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ABSTRACT

Objective: Research on pharmacovigilance from social media data has focused on mining adverse drug events

(ADEs) using annotated datasets, with publications generally focusing on 1 of 3 tasks: ADE classification, named

entity recognition for identifying the span of ADE mentions, and ADE mention normalization to standardized ter-

minologies. While the common goal of such systems is to detect ADE signals that can be used to inform public

policy, it has been impeded largely by limited end-to-end solutions for large-scale analysis of social media

reports for different drugs.

Materials and Methods: We present a dataset for training and evaluation of ADE pipelines where the ADE distri-

bution is closer to the average ‘natural balance’ with ADEs present in about 7% of the tweets. The deep learning

architecture involves an ADE extraction pipeline with individual components for all 3 tasks.

Results: The system presented achieved state-of-the-art performance on comparable datasets and scored a

classification performance of F1 ¼ 0.63, span extraction performance of F1 ¼ 0.44 and an end-to-end entity reso-

lution performance of F1 ¼ 0.34 on the presented dataset.

Discussion: The performance of the models continues to highlight multiple challenges when deploying pharma-

covigilance systems that use social media data. We discuss the implications of such models in the downstream

tasks of signal detection and suggest future enhancements.

Conclusion: Mining ADEs from Twitter posts using a pipeline architecture requires the different components to

be trained and tuned based on input data imbalance in order to ensure optimal performance on the end-to-end

resolution task.

Key words: social media mining, natural language processing, information extraction, pharmacovigilance, drug safety

INTRODUCTION

Advances in machine learning have sparked interest in the research

community for developing automated methods to monitor public

health using natural language processing. One particular focus area

has been in discovering adverse drug events (ADEs) on social media

texts, such as Twitter, or health forums, such as dailystrength.com

or webmd.com among others. ADEs are negative side effects (ie,

harmful and undesired reactions due to the intake of a drug/medica-

tion).1 ADEs have been previously used interchangeably with the

term adverse drug reactions (ADR). In pharmacoepidemiology,
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ADR infers a causality relation between the drug and the effect. This

relation is difficult to infer from nonclinical data like social media.

Hence, hereafter, we prefer to use the term ADE as opposed to

ADR. In this work, we present an information extraction pipeline

for ADEs from Twitter by first identifying tweets that mention

ADEs, then extracting the text spans of the mentions and subse-

quently normalizing them to the MedDRA preferred terms.

In order to conduct social media pharmacovigilance studies that

require mining tweets for the presence of ADEs, the first step usually

involves collecting the tweets that mention medications by using

their names and variants as search terms in the Twitter API. If no

other keywords are included, only a small fraction of tweets

obtained would mention ADEs.2 The reasons for this phenomenon

are multifold: (1) a large proportion of drug names are mentioned in

advertisements or posts by bots, (2) many drug names are ambigu-

ous, and (3) the discourse in social media when discussing medica-

tions includes a variety of topics, hence just a few posts are mentions

of drugs or, even less, ADEs.3–6 Consequently, for effective extrac-

tion of such rare events from social media, work on this topic has of-

ten focused on the initial independent task of tweet classification so

that tweets classified as containing ADEs can be analyzed by

experts.7–10

Downstream automated extractions, such as the mentions (char-

acterized by spans) of text of the expressed ADEs, can be performed

using NER models as shown in Figure 1. Due to the higher complex-

ity of the NER task, NERs have a lower sensitivity to identifying

ADEs in tweets compared to a classifier. Additionally, NER models

contain a larger number of parameters in the model compared to

classifiers. Hence, NER models have typically been applied on

tweets that have been previously identified by the classifier to con-

tain an ADE. In such a configuration, the classifier acts as a filter to

reduce the number of posts that do not contain an ADE. In such a

pipeline architecture, the extraction performance of the NER is also

linked to the performance of the classifier because ADEs in posts

that were wrongly filtered out by the classifier (ie, false negatives)

will never be processed by the NER. Similarly, other advanced

downstream tasks, such as ADE normalization, that are performed

on the extracted mentions will suffer from compounding errors. Re-

cent advances in deep learning, especially in transfer learning, have

shown that pretrained language representations like BERT and

GPT-2 can achieve state-of-the-art (SOTA) performance in various

information extraction tasks, such as text classification and named

entity recognition, with fewer annotated examples. With such model

improvements, we find it important to reevaluate if ADE classifiers

continue to be an essential step in the extraction pipeline.

