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Anticancer Effects of I-BET151,
an Inhibitor of Bromodomain and
Extra-Terminal Domain Proteins
Jiacheng Lai , Ziqiang Liu , Yulei Zhao, Chengyuan Ma* and Haiyan Huang*

Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China

I-BET151 is an inhibitor of bromodomain and extra-terminal domain (BET) proteins that
selectively inhibits BET family members (BRD2, BRD3, BRD4, and BRDT). Over the past
ten years, many studies have demonstrated the potential of I-BET151 in cancer treatment.
Specifically, I-BET151 causes cell cycle arrest and inhibits tumor cell proliferation in some
hematological malignancies and solid tumors, such as breast cancer, glioma, melanoma,
neuroblastoma, and ovarian cancer. The anticancer activity of I-BET151 is related to its
effects on NF-kB, Notch, and Hedgehog signal transduction pathway, tumor
microenvironment (TME) and telomere elongation. Remarkably, the combination of I-
BET151 with select anticancer drugs can partially alleviate the occurrence of drug
resistance in chemotherapy. Especially, the combination of forskolin, ISX9, CHIR99021,
I-BET151 and DAPT allows GBM cells to be reprogrammed into neurons, and this
process does not experience an intermediate pluripotent state. The research on the
anticancer mechanism of I-BET151 will lead to new treatment strategies for
clinical cancer.

Keywords: cancer, bromodomain and extra-terminal domain protein, I-BET151, signal transduction, drug combination
INTRODUCTION

Bromodomain and extra-terminal domain (BET) proteins function as epigenetic readers that
mainly recognize acetylated lysine residues in chromatin proteins. The BET family consists of four
members, among which BRD2, BRD3, and BRD4 are ubiquitously expressed, and BRDT is only
expressed in the testis. Conserved structural components of these proteins include two characteristic
bromine domains (BD1 and BD2) and an extra-terminal domain (ET), along with a C-terminal
domain (CTD) found only in BRD4 and BRDT (1). BET proteins participate in the formation of
multiple nuclear protein complexes and play an important role in regulating gene transcription, as
well as DNA replication, damage, and repair (2).

The abnormal manifestations of BET family members, especially BRD2 and BRD4, occur
in various cancer types. In nuclear protein in testis (NUT) midline carcinoma (NMC), BRD3
and BRD4 fuse with NUT and retain it in the nucleus, which interferes with the differentiation
of epithelial cells and promotes cancer growth (3). In melanoma, glioma, ovarian cancer, and
some other cancers, the overexpression of BRD2 and BRD4 is associated with poor prognosis, and
their presence affects the pathways of nuclear factor-kB (NF-kB), Notch, and Hedgehog (Hh)
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signaling (4–6). The changes in the expression and distribution
of BET family members in different cancer cells and even
stem cells often promote the occurrence and development
of cancer.

I-BET151 (Figure 1) is a new type of BET protein inhibitor
with the chemical designation 7-(3,5-dimethyl-4-isoxazo1lyl)-8-
(methyloxy)-1-[(1R)-1-(2-pyridinyl)ethyl]-1,3-dihydro-2H-
imidazo[4,5-c]quinolin-2-one, and the molecular formula
C23H21N5O3. In 2011, Dawson et al. developed and optimized
I-BET151 as a BET inhibitor with good bioavailability and a
prolonged terminal half-life. I-BET151 binds into BD1 acetyl-
lysine recognition pocket and displaces BET proteins from
nuclear chromatin. Of the 27 bromodomain proteins in the
HL60 nuclear extract, the excess I-BET151 affects only BRD2,
BRD3, BRD4, and BRD9. Among them, the effect of I-BET151
on BRD9 may be indirect because BRD9 and BRD4 form a
complex.I-BET151 selectively inhibits leukemia mouse models
and mixed-lineage leukemia (MLL) primary patient samples, and
its half-life is significantly longer than that of similar BET
inhibitors (JQ1, I-BET762) (7). Several recent studies have
demonstrated the anticancer effects of I-BET151 on various
solid tumors, apart from leukemia, which has attracted
extensive attention (4–6). In this review, we will discuss the
existing research on anticancer effects of I-BET151 and focus on
the implications for cancer therapy.
THE ANTICANCER MECHANISM
OF I-BET151

I-BET151 selectively inhibits members of the BET family, which
affects intracellular signal transduction pathways, tumor
microenvironment (TME), and telomere length mainly via the
pathways for NF-kB, Notch, and Hh signaling (Figure 2).
Frontiers in Oncology | www.frontiersin.org 2
I-BET151 and Inhibition of NF-kB
Signaling Pathways
As early as 1863, Rudolf Virchow linked inflammation with
cancer. Subsequent studies suggested that inflammation may be
an auxiliary factor in cancer (8). According to the global cancer
attribution analysis in 2018, 2.2 million cancer cases were
attributed to infections, and inflammation was the main
component of these chronic infections (9). The seven members
of the NF-kB family, RelA/p65, c-Rel, RelB, p100, p52, p105, and
p50, are central mediators of inflammatory processes. Moreover,
there is growing evidence that the NF-kB signaling pathway
forms a critical connection between inflammation and cancer.
Specifically, NF-kB can stimulate cancer cell proliferation, inhibit
cancer cell apoptosis, and promote cancer-related migration and
invasion in various cancers (10).

I-BET151 treatment reduces NF-kB activity in many
melanoma cell lines, especially SK-Mel-28 and Mel-JD, and in
primary cell lines with vemurafenib resistance, which is related to
NF-kB overexpression. NF-kB activity inhibition by I-BET151 is
mainly reflected in the reduction of p105 and p50, whereas RelA
remains unchanged, which has also been confirmed in tumor-
bearing animal models. Moreover, the expression of CDKN1A is
increased while the CDK6 content is decreased, which indicates
that I-BET151 is reducing cancer cell proliferation, resulting in
cell cycle arrest. Furthermore, in melanoma, I-BET151 also
inhibits the production of cytokines and chemokines, such as
interleukin (IL)-1a, vascular endothelial growth factor C
(VEGFC), IL-6, and IL-8, and its effect on NF-kB is mainly
mediated via BRD2 (4).

