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Abstract

The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI) data has increased
the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI
network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually
large number of neighbors, can predict functional association. In this study we improved the prediction scheme by
developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used
the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We
used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as benchmarks
to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233
significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to
assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false
discovery rates of ,21% for KEGG and ,30% for GO. We clustered 1,729 proteins by their functional associations and made
functional inferences from detailed analysis on one subcluster highly enriched in the TGF-b signaling pathway (P,10250).
Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further
experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and
provides a reliable method for large-scale functional annotation in this post-genomic era.
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Introduction

Due to advance in DNA sequencing, genes are being discovered

at unprecedented speed, creating a need for annotating their

functions. High-throughput mapping of protein-protein interac-

tion (PPI) data is an example of functional genomics that enables

rapid assignment of functional annotations by links between

proteins which imply functional associations. However, due to

noises inherent in the process of data generation [1], for example,

by a yeast two-hybrid method [2], it becomes important to develop

algorithms that reduce the influence of such noises and improve

the quality of declared functional associations. So far, partial PPI

networks for several organisms have been mapped [3–11], and

different methods have been formulated to investigate these

networks, and hence protein functions [12–27]. One method to

suggest biological function is to compare the PPI network with

similar random networks to identify unusual topological connec-

tivity between proteins, which we call common-neighbor statistics.

Such statistics has been used to assess the functional relationship

between proteins in a yeast PPI network, and functional inferences

that are statistically significant have been made from those

relationships [28]. In this study, we improved upon the common-

neighbor statistics, thereby enhancing the quality of functional

association predictions, and applied our methods to a compre-

hensive human PPI dataset [29] to suggest potential functions of

human proteins.

PPIs can be visualized as a graph with proteins composing the

nodes, and interactions composing the edges (the graphical

interactions). Ample evidence exists that such a graph is

nonrandom in the topologies of its connectivity [30–32]. We

assumed that most of the nonrandomness is necessary for the

protein-interaction network to perform proper biological function.

We further hypothesize, that two proteins share a number of

interacting neighbors which is significantly larger than that

occurred on average in truncated power-law preserving random

networks can significantly enhance the likelihood of the two

proteins sharing a common or related biological function. In prior

work on yeast PPI network, we developed a formula for ranking

the degree of rareness of such occurrences [28]. In this study, we

developed an additional formula to overcome a deficiency in the

previous work and make the ranking more accurate. We found

that the combination of these two formulas leads to better results.

We applied the method of detecting nonrandomness to the

publicly available PPI dataset for humans [29]. With our clustering

method, we built a 1729-protein cluster where we found most

function-related proteins were clustered together and many

subclusters were highly enriched in different signaling pathways.

In particular, we made an in-depth analysis of the transforming
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growth factor b (TGF-b) pathway which is important in cell

proliferation and tumorigenesis, and suggested a list of proteins

presumably involved in several signaling pathways.

Results

Algorithms
Suppose that in a PPI network of size N, the degree (i.e., the number

of interactions) for each protein node is fixed, but the interacting

partners are randomly selected. This specifies the random network

which we compare the real PPI data with. We randomly pick proteins

X and Y (X with nX interactions and Y with nY interactions) and find

that X and Y share m interacting partners (nodes) in this network. We

denote the set of common partners as A~ Z1,Z2,::::::Zmf g, the set of

all proteins as V~ 1,2,::::::,Nf g, and the number of interacting

partners for each protein in V as k~ n1,n2,::::::nNf g.
The total number of graphs in which proteins X and Y have m

common partners is a product of three factors: (i) m proteins can be

chosen from any of the N proteins, and there are
N

m

� �
~ N!

m! N{mð Þ!

ways to do that; (ii) the remaining nX {m proteins that interact

only with protein X can occupy N{m spaces still available,

resulting in a count of
N{m

nX {m

� �
; and (iii) nY {m proteins that

interact only with protein Y can be in any N{nX available spaces,

contributing a factor of
N{nX

nY {m

� �
. By multiplying these three

factors and dividing by the total number of unrestricted ways for

protein X to have nX and protein Y to have nY interacting

partners—
N

nX

� �
N

nY

� �
—we can arrive at the following formula

(Algorithm I) by Samanta and Liang [28]:

P1 m=N,nX ,nYð Þ~

N

m

� �
N{m

nX {m

� �
N{nX

nY {m

� �

N

nX

� �
N

nY

� � :

In this calculation, we have relaxed the constraint that the degree

of each node remains the same. For such totally randomized

networks for which only the average number of interactions per

protein is fixed, our simulation showed that the probability

computed by P1 is accurate.

