types are assigned intermediate grades II-III (a total of five 
cases, not shown in the figure). (c) Tumour distribution with colour-coded locations and ratio-specific circle 
sizes. (Brain illustration adapted from Patrick J. Lynch, wikimedia) (d) Distribution of the cell densities of all 
included tumour samples by tumour grade. Note that lower-grade tumours are not necessarily less cell dense 
(e.g., in the case of cellular schwannoma). (e) The distribution of the scanned tissue areas (per slide).
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Data Records
Data are provided via EBRAINS21 as one ndpi-file per sample, sorted by diagnostic tumour type (in alphabetical 
order) for easier access. It is possible to download single files directly or all files of a specific tumour type or 
the whole dataset using a download manager (such as the Chrono Download Manager for the Google Chrome 
browser). Furthermore, supplementary clinical information, estimated cell densities and scanned tissue area is 
provided in a csv-spreadsheet with one row per tumour sample. An overview of all spreadsheet variables and 
descriptions is given in Table 1.

A total of 3,115 histological slides of 2,880 patients have been scanned. A total of 126 distinct diagnostic 
tumour types could be included. There are 1,395 female and 1,462 male patients in the dataset. The mean patient 
age at brain tumour surgery was 45 years, ranging from 9 days to 92 years. 2,530 of the scanned slides originated 
from primary operations and 538 from re-operations. See online-only Table 1 for descriptive properties broken 
down by tumour type. Descriptive visualizations of patient age, sex, tumour location, cellularity, and scanned 
tissue area are given in Fig. 2. Of note, we also scanned exceptionally rare tumour types such as melanotic 
schwannomas or liponeurocytomas (Fig. 3). A total of 47 non-tumour slides from different non-tumour CNS 
regions and with different pathologies were included as controls.

technical Validation
All cases were initially selected based on the given diagnosis in the diagnostic electronic records. To ensure con-
formity with the WHO 2016 diagnosis, all slides have been independently reviewed by two neuropathologists 
experienced in neuro-oncology. In disputed cases, a third senior neuropathologist was consulted. Older cases 
with missing necessary molecular analyses were not included in the dataset.

Fig. 3 Exemplary images from exceedingly rare brain tumours, which are included in the DBTA.  
(a) Perineurioma component of a hybrid nerve sheath tumour. (b) Angiosarcoma. (c) Lymphoplasmacyte-rich 
meningioma. (d) Crystal-storing histiocytosis. (e) Embryonal tumour with multilayered rosettes. (f) Melanotic 
schwannoma. (g) Angiocentric glioma. (h) Cerebellar liponeurocytoma. (i) Pituicytoma.
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Inter- and intraobserver variability is one factor that contributes to misdiagnoses or discrepant diagnoses. 
We mitigated the risk by including only cases that had already undergone thorough routine diagnostic work-up 
and were additionally reviewed independently by at least two neuropathologists as described above. In this way, 
we also ensured excellent image quality and the presence of sufficient diagnostic tumour tissue on each WSI. 
Scans with suboptimal image quality were either re-scanned (if possible) or excluded.

Usage Notes
Data access. The data can be accessed via EBRAINS21. In order to download the data set, users have to regis-
ter with EBRAINS and agree to the general terms of use, access policy as well as the data use agreement for pseu-
donymised human data (https://ebrains.eu/terms). The data are distributed under the conditions that users cite 
the respective DOI, adhere to EBRAINS’ Data Use Agreement and do not use the data for commercial purposes.

WSI processing. The ndp.view2 (© Hamamatsu) software can be freely used to view and annotate slide scans 
saved in the ndpi format22. Alternatively, most other WSI programs such as the open-source OMERO software 
platform23 and the open-source QuPath software24 can work directly on ndpi-files. However, most programming 
languages and non-specialized image processing software cannot handle ndpi-files out of the box. Thus, we also 
provide a toolbox of MATLAB scripts that depend on the openslide library25 and can be used to

 1. Automatically tile large slide scans and export multiple smaller image patches in a given magnification.
 2. Convert annotation-files (.ndpa) to overlays, which can be used to extract specific regions of interest.
 3. Estimate the total tissue area on a WSI.
 4. Estimate the cell density on a WSI.

Of note, slide thickness and staining intensity vary to some degree, resulting in a slightly different histological 
appearance of each slide. Thus, for machine learning applications, we recommend astain normalization step 
such as WSICS26, more recent methods employing generative adversarial networks27 or style transfer learning28. 
Moreover, heavy stain colour augmentation should be performed29. Of note, the stain normalization step can be 
omitted with only a negligible drop in performance as has been shown by Tellez et al.29.

Code availability
The custom-made MATLAB toolbox for loading, viewing and processing of ndpi & ndpa files and for estimating 
the total tissue area and average cell density of a WSI can be accessed at: https://github.com/tovaroe/WSI_
histology.
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