Monocytes of patients with myeloma easily differentiate into
osteoclasts because NF-kB signaling is activated in monocytes by
the receptor agonist of NF-kB ligand (RANKL), leading to IkB-a
degradation and RelA/P65 nuclear translocation, both of which
promote osteoclast generation. I-BET151 specifically inhibits BRD4,
thereby inhibiting RANKL-induced IkB-a degradation and p65
nuclear translocation. In isolated mononuclear cells from healthy
donors and patients with multiple myeloma, I-BET151 inhibits NF-
kB signaling pathways in monocytes in a dose-dependent manner
and diminishes the expression of osteoclast-specific genes, such as
TRACP, MMP9, Ctsk, and c-Src, all of which contributes to the
inhibition of osteoclast formation. Moreover, BRD4 knockdown
also enhances the effect of I-BET151 (11).

Thus, I-BET51 inhibits NF-kB signal by targeting different
molecules (BRD2 or BRD4), which is caused by different cell
types. However, abnormally activated NF-kB signaling may
induce I-BET151 resistance in tumors, as demonstrated by
triple-negative breast cancer (TNBC) and lymphoma cell line
U937. In these and other similar cases, a select combination with
other NF-kB pathway inhibitors can restore the susceptibility of
tumor cells to I-BET151 (12, 13).
I-BET151 and Inhibition of Notch
Signaling Pathways
The evolutionarily conserved Notch signaling pathway regulates
cell fate during the development and the maintenance of tissue
FIGURE 1 | Chemical structure of I-BET151.
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steady state; it also affects cell differentiation, proliferation,
apoptosis, and epithelial-mesenchymal transition (EMT), as
well as self-renewal and differentiation of stem cells (14–16).
Notch signaling is related to both carcinogenesis and cancer
suppression, depending on the context. In most studies, Notch
appeared to be carcinogenic. However, some reports also indicate
that the attenuation of Notch activity can induce certain types of
brain cancer, breast cancer, ovarian cancer, small cell lung
cancer, and hematologic malignancies (15, 17).

In the Notch signaling cascade, both the signal-inducing and
-receiving cells interact with each other via ligand-receptor
interactions. Mammals have four Notch receptors (Notch1-4) and
five Delta-Serrate-Lag ligands (JAG1, JAG2, DLL1, DLL3, and
DLL4) (18). Notch1 is activated via ligand-mediated cleavage by
members of a disintegrin and metalloproteinase (ADAM) family
and the g-secretase complex (19). It promotes tumorigenesis in
various tumor types and interferes with several signaling pathways,
affecting cell proliferation, apoptosis, chemotherapy sensitivity,
immune response, and self-renewal of cancer stem cells (20).

BRD4 binds to the proximal region of the TNBC Jagged1
promoter and affects migration and invasion of TNBC by
regulating the Jagged1/Notch1 signaling pathway (21). Chromatin
immunoprecipitation (ChIP) experiments demonstrated that BRD4
also has an affinity for the Notch1 promoter region. The inhibition
and consumption of BRD4 downregulated Notch1 and suppressed
Frontiers in Oncology | www.frontiersin.org 3
stem cell marker‐related genes in glioma-initiating cells (GICs),
which affected the self-renewal ability and tumorigenesis of
these cells. Moreover, inhibiting Notch1 in BRD4 overexpressing
cells, the self-renewal ability and proliferation of GICs are still
inhibited. I-BET151 disrupted the effect of BRD4 on the Notch1
promoter by competing for acetylated histone binding sites.
An immunohistochemistry analysis of intracranial orthotopic
xenografts in female nude mice also found that the I-BET151
treatment suppressed the expression of Notch1, Hes1, Ki67,
CD133, and nestin (6).

I-BET151 and Inhibition of Hh
Signaling Pathways
The Hh pathway is evolutionarily conserved and necessary for
normal embryo development. Specifically, the Hh gene family is
involved in controlling the left-right asymmetry, the polarity of
the central nervous system (CNS), body segments and limbs,
organogenesis, chondrogenesis, and spermatogenesis (22, 23). A
recent study found that abnormal Hh signal transduction can
induce various cancers, including medulloblastoma, basal cell
carcinoma, rhabdomyosarcoma, breast cancer, lung cancer, liver
cancer, pancreatic cancer, gastric cancer, colon cancer, and
prostate cancer (24).

In mammals, the core components of the Hh pathway include
three Hh ligands (Sonic hedgehog, Indian hedgehog, and Desert
FIGURE 2 | I-BET151 affects the signal transduction in cancer cells and modulates critical cellular processes. I-BET151 specifically inhibits BRD2 and BRD4,
decreases the intracellular content of p50/p105, diminishes the degradation of IkB-a, prevents the dissociation of p50/p105 and p65/RelA from IkB-a and their
transport into the nucleus, and decreases the activity of NF-B signal transduction. In addition, I-BET151 reduces the binding of BRD4 to the Notch1 and Gli1
promoter regions, inhibits the transcription of Notch1 and Gli1, and causes the target molecules of Notch and Hh signaling pathways to change. In the aspect of
influencing tumor microenvironment, I-BET151 not only targets BRD4, which leads to the increase of MICA expression and promoting NK cell degranulation, but also
inhibits Stat3 signal, which leads to more CD3+ and CD8+ cells in tumors. Eventually, I-BET151 leads to cell cycle arrest, inhibition of cancer cell proliferation,
stemness of stem cells, inflammatory factor release, osteoclast formation and regulation of TME.
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hedgehog), the transmembrane receptor Patched (PTCH1),
the G protein-coupled receptor-like transmembrane protein
Smoothened (SMO), and three transcription factors (GLI1,
GLI2, and GLI3). Moreover, the primary cilia are also involved
in the signal transduction of the Hh pathway (24).