However, a more realistic random control is to also keep the

degree distribution the same as the real PPI network (i.e., to

preserve the truncated power-law distribution [32]). This is much

broader than a totally random network, for which the degree

distribution, for a large number of interactions, decays exponen-

tially. For such a truncated power-law random network, our

simulations showed that P1 becomes inaccurate. To determine the

reason behind this and to devise a compensation, we note that in

any set A of m common partners, proteins with more interactions

will appear at a higher frequency. An extreme case is that if one

protein interacts with most proteins in the network (i.e., a hub

protein), it is hardly a surprise to find any two proteins sharing it as

a common partner. Because it is easier to observe hub proteins as

common partners and because P1 only takes into account the

degree of nodes on average, the significance of P1 should be down-

weighted when hub proteins are involved as common partners.

Therefore, we came up with another algorithm (Algorithm II) to

reduce the influence of hub proteins: under the condition that all

proteins are randomly connected, we used the degree kof V
(except the degree of X and Y) to compute the probability that only

A~ Z1,Z2,::::::Zmf g connects to X and Y, and we derived the

probability as follows:

P2 X and Y share A=k,Nð Þ

~ P
m

i~1
P Zi connects both X and Y=k,Nð Þ

� �

P no other protein connects both X and Y=k,Nð Þ

~ P
i[A

N{1
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N
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In supporting information (Text S1), we show that the second

product is bounded from both above and below; and hence, we

use the approximation P2~ P
i[A

ni ni{1ð Þ
N N{1ð Þ.

Therefore, each protein pair with common neighbor(s) was

assigned with both P1 and P2. In previous work, Samanta and

Liang [28] used only P1 to rank the relationship of protein pairs.

For our method, we added P2 as a complementary algorithm to

improve the biological inference. We showed that by reducing the

influence of hub proteins in the network, the use of both P1 and P2

allowed us to identify a more reliable functional relationship than

that identified by P1 alone.

Comparing Network Topology between Real and
Randomized PPI Networks

We computed the probabilities (P1 and P2) according to Algorithms

I and II for 311,023 protein pairs that had at least one common

neighbor, and plotted the distribution of the probabilities (Fig. 1a and

1b). In this paper, all the probabilities have been natural [base e]

logarithm transformed. To assess the statistical significance of the

topological connections in the human PPI network, we computed

and compared the distributions of probabilities calculated from

Algorithms I and II in suitably randomized networks. There are two

ways to randomize the PPI network: (i) randomly connect nodes

(proteins) but keep the total number of edges (interactions) the same

(i.e., simple random network); and (ii) in addition to (i), keep the

number of interacting partners of each protein the same as in our real

PPI network (i.e., a truncated power law–preserving random

network). Compared to simple randomization, for both Algorithms

I and II, the truncated power law–preserving randomization

produced a probability distribution more similar to that of the real

PPI network (Fig. 1). As a biological network is a network with a

truncated power-law distribution [32], it is more realistic to use a

truncated power law–preserving random network as the background

for comparisons. We use ‘‘random network’’ hereafter to refer to a

truncated power law–preserving random network, unless otherwise

specified. As expected, the human PPI network has much more

highly improbable topological connections that happen by chance

only with a very low probability (Fig. 1c and 1d).

Ranking Protein Pairs and Suggesting Functionally
Associated Protein Pairs

Ideally, given that P1 assesses the degree of nonrandomness in

the network, which indicates the functional association, we

Protein Function Prediction

PLoS ONE | www.plosone.org 2 July 2009 | Volume 4 | Issue 7 | e6410



anticipated that P1 should rank our protein pairs in a way that

reflected their functional relevance. Therefore, we hypothesized

that a higher ranking (i.e., a better P1) corresponds to a closer

biological relationship. With the Gene Ontology (GO) annotations

[33] and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway annotations [34] as benchmarks, we used annotation

overlap rates (see Methods and Materials) to validate the reliability

of the protein pair ranking from P1, and preliminarily determined

functionally associated protein pairs (i.e., significant protein pairs).