Related work
Methods for ADE tweet level classification have been studied exten-

sively in various studies and shared tasks.7,8,11,12 The ADE classifi-

cation task is challenging due to the imbalanced nature of the

dataset. Among tweets that mention medications, which is often a

starting point for data collection, tweets that mention ADE are out-

numbered 10:1 to 50:1 by tweets that do not contain ADEs.7,8,12,13

From our preliminary analysis of datasets in shared tasks, the vari-

ability in the ratios could be largely attributed to the class of drugs

being used for the study. Emerging medications are often promoted

by bots as well as mentioned in news articles which overshadow

firsthand reports of medication consumption by users. The precision

of optimal ADE classification systems previously developed have

stayed in the range of 0.45–0.65 reaching a score of 0.64 in recent

shared tasks.7,8,12 Assuming a pipeline architecture, the datasets for

the NER and normalization shared tasks have thus commonly as-

sumed an input corpus consisting of 50% of tweets positive for

ADEs.

Figure 1. Typical ADE extraction pipeline from Twitter. Tweets are retrieved by either using the streaming API using drug names as keywords or searching a pre-

viously indexed database by drug name. Downstream tasks (ADE tweet classification, named entity recognition, and entity normalization) are performed serially.
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However, this assumed balance for the task of ADE extraction

has gone as high as 0.95 positive, in essence ignoring the ADE nega-

tive tweets in the dataset. We found that training and testing on

such an extremely unbalanced dataset with mostly positive tweets

creates sub-optimal models.14,15 Here, we show that training on

modified datasets under such unrealistic assumptions of ADE classi-

fication performance merely gives a false sense of the individual

component’s performance. Building such systems will invariably re-

sult in a large drop in performance in the end-to-end ADE resolution

pipeline when executing on a dataset with the inherent imbalance of

a Twitter collection.

Similarly, previous implementations of ADE normalization have

often limited their target classes to the ones available only in the

dataset, thereby artificially inflating the reported performance.16–18

We find that training on only the common identifiers available in

the training set or limited number of identifiers may yield better ac-

curacy but does not allow discovery of new ADEs because target

classes outside those in the training data or the datasets are not con-

sidered. Here, we demonstrate that normalization labels can be ex-

panded using linked ontologies to yield better results and enable

normalization of ADEs not available as part of the training set.

Objectives and contributions
The objective of this work is to evaluate the performance of deep

learning classifiers for ADE extraction and to answer key questions

on the design of ADE extraction and normalization pipelines on

texts from social media, particularly Twitter. To accomplish this,

we use off-the-shelf deep learning classifiers and NER tools. Follow-

ing are the contributions of the work presented:

• We establish SOTA performance on an end-to-end ADE extrac-

tion and normalization pipeline.
• We make available an ADE normalizer that maps the extracted

spans to MedDRA Preferred Term identifiers using the expanded

vocabulary from Unified Medical Language System (UMLS).
• We make the end-to-end pipeline available to the public as an

API endpoint and an online interactive tool.
• We demonstrate the impact of training the NER using varying

ratios of ADE positive (hasADE) to ADE negative (noADE)

tweets on the end-to-end ADE extraction and normalization per-

formance to measure the effect of tweet level class imbalance on

NER performance.
• We evaluate the utility of including an ADE classifier as the first

step of a pipeline to tackle the imbalance in the data.

The source code, binaries, and models for the systems presented

here, as well as the annotated datasets, are available at https://

healthlanguageprocessing.org/pubs/deepademiner/.

MATERIALS AND METHODS

Datasets
In this work, we merge datasets used in our social media for phar-

macovigilance shared tasks,8,11 resulting in a dataset of tweets men-

tioning 1 or more medications where only 7% of the tweets contain

ADEs. The tweets were collected using the Twitter API and anno-

tated by experts after applying preprocessing filters to remove tweets

that were likely to be advertisements or from automated accounts.