I-BET151 dose-dependently attenuates Hh signal transduction
in Light2 cells, and its mechanism does not depend on inhibiting the
SMO activity by binding, which is employed by most Hh inhibitors.
An analysis of the expression levels of PTCH1, SMO, GLI2, and
GLI1 after the treatment with I-BET151 demonstrates that the
inhibitor significantly reduces the expression of GLI1 but has no
effect on the SMO expression level. Furthermore, I-BET151
treatment reduces the expression levels of p21, CDK4, and C-
MYC. In addition, the downregulation of BRD4 with siRNA also
diminishes the GLI1 expression level. This indicates that I-BET151
inhibits GLI1 transcription by limiting the binding of BRD4 to the
proximal regulatory region of the GLI1 locus. In a mouse model of
Ptch1+/- derived medulloblastoma, I-BET151 treatment dose-
dependently reduces the viability of isolated cancer stem cells,
significantly suppresses the growth of medulloblastoma in vivo,
and lowers the expression level of the Hh target gene GLI1 (25).

I-BET151 and Regulation of TME
TME is the cellular environment in which tumor cells are
located, which is composed of a variety of cellular and non-
cellular elements. Cells that TME involves include cancer-
associated fibroblasts, natural killer (NK) cells, tumor-
associated macrophages, tumor-associated neutrophils, tumor
endothelial cells, pericytes, tumor-associated adipocytes, B
lymphocytes or T lymphocytes. Non-cellular elements include
blood vessels, lymphatic vessels, extracellular matrix, soluble
molecules, and small organelles. TME is involved in tumor
development, invasion, metastasis, recurrence, drug response,
and maintenance of stem-like phenotype (26).

NK cells are the main effector cells in innate immunity, which
kill cells by secreting granzymes and perforins. It interacts with
extracellular matrix, cancer cells, stromal cells, and metabolites
in TME to exert antitumor immunity (27). MHC class I
polypeptide-related sequence A (MICA) is a natural killer
group 2D ligand (NKG2DL) expressed by tumor cells. Natural
killer group 2D (NKG2D) receptors activated on the surface of
NK cells can bind to MICA to activate NK cells and kill tumor
cells (28). I-BET151 targets BRD4 in multiple myeloma cells and
inhibits the expression of C-MYC and IRF4, thereby improving
the transcription and translation levels of MICA, promoting the
degranulation of NK cells and inducing anti-tumor immune
response (29). Multiple myeloma cells can secrete a variety of
inflammatory cytokines, which interact with TME to induce
osteoclast differentiation and inhibit osteoblast formation, thus
promoting the development of multiple myeloma. I-BET151
inhibits the release of IL-1b, and IL-6 in peripheral blood
mononuclear cells and myeloma cells by reducing BRD4-
mediated activation of NF-kB (11). Furthermore, in
melanoma, I-BET151 also inhibits the production of cytokines
and chemokines, such as IL-1a, VEGFC, IL-6, and IL-8. This is
also attributed to the inhibition of the BET family proteins by I-
BET151 (4). In the ovarian cancer mouse model, I-BET151
Frontiers in Oncology | www.frontiersin.org 4
treatment inhibits the Stat3 signaling pathway, induces more
CD3+ and CD8+ cells in the tumor, increases TNF-a and IFN-b
mRNA levels in the tumor and mouse spleen, and induces an
anti-tumor immune response (30).

I-BET151 Prevents Telomere Elongation
Telomeres are composed of tandem repeats of the TTAGGG
sequence motif. They are special chromatin structures that form
the end of the chromosome. Over multiple rounds of cell
division, telomeres gradually lose the TTAGGG tandem
repeats and become shorter, which is a sign of aging in
organisms. Telomere length is regulated by chromatin
modification, telomere binding proteins, and telomerase (31).
Importantly, the risk of cancer is increased by telomeres that are
too long or too short (32).

Telomerase lengthens telomeres and keeps their length in a
steady state. Most cancer cells modulate telomerase activity.
Therefore, telomerase inhibitors represent a targeted strategy
for cancer treatment (33). Interestingly, telomere extension
induced by telomerase overexpression in 293T cells can be
dose-dependently blocked by I-BET151. However, treatment of
these 293T cells with the highest tolerated I-BET151 dose does
not inhibit the telomerase activity, indicating that I-BET151 does
not employ the same mechanism for blocking telomere
elongation as conventional telomerase inhibitors. The results
obtained with I-BET151 are similar to those observed with three
known BRD4 inhibitors, suggesting that attenuation of telomere
elongation by I-BET151 depends on the inhibition of BRD4.
I-BET151 interferes with the binding of BRD4 to acetylated
lysine residues by targeting the bromine domain (34). It is not
completely clear how BRD4 coordinates telomere maintenance,
but it is known that BRD4 selectively controls the expression of
telomerase reverse transcriptase in the presence of cancer-related
promoter mutations (35).
I-BET151 IS EFFECTIVE AGAINST
VARIOUS CANCERS

I-BET151 was first used for leukemia treatment, and later studies
found that I-BET151 is also effective against various solid
cancers, including breast cancer, glioma, and melanoma. Here,
we summarize the anticancer activity of I-BET151 against
various cancers (Table 1).

Hematological Malignancies
I-BET151 exerts anti-leukemia activity by decreasing the
presence of BRD4 and CDK8 in the enhancer region and
downregulating the genes related to super-enhancers (SEs)
(58). Although I-BET151 treatment simultaneously dissociates
BRD2, BRD3, and BRD4 from chromatin, BRD4 is the most
susceptible BET protein. Specifically, in I-BET151-susceptible
cell lines, the inhibitor mainly affects BRD4 and prolongs the
suspension of RNA Pol II (59).