We noted that in the top 5,000 protein pairs, each 1,000 pairs

always had a higher overlap rate than those beyond the top 5,000

pairs, and that the region of high overlap will give us a high level of

confidence in presenting reliable predictions (Fig. 2). Thus, we

chose the 5,000th value of P1 (217.11) as the cutoff from

Algorithm I. It was interesting that the probability perfectly

matched the Bonferroni correction ln 2
N N{1ð Þ

� �
in which

N = 7,362 is the size of the whole protein network. The false

discovery rate (FDR) [35], which was used to assess the

effectiveness of our method, is 0.40 for the top 5,000 functional

associations selected by Algorithm I, with the cutoff at 217.11 (for

our definition of FDR, see Methods and Materials).

In a real PPI network, it is common to have many hub proteins with

large numbers of interacting neighbors. P2 is designed to reduce the

influence of these hub proteins within the top 5,000 protein pairs

selected by P1 as we believe that P2 can identify protein pairs whose

lower P1 is caused by common neighbors that are hub proteins and

remove them from the list of significant protein pairs. With GO and

KEGG as the benchmarks, the utility of P2 is then confirmed by the

following assertions: (i) the protein pairs with a good P2 (Group I)

always have a lower FDR (here a lower FDR means a closer

functional relationship) than those without a good P2 (Group II;

Fig. 3a); and (ii) the protein pairs with a good P2 (Group I) always have

a lower FDR than the same number of top protein pairs ranked by P1

only (Group III; Fig. 3b). We also noted that because P1 and P2 have a

Figure 1. Density distributions and histograms of probabilities derived from our method. Red lines and bars: probabilities calculated
from the human PPI network; green lines and bars: probabilities from truncated power law–preserving random networks; blue lines and bars:
probabilities from simple random networks. (a) Density distributions of P1. (b) Density distributions of P2. (c) Histograms of P1. (d) Histograms of P2.
doi:10.1371/journal.pone.0006410.g001

Figure 2. Annotation overlap rate with GO and KEGG as the
benchmarks. Protein pairs are ranked by P1. The top-ranked 20,000
pairs are divided equally into 20 bins. In each bin (1,000 protein pairs),
we calculated the GO overlap rate and the KEGG overlap rate. The red
curve stands for the GO overlap rates and the blue one stands for the
KEGG overlap rates. The dashed line is the cutoff at the 5,000th protein
pair. The correlation coefficient between the two groups of overlap
rates is 0.928 (P,0.0001).
doi:10.1371/journal.pone.0006410.g002
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very low linear correlation (Pearson’s correlation coefficient = 20.033,

P,10216; also see Fig. S1a in supporting information) and rankings of

functional association by P1 and P2 are significantly different

(P,10216), an additional cutoff from Algorithm II makes difference

from merely tightening the cutoff from Algorithm I. As the cutoff for

P2 changes, the difference in FDR between Groups I and II varies; the

difference maximizes when the cutoff goes to 230.03, which is the

value we used for the second cutoff from Algorithm II (Fig. 3a).

Therefore, 4,233 significant protein pairs (P,0.001; see Table S1 in

supporting information) were considered to have a close functional

association in terms of the cutoffs from Algorithm I (217.11) and

Algorithm II (230.03). In addition, the 4,233 significant pairs had a

FDR of 0.35, compared with 0.39 for the top 4,233 pairs ranked by P1

only (Fig. 3b), 0.83 for the top 4233 pairs from the truncated power

law–preserving random network [cutoffs: 28.90 for ln(P1) and 211.33

for ln(P2)] and 0.92 from the totally randomized network [cutoffs:

26.42 (P1) and 213.10 (P2)].

Estimate the Lower Bound of FDR for the 4233 significant
protein pairs

Because the functional annotations for human proteins are far

from complete, the proportion of true positive functional associations

must be higher and thus the FDR should be lower than 0.35. To

estimate the lower bound of the FDR, we took into consideration the

behavior of the random network by computing what percentage of

the 4,233 protein pairs were generated by chance. As biological

networks are networks with a truncated power-law distribution [32],

we used only a truncated power law–preserving random network as

the background. Cut by the same cutoff [217.11 for ln(P1) and

230.03 for ln(P2)], the power law–preserving random networks have

on average 86 protein pairs as significant associations (Fig. S1). The

lower bound of FDR is the false discovery number generated in

random network (86) divided by the number of predicted significant

associations (4233), which is approximately 2%.