We refer the readers to the original articles for details regarding data

collection and annotation guidelines.2,8 The dataset contains 29 284

tweets annotated with 2765 ADE mentions. The annotated ADE

mentions also contain the corresponding normalized medical term

in the MedDRA ontology.19,20 The MedDRA ontology is a stan-

dardized hierarchical medical terminology that is often used to re-

port ADE in clinical trials. Each ADE is annotated to 1 of the

79 507 MedDRA lower-level term (LLT) identifiers. The 2765 ADE

annotations contain 669 unique LLT identifiers containing 257 LLT

terms in the test set that are not part of the training set. Some of the

most common ADEs include Withdrawal syndrome, Somnolence,

Chronic insomnia, and Weight gain with 134, 89, 59, and 58 occur-

rences. This dataset is split into 18 300 (62.5%) tweets with 1800

ADEs for training and 10 984 (37.5%) tweets with 965 ADEs for

testing. We refer to this dataset in this work as the HLP-ADE-v1

dataset.

For purposes of comparison with other SOTA methods on simi-

lar datasets, we also use the datasets used in Task 2 (English) and

Task 3 of the social media mining for health (SMM4H 2020) shared

task.12 The training set for Task 2 contained 25 678 tweets, with

2377 (9.3%) reporting an adverse effect of a medication while the

test set contains 4759 tweets, with 194 (4.1%) tweets reporting an

adverse effect. The primary focus of Task 2 was to classify tweets

containing ADEs while Task 3’s focus was to train and evaluate

span detection and normalization capabilities. The data for Task 3

contains 2806 tweets in the training set, with 1829 (65%) tweets

that report an adverse effect, while the test set contains 1156 tweets

with 970 (84%) that report an adverse effect. We refer to these data-

sets as the SMM4H-2021 for the rest of the article.

ADE resolution pipeline components
Our approach to the ADE pipeline involves 3 components, 1 for

each of the necessary tasks: (1) the ADE classifier for identifying

tweets containing ADE mentions, (2) the ADE span extractor or

NER for extracting ADE mentions, and (3) the ADE normalizer,

which maps the extracted ADE mention to MedDRA LLT identi-

fiers. We refer to the end-to-end pipeline as the ADE resolution task.

ADE classifier

To identify tweets that contain ADEs, each tweet in the dataset that

contains at least 1 mention of an ADE is assigned the hasADE class,

and the other tweets are assigned the noADE class. Based on findings

from the recent SMM4H shared task, we use the transformer model

RoBERTa to train a binary classifier using the Flair framework.21,22

To deal with the class imbalance problem, the classifier is trained with

varying loss weights and undersampling techniques to obtain the opti-

mal performance with a particular focus on the Recall metric, which

measures how sensitive the classifier is in identifying posts containing

ADEs. Essentially, this classifier is used as a filter to remove tweets that

are not predicted to mention ADEs; hence, we find it important to in-

crease the sensitivity of the classifier to preserve tweets that are likely to

contain ADEs for further processing by downstream components.

ADE span extractor

We used the off-the-shelf NER training framework from Flair for

extracting ADE spans.22 As part of our preliminary experiments, we

examined BERT implementations across native TensorFlow, fast.ai,

and Flair frameworks and found similar extraction performance

among the tools.23 As preprocessing steps, we used segtok to tokenize

the tweet and label the text with the standard IOB2 (also called BIO)

format for training. From the training set, 5% of the examples were

held out as a development set for hyperparameter tuning. The NER

model presented in this article relies on tweets represented using token
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representations obtained from pretrained word embeddings. In this

work, we investigate the utility and performance of multiple word

embeddings for use in the NER. The token representations are used to

make classification decisions for each token using sequence tagging

models to indicate the presence of ADE entities. We use the bidirec-

tional recurrent neural network-based architecture with gated recur-

rent units and a fully connected layer with a conditional random field

on the output layer with hidden layer dimensions set to 256. We used

the optimal settings to be training at 0.1 learning rate with the default

optimizer based on stochastic gradient descent. The model was trained

for 50 epochs, and the model with the best performance on the devel-

opment set was saved for testing its performance on the test sets.

ADE normalizer

For normalizing the extracted spans to their respective MedDRA

concepts, we use a classification approach where we use the text in

the ADE mentions as inputs to the classifier, and their annotated

LLTs are mapped to preferred terms (PTs), which are used as target

classes. We thus create training examples for the classifier using the

2289 annotations available in the training set for Supervised train-

ing. In Supervised training, the target classes are limited to classes

annotated in the training set, and hence the trained model will lack

the capability to normalize ADEs not present in the training set.