A special type of acute leukemia is caused by the translocation
of the MLL gene encoding an MLL fusion protein, which can
transform hematopoietic cells into leukemia stem cells, typically
September 2021 | Volume 11 | Article 716830
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TABLE 1 | Anticancer activity of I-BET151 against various cancer cells.

Effect References
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Cancer type Cell lines Molecular target

Acute myeloid leukemia In vitro in MV4;11, MOLM13 and NOMO1 cell lines. In vivo in
mice.

Inhibit BCL2, C-MYC and CDK6. Cause G

Acute myeloid leukemia In vitro SEM, RS4; 11 and ALL-PO cell lines. In vivo in mice. Inhibit HOXA7/9 and RUNX1. Inhibit p
cell divi

Acute myeloid leukemia In vitro in MOLM13 and THP1 cell lines. In vivo in humanized
bone marrow xenograft model of secondary MLL-AF9-driven B-
ALL.

Inhibit Bax, BCL2 and C-MYC. Upregulate CDKN1A and
CDKN1B.

Inhibit p
induce

Acute myeloid leukemia In vitro in OCI-AML3, KG-1, SKM1, Kasumi, ME-1 cell lines. In
vivo in mice.

Inhibit BCL2, C-MYC and IRF8. Cause c
apopto

Acute myeloid leukemia In vitro in AML lines with dual DNMT3AR882H and RAS
mutations. In vivo in mice.

Inhibit Mn1, Mycn and Bcl2. Cause c
apopto

Acute myeloid leukemia In vitro in U937, HL-60, R-U937 and R-HL-60 cell lines. Inhibit HP1g. Inhibit p
Myeloma In vitro in H929, KMS12PE, KMS12BM, KMS18, KMS11 and

RPMI8226 cell lines. In vivo in mice.
Downregulate MYC. Upregulate HEXIM1. Cause c

apopto
Myeloma In vitro in U266, RPMI8226, MM1 and KMS11 cell lines. Inhibit MYCL1 in U266. Inhibit c-MYC in RPMI8226, MM1

and KMS11.
Inhibit p

Myeloma In vitro in SKO-007(J3), CD138+ multiple myeloma cells and NK
cells isolated from the bone marrow of multiple myeloma
patients.

Inhibit IRF4 and upregulate MICA. Promot

Myeloma In vitro in RAW 264.7 cell lines and in mononuclear cells isolated
from healthy donors and patients with multiple myeloma.

Inhibit TRACP, MMP9, Ctsk and c-Src. Upregulate OPG.
Suppress IkB-a degradation and p65 nuclear
translocation.

Inhibit o
cytokine

Primary effusion
lymphoma

In vitro in BC1, BC3 and BCBL1 cell lines. In vivo in mice. Inhibit c-Myc. Inhibit p

Mantle cell lymphoma In vitro in JVM-2, MINO, Z138 and KPUM-YY1 cell lines Inhibit PAX5, IKZF1, BTK, SYK, EBF1 and MYC. Cause G
Myeloproliferative
neoplasms

In vitro in a human erythroleukemic cell line. Inhibit LMO2. Inhibit p

Triple-negative breast
cancer

In vitro in MDA-MB-231, MDA-MB-468 and BT549 cell lines. Inhibit IKBKE. Inhibit p

Breast cancer In vitro in MB-231, MB-468 and SK-BR-3 cell lines. Upregulate GSSG and MDA levels. Induce
Breast cancer In vivo in mice implanted with Mvt1 and 6DT1. Inhibit p
Glioma In vitro in U87MG, A172, SW1783 cell lines and glioblastoma

stem cells derived from patients. In vivo in mice.
Inhibit p

Glioma In vitro in U87MG, A172, LN18, T98G cell lines and in patient
derived xenograft cells.

Inhibit HOTAIR, TUG1 and H19. Inhibit p

Glioma In vitro in U87MG, U251 cell lines and Primary cells obtained
from GBM patients. In vivo in mice.

Inhibit Notch1/NICD/Hes1. Reduce
initiating

Melanoma In vitro in Me1007, SK-Mel-28, Mel-RMu, Mel-JD, Mel-RM and
the resistant (post) cell lines from patients. In vivo in mice.

Inhibit p50, p105 and CDK6. Upregulate of CDKN1A. Inhibit c
cell cyc

Melanoma In vitro in Mel-RMU, Sk-Mel-28, Mel-RM, Mel-JD and Me1007
cell lines. In vivo in mice.

Inhibit XIAP. Upregulate of BIM and p21. Cause c
apopto

Neuroblastoma In vitro in SK-N-BE (2) and Kelly cell lines. Inhibit NCYM and N-Myc. Upregulate of TP53INP1. Induce
Ovarian cancer In vitro in 28 ovarian cancer cell lines. In vivo in mice. Inhibit FoxM1, AURKB, survivin, cyclinB and PLK1. Inhibit p
Ovarian cancer In vitro in SK-OV-3, CaoV-3 and ID8 cell lines.

In vivo in mice.
Upregulate BIM and Cleaved caspase-3. Inhibit MMP2,
MMP9 and p-Stat3.