Significant Protein Pairs Are Informative in Functional
Inference

We observed strong functional relationships among the top

4,233 protein pairs. After manual inspection, we found that at least

96 of the top 100 annotated protein pairs (excluding pairs with

unannotated proteins) have close functional relationships and we

listed the top 10 pairs in Table 1.

The GO and KEGG-based FDR for 23,782 direct interactions

is 0.57, which is significantly higher than our FDR of 0.35

(P,10216, two-sample proportion test). This comparison supports

the notion that our method offers more reliable functional

associations than the human PPI data itself does. Because only

21.6% of the 4,233 protein pairs interact directly in the PPI data,

we believe that the rest of them provide additional functional

information that is not revealed in the PPI data.

We used GO and KEGG annotations to compare functions and

compute annotation overlaps. Among the 1,754 proteins in the top

4,233 protein pairs, 1,220 have qualified GO terms (i.e., GO terms

at the highest level without direct or indirect GO ‘‘offspring’’ terms

in each ontology), and 834 have KEGG pathway annotations. If a

protein has at least one annotated significant partner (i.e., two

proteins are significant partners to each other if they are a significant

protein pair), a list of annotation(s) from its partner(s) can be sorted

Figure 3. Algorithm II decreased the false discovery rate (FDR) of our predictions. (a) For the top 5,000 protein pairs ranked by P1, each
cutoff value from P2 (on the x axis is the quantile of P2 we used as the cutoffs) divided them into two groups: Group I (red line), whose P2 was better
than the cutoff, and Group II (blue line), whose P2 was worse than the cutoff. In this plot, the maximal difference between the two groups is at 0.039
(vertical dashed line), which corresponds to the cutoff of 230.03 from Algorithm II. The horizontal dotted line stands for the FDR (0.40) of the top
5,000 protein pairs ranked by P1. (b) The blue line (Group III) shows the FDR of protein pairs ranked by P1 only (x axis stands for the amount of
selected top protein pairs), and the red line (Group I) shows the FDR of the significant protein pairs selected by P1 and P2 together.
doi:10.1371/journal.pone.0006410.g003

Table 1. Top 10 protein pairs from our 4,233 significant
protein pairs.

Protein_A Protein_B Ln(P1) Functional Relationship

SMAD3 SMAD2 2157.6068 SMAD family member

TUBB TUBB2 2136.0437 Cellular structural activity

PTPN11 PTPN6 2125.8552 Proliferation of cells

BMPR1B TGFBR1 2124.9466 Differentiation of cells

CALM2 CALM3 2124.9368 Calcium-modulated proteins

MAPK1 MAPK3 2113.0905 MAP kinase family member

CALM1 CALM3 2112.6375 Calcium-modulated proteins

IXL MED9 2107.7585 Mediator complex

PIK3R1 GRB2 2107.7070 Tyrosine phosphorylation

CALM1 CALM2 2106.1716 Calcium-modulated proteins

All of them share close functional relationships.
doi:10.1371/journal.pone.0006410.t001
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by frequency and annotations occurring at the highest frequency are

assigned to this protein (frequency must be at least twice for KEGG

and four times for GO; otherwise discarded. For more details, see

Text S1 and Fig. S3 in supporting information). For an annotated

protein (based on GO and KEGG annotations), if an assigned

annotation occurs among its known functions, we consider this to be

a correct prediction. By this method, we found that 79% (for

KEGG) and 70% (for GO) of assigned annotations were correct

predictions. (Randomly picking 4233 pairs from 1729 proteins will

only yield a 7% correct prediction rate for KEGG and 12% for GO

on average from 100 trials.) In the same way, we predicted 466

KEGG pathways for 274 proteins and 123 GO terms for 114

proteins. We estimated that the FDRs of our predictions are much

less than 21% (for KEGG) and 30% (for GO) because of the

percentage of correct predictions for annotated proteins and the

incompleteness of GO and KEGG annotations. We arbitrarily

selected 40 predicted annotations (20 for KEGG and 20 for GO)

and listed them in Table 2. For complete predictions, see Table S2

in supporting information.