We also create training examples using 79 507 MedDRA LLT

terms and their corresponding PT identifiers as training instances. We

further expand these LLT and PT terms to their synonyms using the

UMLS thesaurus,24 linking their concept unique identifiers with identi-

fiers in other databases. This expanded the number of unique training

instances to 265 255. We mapped all LLT terms to their 23 389 PTs,

reducing the number of target classes and preparing them for Unsuper-

vised training of the model where human annotations from the dataset

are not used. Additionally, we also perform Semi-supervised training

by using the examples from both the Unsupervised and Supervised

training set for training the model as shown in Figure 2.

For normalization, we evaluate 2 classifiers. (1) The off-the-shelf

FastText classifier,25 which computes the average of token vectors using

word embeddings based on presence of subwords and uses a multino-

mial logistic regression model with softmax layer at the output. Since

the objective of normalization is to train on all available PT classes in

MedDRA, we use the hierarchical softmax loss available in the FastText

package for faster training. (2) We create a classifier based on BERT

transformer embeddings, which incorporates context and shallow se-

mantic information into word and documentation representations.

Experiments
Using the ADE dataset, we conduct the following experiments:

Experiment 1: ADE Classification, extraction, and normalization

vs ADE resolution. We built a SOTA pipeline which employs deep

learning based classifiers and NERs for detecting tweets that contain

ADEs, extracting ADE mentions, and further normalizing the mentions

to the MedDRA terminology. We test various NERs across word rep-

resentations for ADE extraction and an entity normalization classifier

for normalizing the ADE spans extracted from the NER model to the

MedDRA terminology. The performance of these 3 steps is analyzed

both independently and in a resolution pipeline to assess the impact of

the NER and normalization on the ADE resolution performance.

Experiment 2: Effect of data imbalance. For this experiment, we

first exclude the classifier from the abovementioned pipeline and

create multiple datasets for the NER based on the proportion of neg-

ative tweets (noADE) in the collection in comparison to positive

tweets (hasADE). We train multiple NERs and test them on the 7%

positive test set to determine the impact of biased and balanced

training on ADE resolution. In this experiment, we also evaluate the

impact of the ADE classifier at the first step.

Evaluation
The evaluation is 2-fold. First, each component used in the pipeline

is evaluated independently, followed by an end-to-end evaluation of

ADE resolution. The performance of the ADE classifier is character-

ized using measures such as precision, recall, and F1-score for the

hasADE class. Here, precision is measured by the ratio of true posi-

tives to the sum of true positives and false positives, recall is mea-

sured by the ratio of true positives to the sum of true positives and

false negatives, and finally F1-score is measured by taking the har-

monic mean of precision and recall.

The performance of the ADE extractor is measured based on the

presence of overlapping spans of annotated and predicted ADE men-

tions in a tweet. A prediction is considered to be a true positive if any

part of the predicted ADE text overlaps with the annotated ADE text.

ADEs annotated that were not predicted are false negatives and ones

that were predicted when there are no ADEs in the same span are con-

sidered false positives. We calculate precision, recall, and F1-score meas-

ures for the ADE spans to compare performances between the methods.

We evaluated 4 types of embeddings: (1) traditional Glove

embeddings trained on Twitter data,26 (2) word2vec embeddings

trained on Twitter data with medication mentions and health related

tweets,27 (3) FastText embeddings with enriched subword informa-

tion trained on webcrawl data,28 and (4) transformer models,

namely BERT, trained on Wikipedia.23

The performance of the ADE normalizer is reported using the accu-

racy metric. Since terms in LLTs (which the corpus is annotated on) are

often synonyms and spelling variants at the lowest level of granularity

of the MedDRA ontology, we evaluate instead using 1 level up in the

ontology, the PT level, which contains 23 389 entries (compared to

79 507 at the LLT level). Thus, if the predicted MedDRA LLT identi-

fier maps to the same PT identifier as the annotated LLT, the prediction

is considered a true positive. We perform accuracy evaluations for the

normalization task across 2 subsets of the test set, (1) ADEs present in

the training set and (2) ADEs not present in the training set.

We evaluate ADE resolution (the end-to-end performance of the

classifier, extractor, and normalizer) on the same annotated dataset

using precision, recall, and F1-score. A prediction is considered a

true positive only when the spans overlap and the normalized Med-

DRA PT identifiers match.