Inhibit p
induce
respons

Ovarian cancer In vitro in A2780CP, OVCAR3 and SKOV3 cell lines. Inhibit FoxM1, AURKB, cyclinB1, ZEB2, N-cadherin,
Survivin and Bcl-2.
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resulting in poor prognosis (60). I-BET151 inhibits the
transcription of BCL2, C-MYC, and CDK6 by interfering with
the chromatin recruitment of BRD3/4, which ensures efficacy in
different MLL fusion cell lines and impairs the propagation of
leukemia stem cells (7, 61). Administration of I-BET151 at 30
mg/kg in mouse models of MLL-AF9+ and MLL-AF4+ leukemia
delays disease progression and significantly prolongs survival (7).
Acute lymphocytic leukemia (ALL) in infants with MLL
rearrangement is very invasive. In the preclinical mouse model
of MLL-AF4+ infant acute lymphoblastic leukemia, I-BET151
downregulates the transcription of the BRD4, HOXA7/HOXA9,
and RUNX1 gene network, which reduces the disease burden. In
addition, I-BET151 increased the susceptibility of MLL-
rearranged ALL cells to prednisolone in vitro, which provides a
new treatment strategy for glucocorticoid-resistant ALL (36). In
the MLL-AF9+ cell line, the HOXA gene is not downregulated by
I-BET151. Comparative analysis of ChIP-seq data and RNA-seq
data indicates that I-BET151 only targets less than 1/10 of MLL-
AF9 directly targeted genes. Treatment with I-BET151
significantly delayed the progression of lymphocytic leukemia
in NSG mice (37). The mice were implanted with ceramic
scaffolds of human mesenchymal stem cells, which fully
simulated the environment for human bone marrow, but it
was not enough to completely eradicate leukemia cells (62).
This suggests that the human bone marrow-like environment
may have protective properties for leukemia cells.

I-BET151 is effective against a variety of acute myeloid
leukemia (AML) subtypes (38). NPM1c AML is one of the
most frequently reported subtypes, and its prognosis is related
to synergistic mutations (63). However, regardless of the nature
of the cooperative mutation, in vitro and in vivo analyses indicate
that NPM1c AML is consistently susceptible to I-BET151
because the drug inhibits BRD4 rather than wild-type NPM1
(38). Somatic mutations in DNA methyltransferase 3A
(DNMT3Amut) occur in a variety of hematological
malignancies, including in AML and elderly individuals with
clonal hematopoiesis, with hot-spot mutations at the Arg882
residue (DNMT3AR882mut) accounting for 50–60% among the
identified DNMT3Amut in AML (64–67). I-BET151 causes the
downregulation of DNMT3AR882H-related target genes by
blocking BRD4; it also induces the upregulation of apoptosis-
related genes and the downregulation of cell cycle progression
genes. I-BET151 significantly delays the development of AML
phenotypes, such as splenomegaly, increases the white blood cell
count, and decreases the red blood cell count in an AML mouse
model induced by two mutations, DNMT3A R882H and RAS G12D

(39). The DNA methyltransferase inhibitor 5-azacytidine (AZA)
is effective in myelodysplastic syndromes and AML (68). HP1g is
important in the survival of AZA drug-resistant cells, and I-
BET151 can function as HP1g inhibitor for the treatment of AZA
drug-resistant hematological malignancies (40).

Critical mechanisms employed by BET inhibitors to fight
multiple myeloma involve the inhibition of MYC transcription
andMYC carcinogenesis (69), both of which are also caused by I-
BET151 that exerts its inhibitory activity by attenuating the
chromatin recruitment of CDK9 in a BRD2/3/4-dependent
manner, which caused transcription inhibition of MYC and
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MYC carcinogenic programs. However, I-BET151 upregulates
HEXIM1 transcription, which leads to cycle arrest and apoptosis
of myeloma cells (41). The C-MYC- expressing myeloma cell
lines are inhibited by I-BET51, which exerts its inhibitory activity
by diminishing the c-MYC expression, but in U266 cells that do
not express c-MYC, I-BET151 interferes with MYCL expression
(42, 70). I-BET151 can also target the RANKL-NF-kB signaling
pathway, inhibit the formation of osteoclasts, reduce the levels of
osteoclast-specific genes TRACP, MMP9, Ctsk, and c-Src, and
inhibit the secretion of inflammatory cytokines (11).

Primary exudative lymphoma (PEL) is an aggressive non-
Hodgkin’s lymphoma, which is related to Kaposi’s sarcoma-
associated herpesvirus (KSHV) infection. Non-PEL cell lines are
much less susceptible to I-BET151 treatment than PEL cell lines,
in which the drug downregulates the c-MYC level, inhibits
lymphoma cell proliferation, and induces cell cycle arrest (43).
Mantle cell lymphoma (MCL) is a refractory B-cell lymphoma
caused by the translocation t (11, 14)(q13; Q32) (71). BRD4
directly regulates a series of genes related to the B cell receptor
signaling pathway. I-BET151 promotes the G1/S cell cycle arrest
and apoptosis in BRD4-induced MCL cells, which represents a
new strategy for treating MCL disease (44).

The human erythroid leukemia (HEL) cell lines are
susceptible to I-BET151, which functions as a JAK2 inhibitor
and remains effective against JAK2 inhibitor-resistant HEL
cells (45).

Breast Cancer
TNBC is the most aggressive breast cancer subtype, but I-
BET151 can diminish NF-kB signaling by reducing IKBKE
expression, which has a therapeutic effect on TNBC (12). High
SIRT1 activity promotes DNA repair and cell cycle arrest and
prevents various stress-induced apoptosis (72). I-BET151
increases the level of SIRT1 in MCF-7 and MDA-MB-231 cells,
but it does not affect or even reduces the relative deacetylation
activity of SIRT1 in the cells (73). I-BET151 is also known to
induce ferroptosis in breast cancer cells (46). In mice implanted
with highly metastatic breast cancer cell lines Mvt1 and 6DT1, I-
BET151 inhibited the growth of primary tumors, but not the
metastasis, which is related to the opposite effects of two BRD4
isoforms (47). Specifically, metastasis is diminished by the long
BRD4 isoform but promoted by the short BRD4 isoform (74, 75).