Clustering from the Significant Protein Pairs
Because clustering can significantly improve the quality of

functional inference [28], we built a cluster consisting of 1,729

proteins (excluding 25 non-human proteins) based on the P1 of 4,233

significant protein pairs. We constructed the empirical cumulative

distribution from these P1 values; thus, each significant protein pair

had a score between 0 and 1 according to its ranking order in the

distribution of P1. Then we built a 172961729 dissimilarity matrix in

which each matrix element was assigned either a score (if applicable)

or a ‘‘10’’ for pairs with no significant P1. The purpose of using such a

large value was to minimize background noise. Then the dissimilarity

matrix was subjected to agglomerative hierarchical clustering with an

unweighted pair-group average. The whole cluster is given in Fig. S2

in supporting information.

Analysis of Functional Modules with Significant P Values
In the cluster of 1,729 proteins, most of the functionally related

proteins were correctly clustered into their corresponding

functional modules, in which they are characterized by similar

functions or the same pathway (Fig. 4). The largest subcluster

derives directly from the root of the whole cluster and consists of

959 proteins; the second-largest subcluster has only 51 members

(Fig. S2). We cut the 959-member subcluster with different cutoff

values and analyzed the corresponding subclusters by using both

manual inspection and Ingenuity Pathway Analysis (IPA). We

conducted a detailed analysis for one prominent subcluster (the

subcluster related to the TGF-b signaling pathway) as a reference.

The TGF-b signaling pathway–related subcluster (Fig. 5a) has a

total of 45 protein members, 35 of which are known to participate

in the TGF-b signaling pathway, according to the Ingenuity

database. The probability of observing this by chance is ,10254,

according to the calculation from Ingenuity software (right-tailed

Fisher’s exact test). With respect to this extreme P value, we

reasoned that probably all the cluster members cooperate to

mediate signal transduction. To investigate the role of the other 10

proteins in the TGF-b signaling pathway, we generated a

functional relationship network using Osprey software (http://

biodata.mshri.on.ca/osprey) [36] to explicitly elucidate the

relationships between the 45 proteins (Fig. 5b): the 10 proteins

not related to TGF-b according to the Ingenuity database are

located inside a circle, whereas the other 35 TGF-b member

proteins lie on the circle; common neighbors which do not belong

to the 45-member subcluster stay outside the circle.

The cluster and the association network (Fig. 5a and 5b)

intuitively suggest possible roles that the inner proteins play in the

TGF-b signaling pathway, which have not yet been incorporated

into the Ingenuity pathway. Take Fig. 5b for instance: SKI

functions as both the significant partner and the direct interacting

neighbor of SMAD2 and SMAD3, and the three proteins’

common neighbors (five violet nodes) all share the function of

transcriptional regulation. From this we infer that SKI may

regulate the TGF-b signaling pathway on a transcription level,

which is in accordance with findings in the literature (but has not

been incorporated into the Ingenuity database) that SKI regulates

downstream DNA transcription by forming a protein complex

with SMAD2 and SMAD3 [37], [38]. With respect to IGSF1’s

significant partners, direct-interaction partners, and the previous

work identifying IGSF1 as a potential receptor that could affect

cellular response through its cytoplasmic region [39], we suspect

that IGSF1 could function as a coreceptor for inhibin and/or

activin. SOSTDC1 and NOG may regulate TGF-b by interacting

with BMP receptors, which is in accordance with the findings that

both of them function as BMP antagonists [40], [41]. In addition

to positive regulatory functions [42], DAB2 may serve as an

antagonist of STRAP, which has a negative regulation on TGF-b–

mediated transcriptional activation [43], [44]. FMOD, CTGF,

and SLITL2 may be involved in regulating receptor binding of

TGF-bs, in accordance with published findings [45–47], and they

may interact with each other. Thus, through integration with

information from known networks, our method (probability,

probability–derived clusters and networks) suggests new features

which we can further investigate in experiments.