The Institutional Review Board of the University of Pennsylvania

reviewed the studies for which this data was collected and deemed

them exempt for human subject research under category (4) of para-

graph (b) of the US Code of Federal Regulations Title 45 Section

46.101 for publicly available data sources (45 CFR §46.101(b)(4)).

RESULTS

We present results of the above tasks in the following subsections.

Experiment 1: ADE classification, extraction, and

normalization vs ADE resolution
We present the performance from the normalization task in Table 1.

Analyzing the results, we find that the accuracy of the BERT models,

which encode contextual representation and shallow semantic infor-

mation, improve substantially over the FastText model, which relies
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on bag-of-words and n-grams to perform the normalization task.

For the given dataset containing about 1300 annotations of Med-

DRA identifiers, supervised learning outperformed unsupervised

learning by a margin of 8 to 14 percentage points. However, it is

surprising to find that even when the number of classes exceed

23 000, unsupervised training based on MedDRA text entries pro-

vides an accuracy of 0.414 with FastText and 0.441 with BERT

word representations.

Overall, the classification methods that included both supervised

labels and unsupervised labels performed better than unsupervised

methods and systems trained only on supervised labels. As the test

set contains ADE preferred terms that are not present in the training

set, we find that the semisupervised approach performs better and

allows for discovering ADEs not present in the training set.

Table 2 shows the performance of various language representa-

tion techniques for the ADE extraction task when trained on the full

dataset in the absence of a classifier. We find that the NER that uses

the BERT representations equipped with an additional layer of bidi-

rectional gated recurrent units and a conditional random field layer

obtains the best performance when trained on the full training data-

set. However, we suspected that the large class imbalance may have

had an impact on the NER performance, hence we proceeded to run

multiple folds of training data with undersampling techniques to de-

termine the optimal ratio of negative to positive tweets containing

ADEs.

Experiment 2: Effect of data imbalance
Firstly, we compare the performance of the classifier and the NER

for identifying tweets that contain ADEs. Since the loss function of

the classification tasks and NER tasks are defined differently, we

naturally expect the NER to perform lower in the classification task.

The models that were trained with 5 times as many negative tweets

compared to the positive tweets were found to have the optimal per-

formance as shown in Figure 3. We also find that lowering the

threshold of classification to 0.15 from 0.5 for the undersampled

classifier model further increases the performance of the classifier as

shown in Figure 4. Comparing classification performances, we

found that the ADE classifier fine-tuned using the RoBERTa model

(F1-score ¼ 0.63) outperforms the NER (F1-score ¼ 0.41) in identi-

fying tweets containing ADEs by about 22 percentage points. The

best performance of the classifier was obtained at a probability

threshold where both precision and recall were around 0.63. We

find that greater F1-score by the classifier allows for improvement in

the NER’s performance and overall ADE resolution pipeline.

The performance of the NER across varying ratios of hasADE/

noADE using FastText embeddings is shown in Figure 5. Observing

the figure, we can see that when training the NER on its own, the

peak performance of the FastText model occurs for ratios in the

range of 1–2. We made similar observations for the BERT model.

Based on these findings, we retrained the classifier and NER and

evaluated the model across the presented dataset and similar data-

Figure 2. Normalization architecture describing the 3 methods of training based on annotations from social media and terms from MedDRA and UMLS.

Table 1. Normalization task performance on the test set operating under the assumption that extracted spans are available. Accuracy col-

umns indicate (a) overall performance by measuring accuracy on all test spans, (b) accuracy on the span subset where MedDRA ids were

part of the training set, and (c) accuracy on the span subset where MedDRA ids were only part of the test set

Method Configuration Accuracy (overall) n¼ 965 Accuracy (training only) n¼ 455 Accuracy (test only) n¼ 510

FastText Unsupervised 0.414 0.425 0.402

Supervised 0.495 0.442 0

Semisupervised 0.521 0.551 0.411

BERT Unsupervised 0.441 0.447 0.415

Supervised 0.590 0.653 0

Semisupervised 0.612 0.638 0.497
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sets published as part of the SMM4H workshop.12 We present the

results in Table 3. The systems presented in this work improves over

previous SOTA systems.