Glioma
Gliomas have significantly higher BRD2 and BRD4 levels than
control tissues, and the mRNA and expression levels of BRD4 are
closely related to the tumor subtypes and the overall survival rate
of the patients, indicating that I-BET151 can have a therapeutic
effect on gliomas (6, 48). I-BET151 is known to inhibit the
proliferation of U87MG cells, limit the cell cycle progression
from G1 to S, and reduce the tumor size in U87MG xenografts
(48). There is growing evidence that long non-coding RNA plays
an important role in carcinogenesis and anticancer pathways
(76–78). HOX transcribed antisense RNA (HOTAIR) is
overexpressed in glioma and associated with the proliferation
and periodic progression of this tumor. The anticancer effect of
I-BET151 in glioma is achieved, at least in part, by downregulating
Frontiers in Oncology | www.frontiersin.org 7
HOTAIR (49). Notch signaling is involved in the self-renewal of
glioma stem cells (GSCs) and the regulation of tumorigenesis.
The direct association between BRD4 and the Notch1 promoter
region contributes to transcriptional regulation. Therefore, I-
BET151 can regulate the Notch signal transduction pathway by
targeting BRD4, which affects the self-renewal of GSCs and
tumorigenesis (6).

Melanoma
NF-kB is activated in melanoma (79). I-BET151 inhibits NF-kB
activation in melanoma by targeting BRD2, causing cycle arrest,
promoting apoptosis, and inhibiting the production of cytokines
(e.g., IL6 and IL-8) and chemokines (e.g., CXCL10 and CCL5),
which indicates that I-BET151 may have a therapeutic effect on
melanoma (4). Another report shows that I-BET151 activates the
BIM protein, a BH3-only pro-apoptotic protein family member,
and the increase in BIM mediates caspase-dependent apoptosis,
which is mainly related to the inhibition of BRD2. However, I-
BET151-induced G1 arrest is associated with BRD4 inhibition
and mediated by p21. The efficacy of I-BET151 is not identical
across different melanoma cell lines; the NRAS mutant cell
line (Mel-RM) and the NRAS/BRAF wild-type (Me1007) line
are the most susceptible cell lines, whereas the NRAS mutant/
BRAF wild-type (Mel-JD) line and the NRAS wild-type/
BRAF mutant cell lines (SK-Mel-28, Mel-RMU) are relatively
insensitive (50).

Neuroblastoma
Neuroblastoma is the most common extracranial solid tumor in
children, accounting for 15% of the total tumor deaths in
children (80). Statistical analysis of neuroblastoma specimens
shows that low expression of nuclear protein 1 induced by tumor
protein 53 (TP53INP1) in tumor tissues and high expression of
N-Myc in neuroblastoma patients are closely related to poor
prognosis. I-BET151 inhibits the transcription and expression of
NCYM and N-Myc in neuroblastoma cells and significantly
increases the mRNA and protein levels of TP53INP1, which
promotes apoptosis of tumor cells (51, 52).

Ovarian Cancer
The expression of BRD4 is significantly higher in clinical ovarian
cancer tissues than in non-malignant control tissues, whereas the
levels of BRD2 and BRD3 do not significantly vary between
malignant and non-malignant tissues. In addition, a pan-cancer
analysis indicates that ovarian cancer is the most apparent tumor
with BRD4 amplification. I-BET151 inhibits the viability of a
wide range of ovarian tumor cells, including 28 epithelial ovarian
cancer (EOC) cell lines that cover all histological types. This
broad spectrum of activity is related to I-BET151-induced
apoptosis mediated by mitochondria and the downregulation
of the transcription and translation of FoxM1 and its
transcription targets (5, 30). In addition, I-BET151 reduces the
migration and invasion of EOC cells by inhibiting the Stat3
signaling pathway and downregulating ZEB2 and N-cadherin,
which also inhibits tumor metastasis in the abdominal metastasis
model of ovarian cancer (30, 53). Similar to the discovery in
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multiple myeloma, I-BET151 can also induce anticancer
immunity in ovarian cancer (30).

Colorectal Cancer
Mutation or defect of succinate dehydrogenase B (SDHB) can lead
to the loss of enzyme activity and expression, which can occur in
various malignant tumors. However, colorectal cancer cells with
SDHB knockout are highly susceptible to I-BET151 (81). EMT cells
were generated from colorectal cancer tissue by SLUG or SNAIL
retrovirus transduction, which also produced side population (SP)
cells with low Hoechst 33342 staining and differentiation potential.
However, I-BET151 not only inhibits the occurrence of EMT but
also reduces the proportion of produced SP cells (54).

Prostatic Cancer
Androgen receptor (AR) is the main carcinogen in the
development of prostate cancer. Second-generation
antiandrogen therapy can enhance receptor signaling and
improve the prognosis of castration-resistant prostate cancer
(CRPC) (82–84). However, the expression of AR splice variants
leads to drug resistance, including the AR splice variant 7 (AR-
V7) (85, 86). Based on clinical prostate samples, BRD4 is
associated with AR activity and patient survival. I-BET151
decreases AR-V7 and C-MYC expression levels and inhibits
AR signaling, suggesting a new therapeutic strategy for patients
with CRPC (55).

Pancreatic Ductal Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC), as the most
common pancreatic cancer type, is often associated with the
development of a fibrotic reaction (87). Pancreatic stellate cells
(PSCs) are the key regulators offibrosis that produce only limited
amounts of collagen I in the static state (88). However, unlike
BRD2, BRD3, and the FOS-like 1 (FOSL1) protein, BRD4
promotes collagen I production in primary prostate cancer
isolated from human PDAC. I-BET151 can effectively suppress
the fibrotic reaction and collagen I production by inhibiting
BRD4 and preventing BRD4-mediated blockage of FOSL1 (56).