To facilitate analysis of this type, we proposed eight signaling

pathways with extreme P values (,10240, from IPA 5.0) that are

worthy of further investigations (Fig. 6). The proteins within the

same signaling pathway tend to stay together in the same

subclusters. This is shown for the largest 959-member subcluster

(Fig. 6a; cluster members are indexed from 1 to 959). From IPA-

based classification of the proteins into each of the eight pathways,

we calculated a density distribution for all eight signaling pathways

along the cluster (Fig. 6b–e). Each pathway is expected to have a

distinct distribution (its own peaks). The peaks in Fig. 6b–e map to

some areas (i.e., subclusters) that are probably highly related to

their corresponding pathways. Functionally intercrossed pathways,

like death-receptor/NF-kB signaling, may have close peaks. The

distribution patterns are useful in identifying pathway-specific

regions in the cluster. We selected another 4 subclusters that are

presumably involved in six signaling pathways (excluding TGF-b)

with respect to pathway member distributions, and listed the

potential pathway members in Fig. 7. We expect that the clusters

and distributions will help biologists to find their subcluster of

interest and discover new pathway members.

Discussion

An advantage of our prediction scheme, inherited from Samanta

and Liang (2003), is the insensitivity to the high false positive rate of

high-throughput PPI data. After adding 6086 randomly generated

interactions (30.4% of the real data, assuming at least 50% false

positive rate for high-throughput data), we were still able to recover

on average 93.4% of significant protein pairs; furthermore, .90%

of falsely generated ‘‘significant protein pairs’’ will become

significant if we loosen the cutoffs of P1 and P2 a little to double

the number of significant protein pairs. This will certainly offer

more flexibility when selecting which PPI data to use.

We compared the performance of our prediction scheme with

that of the direct prediction scheme used by Schwikowki et al. (2000)

Protein Function Prediction
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which infers the function of a protein from it direct interacting

neighbors in the PPI network [48,49]. Under the same criteria (i.e.,

the minimum frequency of shared functions required to assign

annotations), the FDRs of our predictions (30% for GO and 21%

for KEGG) have been significantly improved over the FDRs (60%

for GO and 49% for KEGG) from the direct prediction scheme

[48]. This result is reasonable because our algorithms identified

significant protein pairs that are more functionally associated than

the direct-interacting pairs in the human PPI data, and we made

functional inferences from these significant pairs, not from direct

Table 2. Selected Predictions of KEGG and GO annotations for human proteins.