Overall, among the 510 annotations that contained LLT ids that

were present in the test set but not the training set, DeepADEMiner

successfully classified, extracted, and normalized 116 ADE annota-

tions at the PT id level. They included ADEs such as heartburn

(10013946: Dyspepsia), wooziness (10013573: Dizziness), spaced

out (10016322: Feeling abnormal), hiccups (10020039: Hiccups)

and mouth numb (10057371: Hypoaesthesia oral). Despite the

training set not containing any of the above examples of ADE men-

tions or their LLT ids, the NER had the capability to extract the

mention and semisupervised training on MedDRA ontology terms,

with terms integrated from UMLS, and had the capability to classify

them correctly to their correct PT ids.

To measure the generalizability of DeepADEMiner for extrac-

tion and normalization of ADEs, we split the annotations in the test

dataset into 2 categories based on the presence or absence of anno-

tated MedDRA LLT ids or ADE spans in the training dataset.

Among the 455 ADEs in the test dataset that had their correspond-

ing MedDRA LLT ids in the training dataset, 165 were extracted

and normalized correctly (Recall¼0.363). Among the 510 ADEs in

the test dataset that did not have their corresponding MedDRA LLT

ids in the training dataset, 116 were extracted and normalized cor-

rectly (Recall¼0.227). Among the 340 ADEs in the test dataset that

had their corresponding text spans in the training dataset, 180 were

extracted and normalized correctly (Recall¼0.529). Among the 625

ADEs in the test dataset that did not have their spans matching any

ADEs in the training dataset, 101 were extracted and normalized

correctly (Recall¼0.162). Results from the evaluation of DeepADE-

Miner’s normalization model suggests that using semisupervised

methods is beneficial in identifying ADEs not present in the training

set.

In this work we performed all experiments and evaluated the

models on a test dataset where only 7% of tweets contained ADEs.

DeepADEMiner achieves a resolution performance of Pre-

cision¼0.41, Recall¼0.29, and F1-score¼0.34. However, we rec-

ognize that the datasets may contain a higher level of imbalance

where the proportion of tweets containing ADEs are as low as

2%.7,8,12,13 To estimate the performance of DeepADEMiner on

such datasets, we created variants of the HLP-ADE-v1 test set

where the presence of tweets with ADE was 5% and 2% by ran-

domly replacing tweets containing ADEs with tweets not containing

any ADEs from the SMM4H-2020 dataset. We evaluated the perfor-

mance of DeepADEMiner on these datasets and found that, on the

5% dataset, DeepADEMiner achieves a Precision¼0.303, Recall-

¼0.285, and F1-score¼0.305. On the 2% dataset, the performance

of DeepADEMiner further reduces to Precision¼0.212, Recall-

¼0.251, and F1-score¼0.230. This shows that when the proportion

of tweets containing ADEs to tweets without ADEs is further re-

duced from 7% to 2%, we can expect the performance of DeepA-

DEMiner to drop by approximately 11 percentage points, which

may impact the quality of extracted ADEs for manual analysis and

systematic studies. Despite the performance of the end-to-end pipe-

line, we believe that the presented tool holds tremendous utility for

social media pharmacovigilance.

DISCUSSION

In this article, we evaluate extraction and normalization of ADEs on

realistic, imbalanced data. Our deep learning architecture achieves a

span extraction performance of F1¼ 0.44 and an end-to-end perfor-

mance (ie, classification, extraction, and normalization) of 0.34. In-

clusion of a higher proportion of tweets that do not contain ADEs

during training improves the F1score of ADE span extraction when

Table 2. ADE span extraction performance using overlapping preci-

sion, recall, and F1-scores when trained on the full dataset in the

absence of a classifier

Method Precision Recall F1-score

Glove 0.432 0.171 0.245

Twitter Health 0.571 0.182 0.276

FastText 0.741 0.192 0.304

BERT 0.785 0.200 0.319

Figure 3. The chart shows how the variation in proportion of tweets in noADE and hasADE classes affects the performance of the ADE classifier.
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the ratio of negative to positive tweets in the training set is in be-

tween 1 and 2, but performance decreases after the negative tweets

outnumber positive tweets by 4–5 times. In previous work, classi-

fiers that categorized tweets that contained ADEs and those that did

not were employed to tackle the data imbalance. Despite advances

in the NER models, we find that adding an ADE classifier as a first

step in the pipeline is beneficial.