Non-Small Cell Lung Carcinoma
Eukaryotic translation initiation factor 4E (eIF4E), a component of
the translation initiation complex, is associatedwith cellular survival,
EMT, and angiogenesis (89, 90). I-BET151 inhibits BRD4 and,
therefore, downregulates eIF4E, causing dose-dependent inhibition
of cell growth in non-small cell lung cancer (57).
ANTICANCER EFFICACY OF I-BET151 IN
COMBINATION WITH OTHER DRUGS

Drug resistance or insensitivity is a critical clinical issue
associated with chemotherapy in cancer treatment. To
overcome drug resistance and improve anticancer efficacy, an
increasing number of experiments have been conducted to test
I-BET151 in combination with other drugs (Table 2).
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In TNBC patients who received trametinib for one week, an
adaptive bypass reaction leading to trametinib resistance can be
observed. The combination of I-BET151 and trametinib not only
synergistically inhibits TNBC growth in vitro and in vivo but also
prevents or reverses adaptive drug resistance of cancer cells to
trametinib (91). In clinical practice, temozolomide (TMZ) is the
main treatment for malignant glioma, but the drug resistance of
glioma cells to TMZ will lead to treatment failure. I-BET151 can
promote TMZ-mediated inhibition of glioma proliferation,
invasion, and migration, enhance the oxidative stress induced
by TMZ, and restore susceptibility of glioma cells to TMZ, all of
which may be related to the I-BET151-induced expression of the
p53-upregulated modulator of apoptosis (PUMA) (92). S63845 is
a myeloid leukemia cell differentiation protein 1 (MCL1)
inhibitor with therapeutic efficacy against a large number of
melanoma cell lines, excluding a few that are not affected by
MCL1 inhibition. The combination of this inhibitor with I-
BET151 is superior to any single treatment, especially related
to the caspase-dependent cell death induced by this combination
(93). Neuroblastoma is mainly driven by MYC or MYCN.
Inhibition of Aurora kinase A (AURKA) is an effective
treatment, but treatment with an AURKA inhibitor (alisertib)
often causes an upregulation of the transcription of AURKA,
MYC, and MYCN. The combination of the AURKA inhibitor
with I-BET151 significantly reduces the transcriptional
upregulation and synergistically inhibits the tumor cell
survival (94).

The mechanism of I-BET151 resistance of lymphoma cell line
U937 is known to be related to the activation of NF-kB. The
combination treatment with IKK inhibitor VII can inhibit the
activation of NF-kBp65 protein in the nucleus of drug-resistant
cells and enhance or restore the susceptibility of U937 cells to I-
BET151 by targeting the NF-kB signaling pathway (13). MYC is
significantly inhibited in I-BET151-susceptible cells, but it is not
affected in I-BET151-resistant cells, indicating a functional
compensation for MYC in I-BET151-resistant AML cells,
which is related to enhancer remodeling. Plasmacytoma
variant translocation 1 (PVT1) is a long non-coding RNA
(lncRNA) that functions as an oncogene in many cancers and
is known to promote MYC expression in I-BET151-resistant
AML cells in a BRD4-independent manner (95, 102).
Furthermore, CDK7 inhibitor (THZ1) inhibits MYC
expression by interfering with RNA polymerase II activity of
the PVT1 enhancer, which kills cancer cells in combination
treatment with I-BET151 (95). Interestingly, vitamin C also
improves the efficacy of I-BET151. In TNBC cells, the
upregulation of histone deacetylase 1 (HDAC1) and the
inhibition of histone H3 and H4 acetylation by vitamin C
enhances the effect of I-BET151, as indicated by a lower half-
maximal effective concentration (EC50), which allows a dose
reduction of I-BET151 and concomitantly decreases the risk of
side effects (96). However, vitamin C also diminishes the
expression of histone acetyltransferase 1 (HAT1) and limits the
acetylation of lysine 5 and lysine 12 on H4 without reducing the
acetylation of H3 (97). These specific effects can be potentially
related to the origin of the tumors from different tissue types,
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TABLE 2 | Combination of I-BET151 and other drugs in cancer.

Molecular target Effect References

rametinib-induced PDGFRB and DDR1 (SUM-
and FGFR2 and DDR1 (SUM-229PE).

Inhibit trametinib-induced growth and prevent or reverse
adaptive drug resistance of cancer cells to trametinib.

(91)

late PUMA. Promote TMZ-induced apoptosis, oxidative stress and
suppress migration, invasion, and formation of colony.

(92)

CL2A1, upregulate BIM and induce caspase‐
ent death.

Synergistically induce apoptosis and expansion of the range of
action of I-BET151 and S63845.

(93)

eflexive upregulation of AURKA, MYC and
in response to alisertib.

Synergistically inhibit neuroblastoma viability in vitro and vivo. (94)

F-kBp65. Enhance or restore the sensitivity to I-BET151 in U937 cells. (13)

istically inhibit of the re-activated MYC, MYB,
nd LMO2.

Synergistically induce anticancer effect toward I-BET151-
resistant leukemia.

(95)

late HDAC1 and inhibit H3ac and H4ac. Sensitize TNBC to I-BET151. (96)

AT1 and the acetylation of H4. Sensitize melanoma to I-BET151. (97)

he AKT and Hippo/YAP signaling pathways.
late BIM.

Synergistically induce caspase-dependent apoptosis. (98)

Upregulate antileukemic activity. (36)
e IL-6 production and enhance CD8+ T cell
tion.

Upregulate vaccine-elicited Ab responses. (99)

late Ngn2, Ascl1, Brn2 and MAP2. Reprogram of glioblastoma cells into Neurons. (100)

dgfra, pdgfrb, pdgfrl, met, vegfa and colla1. Suppress proliferation and reprogram malignant gliomas to
differentiate into glial cells.