Protein KEGG KEGG Pathway Name Ratio

CDC5L hsa04110 Cell cycle 4/5

DEDD hsa04210 Apoptosis 4/5

KSR2 hsa04010 MAPK signaling pathway 4/5

GMFB hsa04010 MAPK signaling pathway 6/6

ITGB1 hsa04640 Hematopoietic cell lineage 4/6

PTK2B hsa04630 Jak-STAT signaling pathway 21/68

GDF9 hsa04350 TGF-beta signaling pathway 5/5

ZIC1 hsa04340 Hedgehog signaling pathway 3/3

GRAP2 hsa04664 Fc epsilon RI signaling pathway 5/7

ACTR2 hsa04810 Regulation of actin cytoskeleton 5/6

PLCG2 hsa04660 T cell receptor signaling pathway 6/8

CD2 hsa04660 T cell receptor signaling pathway 5/6

TRPV4 hsa04670 Leukocyte transendothelial migration 3/10

USP7 hsa04060 Cytokine-cytokine receptor interaction 11/15

CCBP2 hsa04060 Cytokine-cytokine receptor interaction 4/6

SLA hsa04650 Natural killer cell mediated cytotoxicity 4/5

CSK hsa04650 Natural killer cell mediated cytotoxicity 10/15

RGS16 hsa04080 Neuroactive ligand-receptor interaction 5/14

STX1A hsa04130 SNARE interactions in vesicular transport 5/6

NAPA hsa04130 SNARE interactions in vesicular transport 4/6

Protein GO ID GO Term Ratio

KHDRBS1 GO:0005524 ATP binding 5/18

GNAI1 GO:0003924 GTPase activity 4/4

COL1A2 GO:0005587 collagen type IV 6/9

MCM10 GO:0008270 zinc ion binding 10/26

FN1 GO:0005509 calcium ion binding 6/18

SAA1 GO:0005509 calcium ion binding 4/11

ATP2B4 GO:0030955 potassium ion binding 4/16

ACTR2 GO:0005885 Arp2/3 protein complex 6/6

BLNK GO:0005070 SH3/SH2 adaptor activity 4/15

CD28 GO:0005070 SH3/SH2 adaptor activity 4/12

DLG4 GO:0004385 guanylate kinase activity 4/11

TIF1 GO:0003714 transcription corepressor activity 4/12

GADD45G GO:0030521 androgen receptor signaling pathway 4/8

TNFRSF17 GO:0005031 tumor necrosis factor receptor activity 4/11

TNFRSF8 GO:0005031 tumor necrosis factor receptor activity 4/14

SOCS3 GO:0005159 insulin-like growth factor receptor binding 4/10

PTPN1 GO:0005159 insulin-like growth factor receptor binding 4/14

FAS GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB cascade 5/6

CASP10 GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB cascade 4/6

MAP3K14 GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB cascade 7/17

The 2nd column is the predicted KEGG and GO IDs for proteins in the 1st column. The 3th column is the corresponding KEGG pathway name and GO term. Ratio is the
number of significant partners with the assigned annotation(s) divided by the total number of significant partners.
doi:10.1371/journal.pone.0006410.t002
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protein interactions which may suffer large amounts of false

positives generated in high throughput assays.

Human proteins may have multiple functions and belong to

different functional modules, so different signaling pathways may

also have some pathway members in common. It is thus

reasonable to assume that the overlap of distribution (Fig. 7b–e),

especially of peaks, may reveal the functional relevance of different

pathways. For example, the death-receptor and NF-kB signaling

pathways overlap in the peak area, and the T- and B-cell receptor

signaling pathways have a similar distribution. Therefore, the

cluster and its pathway distributions will be useful in multi-

pathway analysis and accurate function prediction.

We also developed a new algorithm for computing the

probabilities that three proteins share m interacting partners (see

Text S1 in supporting information). However, we found that if three

proteins have a very low probability of sharing m interacting

partners, in most cases two of them will have a very low P1. Because

this algorithm is highly dependent on Algorithm I (P1), we do not

think it provides more information worthy of further investigation.

In conclusion, we proposed an improved method to predict

protein functional association and make reliable functional

annotations; we derived a cluster to investigate signaling pathways

and suggest potential novel pathway members. We believe that

with the explosion of available human PPI data, our method will

contribute greatly to the functional research of human proteins.

Materials and Methods

Protein–Protein Interaction Data
From the BioGRID (www.thebiogrid.org), we downloaded the

human PPI data (version 2.20), which derived from both

conventional focused studies (,69.6%) and high-throughput

studies (yeast two-hybrid; ,30.4%) [29]. There are 20,019 total

non-redundant interactions (excluding self-interactions) and 7,362

protein entries in this dataset, including 42 nonhuman proteins

that interact with human proteins.

Benchmarks for evaluating the functional association
We used GO and KEGG as independent benchmarks to assess

the functional association of each protein pair. GO and KEGG

databases provide specific pathways, functions and cellular

components for proteins in our PPI data: we classified the 7,362

proteins into 237 KEGG pathways and 1956 qualified GO terms

(including biological process, molecular function and cellular

component). These databases are good references for evaluating

functional association because of its reasonable coverage of the

genome and its large number of categories, which makes it

improbable to have random matching of pathways.

Annotation overlap rate
With GO annotation (R package: GO, 08-Aug-2006), we

defined the GO overlap rate as follows: overlap rate~
TQ

TA
, where

TQ is the number of protein pairs of which both proteins share at

least one qualified GO term; TA is the number of protein pairs of

which both proteins are annotated with qualified GO terms. Here

‘‘qualified GO terms’’ means GO terms at the highest level

without direct or indirect GO ‘‘offspring’’ terms in each ontology

(the level is defined as the number of nestings from the root node

(level 1) in the Gene Ontology DAG file [33]).

We defined the KEGG overlap rate in the same way as above

(R package: KEGG, Release 41.1). We used the GO and KEGG

overlap rates to assess the functional association of protein pairs: a

higher overlap rate corresponds to a closer functional relationship.