These findings inform the optimal setup for an end-to-end ADE

resolution pipeline. The first step is an ADE classifier that is trained

by undersampling the ADE negative class such that the ratio of ADE

negative to ADE positive tweets is in between 1:5, reduced from the

original ratio of 1:13. Despite the undersampling methods used in

training, we find that we can further improve the sensitivity of the

classifier by lowering the probability threshold for the hasADE class

from 0.5 to 0.15 where a probability of 1.0 indicates hasADE and

0.0 indicates noADE. The classifier is followed by an ADE extrac-

tion model that outputs the span of ADE mentions from tweets that

are labeled as ADE positive by the classifier. The ADE extractor is

trained using undersampling techniques similar to the classifier with

a ratio of negative to positive tweets between 1 and 2. The ADE

mention spans are used by the normalizer for classifying the ADEs

extracted into the appropriate MedDRA PT id. The normalizer is

trained using MedDRA’s lower-level terms expanded using UMLS

CUIs. We observe that all 3 components achieve the best perfor-

mance when used with BERT encoded sentences and phrases. We

maintain that the undersampling optimization strategies chosen

Figure 5. The chart shows how the variation in proportion of tweets in noADE and hasADE classes affects the performance of the ADE span extraction system

suggesting that inclusion of tweets that do not contain ADEs improves the overall F1-measure of the NER when this ratio is in the range of 1–5 and decreases sub-

stantially with further inclusion of noADE tweets.

Figure 4. The chart shows how the varying threshold of the classifier affects the classification performance on the development set. For this experiment we used

the undersampled classifier where the ratio of noADE to hasADE is 5.
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should be restricted to only the training set, and all models should

be evaluated on the unmodified test set where the ratio of tweets

containing ADEs to tweets not containing ADEs remains

unchanged.

For ADE span extraction, we tested all the word representations

and found the performance of the Glove twitter embeddings to be 4

percentage points lower than average, compared to FastText and

BERT embeddings. We found that FastText embeddings performed

at par with BERT embeddings despite having fewer parameters in

the model. For the experiments proposed previously, we report

scores from the BERT embeddings, as the performance of the NER

was found to be the best under that configuration. For deploying

ADE span extraction into any social media pharmacovigilance sys-

tem, it is important to consider the data imbalance in the posts re-

trieved. From our findings, since the optimal training ratio of

noADE to hasADE for the NER is in between 1 and 2, using a classi-

fier with a precision in between 0.33 and 0.50 for the hasADE class

would be considered ideal.

Future work
We present in this article a pipeline approach to solving the difficult

task of ADE resolution on Twitter. One of the limitations in this ap-

proach is that we assume that adverse effects that are collocated in

the tweet with drug mentions are adverse drug events. However, this

may not be true in cases where more than 1 drug or adverse effect is

mentioned in the tweet, and many pairs may not have the adverse re-

lation between them. To tackle this, we intend to expand the dataset

to include relation extraction annotations between drug and adverse

effects.

Although the performance of the ADE resolution pipeline

appears low compared to similar pipeline approaches in other

domains, such as clinical data or drug labels, we find that this is

largely due to fewer overlaps in ADE mentions in the training and

test set in Twitter data.29 While Twitter data are considerably more

difficult to mine for ADE due to inherent noise and vagueness in the

tweets, we find that additional annotations and multicorpus training

may help improve the NER and normalization system’s performance

to further improve the end-to-end resolution pipeline performance.

From our analysis of the annotated data, we may observe variation

in the performance of ADE resolution pipelines because the propor-

tion of tweets that are positive and negative to ADE mentions vary

by medications and over time, as more users and organizations

adopt the social media platforms for networking and outreach.

Using the presented ADE resolution pipeline, DeepADEMiner,

we intend to pursue specific case studies to fully assess the value of

Twitter data, in particular, and social media data, in general, for

pharmacovigilance.

CONCLUSION

Approaches to mining ADEs from Twitter and social media in general that do

not take into account the ‘natural balance’ of the datasets that serve as input

can easily over-estimate the expected performance. We find that managing

and dealing with data imbalance is key to obtaining optimal performance

across the components in a pipeline architecture. Mining ADEs from Twitter

posts using a pipeline architecture requires the different components to be

trained and tuned based on input data imbalance in order to ensure optimal

performance on the end-to-end ADE resolution task.
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