(101)
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Types of Combination Cell lines

I-BET151 and trametinib In vitro in SUM-159PT and MDA-MB-231 cell
lines. In vivo in mice.

Inhibit t
159PT)

I-BET151 and TMZ In vitro in U87MG and U251 cell lines. In vivo in
mice.

Upregu

I-BET151 and S63845 In vitro in 11 melanoma cell lines such as A06M,
C002M, C025M1, etc. In vivo in mice.

Inhibit B
depend

I-BET151 and alisertib In vitro in NB-1643, SK-N-SH, NB-SD and SK-
N-AS cell lines. In vivo in mice.

Inhibit r
MYCN

I-BET151 and IKK inhibitor
VII

In vitro in U937 and I-BET151-resistant U937 cell
lines.

Inhibit N

I-BET151 and THZ1 In vitro in K562, Jurkat and murine I-BET151-
resistant AF9 AML cells.

Synerg
TAL1 a

I-BET151 and Vitamin C In vitro in MDA-MB-231, BT-549 and HCC1937
cell lines.

Upregu

I-BET151 and Vitamin C In vitro in 1205Lu, C8161, SK-MEL-28, A2058
and SK-MEL-2 cell lines.

Inhibit H

I-BET151 and LBH589 In vitro in KMJR138, Me1007, Mel-RM cell lines
and cells from patients.
In vivo in mice.

Inhibit t
Upregu

I-BET151 and LBH589 In vivo in mice.
I-BET151 and romidepsin In vivo in mice. Increas

prolifera
I-BET151, Forskolin, ISX9,
CHIR99021 and DAPT

In vitro in U87MG and glioblastoma stem cells. Upregu

I-BET151, forskolin and
rapamycin

In vitro in U87MG and C6. Inhibit p
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but they also indicate that the I-BET151 activity can be improved
by mediating histone acetylation. Thus, combinations of I-
BET151 and histone deacetylase (HDAC) inhibitors are
increasingly used in patients. In melanoma, the combination of
I-BET151 and HDAC inhibitor LBH589 effectively inhibits the
AKT and Hippo/YAP signaling pathways, upregulates the BIM
expression, synergistically induces caspase-dependent apoptosis
of tumor cells, and significantly prolongs the survival time in a
xenograft in vivo model (98). This combination also has a
synergistic anti-leukemia effect in the preclinical mouse model
of MLL-AF4+ infant ALL (36). In melanoma, the replacement of
LBH589 with romidepsin for combination therapy with I-
BET151 promotes apoptosis and changes the expression of IL-
6/JAK/STAT-related genes, which increases the response
frequency of CD8+ T cells in mice vaccinated with OVA+CpG
tumor vaccine and improves the treatment efficacy and
preventive protection of the vaccine (99).

Gliomas originate from glial precursor cells that can be
reprogrammed to neurons with the help of nerve cell-specific
transcription factors (103–105). Several small molecule
combinations involving I-BET151 are known to treat
malignant gliomas. The combination of cAMP enhancer
Forskolin, ISX9, CHIR99021, and I-BET151, along with dual
antiplatelet therapy (DAPT), can upregulate the expression levels
of the Ngn2, Ascl1, Brn2, and MAP2 genes in U87 MG cells and
reprograms the tumor cells to neuronal morphology without
undergoing the intermediate pluripotent state, which can lead to
the inhibition of U87MG cell growth and the formation of
tumor-like spheroids (100). Another experiment also
demonstrates that the combination treatment consisting of I-
BET151, along with Forskolin and mammalian target of
rapamycin (mTOR) inhibitor (rapamycin), can also reprogram
malignant glioma cells into non-proliferative glial cells and
strongly inhibit the proliferation of tumor cells. Although this
combination is only effective in some glioma types, its inhibitory
effect on glioma proliferation is stronger than that of TMZ, and it
can still be used in TMZ resistant cells (101).
CONCLUSION

This review presents a discussion of the anticancer effects and
mechanisms of I-BET151, which specifically targets BRD2 and
BRD4, regulates the pathways of NF-kB, Notch, and Hh signal
transduction, change TME and controls the telomere length.
These I-BET151-mediated mechanisms cause the inhibition of
Frontiers in Oncology | www.frontiersin.org 10
proliferation, migration, and invasion of cancer cells, along with
the induction of apoptosis. We also assessed the effects of I-
BET151 used in combination with other drugs, and we describe
different combination types that substantially increase the
sensitivity of select chemotherapy drugs and achieve an
improved therapeutic efficacy.

I-BET151 has a wide application prospect, and the most
attractive one is its application in glioma. The combination of
Forskolin, ISX9, CHIR99021, I-BET151 and DAPT can treat
glioma by changing the differentiation state of cancer cells and
reprogramming glioma cells into neurons. The process did not
go through an intermediate pluripotent state, which means that
the formed neurons are much less likely to become cancer cells
again. This therapeutic strategy is expected to change the current
treatment mode of glioma. For patients with small glioma and
unobvious space-occupying effect, the use of this drug
combination can promote tumor cell transformation and avoid
the trauma caused by surgery. On the other hand, for patients
with obvious space-occupying effects, surgical resection is
required, and then the remaining tumor cells are converted
into neurons by using the medicine combination, which can
reduce the damage to healthy brain tissue caused by excessive
surgical resection range. Moreover, compared with the emerging
gene therapy, the side effects caused by drug therapy are easier to
be found and solved, and the economic and technical costs
required for treatment are relatively lower. This therapeutic
strategy has provided new ideas for the clinical treatment of
glioma and inspired the treatment of other types of cancer.

At present, there is no related clinical trials, which may be due
to the short development time of I-BET151. However, I-BET151
is a valuable anticancer drug with a wide range of therapeutic
effects based on preclinical experiments, which provides us with
a new therapeutic strategy for clinical anticancer treatment.
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