Figure 4. Examples of subclusters derived from the significant 4,233 protein associations. Apparently each of them belongs to the same
functional module in which they perform similar or the same biological functions.
doi:10.1371/journal.pone.0006410.g004
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Definition of FDR for the declared significant functional
associations

Suppose the GO and KEGG pathways are complete: if both

proteins in each pair have KEGG pathway identifiers and

qualified GO terms, we call them declared positive protein pairs.

If they share at least one identifier (either GO or KEGG

identifier), we consider this declared association true positive;

otherwise we consider it false positive. Therefore, the FDR can be

written as follows: FDR~1{ number of true positive protein pairs
number of declared positive protein pairs

This false discovery rate is used to assess the performance of our

algorithm as we expect an improved annotation scheme will lower

the proportion of wrong predictions among declared significant

functional associations.

Pathway analysis tool
We used IngenuityH Pathway Analysis (IPA) 5.0 software

(Ingenuity Systems, Inc., Redwood City, CA) to identify existing

pathway members and calculate P values for signaling pathways

identified in our cluster.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0006410.s001 (0.12 MB

DOC)

Figure S1 Density plot of the distributions of P1 and P2 (two

dimensions) from the human protein-protein interaction (PPI)

network (a) and the randomized but truncated power-law

preserving PPI network (b). The vertical and horizontal lines

stand for the thresholds from Algorithms I and II, respectively. In

a random PPI network (with truncated power-law), the expecta-

tion of significant protein associations is 86 (lower left in b)

compared with 4,233 significant associations in the real PPI

network (lower left in a).

Found at: doi:10.1371/journal.pone.0006410.s002 (0.15 MB TIF)

Figure S2 A cluster that consists of 1729 human proteins.

Indices above protein names are their coordinates in this

cluster.

Found at: doi:10.1371/journal.pone.0006410.s003 (0.08 MB

PDF)

Figure S3 Estimation of prediction precise rates and the number

of predictions we can make given different n (n is the minimal

frequency of annotation occurrence required for functional

prediction). (a) Estimated precise rate of predicted KEGG

pathways given n. (b) The number of predictions for KEGG

pathway we can make given n. (c) Estimated precise rate of

predicted GO terms given n. (d) The number of predictions for

GO terms we can make given n.

Found at: doi:10.1371/journal.pone.0006410.s004 (0.03 MB TIF)

Figure 5. TGF-b signaling pathway–related subcluster. (a) One subcluster identified by our method consists of proteins presumably involved
in the TGF-b signaling pathway. (b) Detailed interpretation of the relationships between each protein from the subcluster. On the basis of the
Ingenuity Pathway Analysis 5.0, the 35 blue-green proteins on the circle participate in the TGF-b signaling pathway, and the 10 red proteins inside the
circle are unrelated. The violet proteins outside the circle are common neighbors that do not belong to the subcluster in panel a. Red lines represent
significant protein pairs, green lines represent direct protein–protein interactions, and yellow lines represent both.
doi:10.1371/journal.pone.0006410.g005
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Table S1 The 4233 significant protein pairs derived by our

method. There are totally 1,729 human proteins and 25

nonhuman proteins. Protein pairs are ranked in terms of P1.

Found at: doi:10.1371/journal.pone.0006410.s005 (5.43 MB

DOC)

Table S2 Predictions of 466 KEGG pathways for 274 proteins

and 123 GO annotations for 114 proteins. The 2nd column is the

predicted KEGG and GO IDs for proteins in the 1st column, with

3rd column as corresponding KEGG pathway names and GO

terms. Ratio is the number of significant partners with the

Figure 6. Distribution patterns of eight different signaling pathways. (a) The largest subcluster of 959 proteins is derived from the root of
the whole 1729-member cluster. Each protein in this subcluster has a coordinate with respect to its order in the 959 members (from left to right); a
pathway distribution is generated from the distribution of its members’ coordinates under the bandwidth of 10 (R 2.25; IPA 5.5). (b) Distribution of
the TGF-b signaling pathway. (c) Distributions of death-receptor and NF-kB signaling pathways. (d) Distributions of B- and T-cell receptor signaling
pathways. (e) Distributions of insulin receptor, Fc epsilon RI and natural killer cell signaling pathways.
doi:10.1371/journal.pone.0006410.g006
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assigned annotation(s) divided by the total number of significant

partners.

Found at: doi:10.1371/journal.pone.0006410.s006 (0.40 MB

DOC)
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