
RESEARCH ARTICLE

Vaccination with a Leishmania infantum

HSP70-II null mutant confers long-term

protective immunity against Leishmania

major infection in two mice models
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Abstract

Background

The immunization with genetically attenuated Leishmania cell lines has been associated to

the induction of memory and effector T cell responses against Leishmania able to control

subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has

been described, possessing a non-virulent phenotype.

Methodology/Principal findings

The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intrave-

nously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infec-

tion was generated and parasites diminished progressively to become undetectable in most

of the analyzed organs. However, inoculation resulted in the long-term induction of parasite

specific IFN-γ responses able to control the disease caused by a challenge of L. major infec-

tive promastigotes. BALB/c susceptible mice showed very low lesion development and a

drastic decrease in parasite burdens in the lymph nodes draining the site of infection and

internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to

the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection.

Conclusion/Significance

Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for

inducing moderate pro-inflammatory responses. These responses are able to confer long-

term protection in mice against the infection of L. major virulent parasites.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005644 May 30, 2017 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Solana JC, Ramı́rez L, Corvo L, de Oliveira

CI, Barral-Netto M, Requena JM, et al. (2017)

Vaccination with a Leishmania infantum HSP70-II

null mutant confers long-term protective immunity

against Leishmania major infection in two mice

models. PLoS Negl Trop Dis 11(5): e0005644.

https://doi.org/10.1371/journal.pntd.0005644

Editor: Christine A. Petersen, University of Iowa,

UNITED STATES

Received: November 30, 2016

Accepted: May 16, 2017

Published: May 30, 2017

Copyright: © 2017 Solana et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The study was supported in Spain by

grants from Ministerio de Ciencia e Innovación

FISPI14/00366 (FEDER FUNDING) from the Heath

Institute Carlos III (ISCIII). JCS was supported by

the European Community Seventh Framework

Programme under grant agreement No. 603181

(Project MuLeVaClin), and LC was supported by a

https://doi.org/10.1371/journal.pntd.0005644
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005644&domain=pdf&date_stamp=2017-06-09
https://doi.org/10.1371/journal.pntd.0005644
http://creativecommons.org/licenses/by/4.0/


Author summary

Despite numerous efforts made, a vaccine against leishmaniasis for humans is not avail-

able. Attempts based on parasite fractions or selected antigens failed to confer long lasting

protection. On the other side, leishmanization, which consists in the inoculation of live

virulent parasites in hidden parts of the body, is effective against cutaneous leishmaniasis in

humans but objectionable in terms of biosafety. Some efforts have been made to design live

vaccines to make leishmanization safer. A promising strategy is the development of geneti-

cally attenuated parasites, able to confer immunity without undesirable side effects. Here,

we have employed an attenuated L. infantum line (LiΔHSP70-II) as a vaccine against heter-

ologous challenge with L. major in two experimental models. Infection with LiΔHSP70-II
parasites does not cause pathology and induces long-term protection based on the induction

of IFN-γ producing T cells that are recruited rapidly and specifically to the site of challenge

with the virulent parasites. These results support the idea of using attenuated parasites for

vaccination.

Introduction

Leishmaniases are a group of vector-borne diseases caused by the transmission of the proto-

zoan parasite Leishmania in different mammalian hosts, during the blood meal of the inverte-

brate vectors (phlebotomine sandflies). Depending on the species of the parasite and the

immune response of the host, the disease outcome varies from asymptomatic infections to

clinical forms of the disease. The cutaneous forms of the disease (cutaneous leishmaniasis; CL)

are characterized by the generation of disfiguring skin ulcers. In the Old World, is caused,

among others, by the infection of Leishmania major species and together with the other forms

of leishmaniasis is included in the list of neglected tropical diseases, affecting various develop-

ing countries [1]. Many efforts have been made in terms of prevention of leishmaniasis in the

last decades, since it is believed that a vaccine against leishmaniasis is feasible given that

patients recovered from the disease become resistant to new infections.

Mice infected with L. major have been widely used as experimental models for screening of

vaccines. When BALB/c mice are experimentally challenged with L. major they suffer a pro-

gressive form of the disease, developing cutaneous lesions correlated to parasite multiplication

at the site of infection as well as parasite dispersion to internal organs [2, 3]. Parasite specific

IL-4 driven production of antibodies as well as the development of Leishmania related IL-10

deactivating responses are correlated with susceptibility [4]. On the other hand, C57BL/6 mice

experimentally infected with L. major promote T-cell dependent IFN-γ production that results

in the activation of infected macrophages to produce nitric oxide and to destroy the intracellu-

lar parasites [4]. Control of parasite mediated inflammation by regulatory T cells results in par-

asite persistent infection and resistance to reinfection [5]. Despite the fact that memory T cells

can persist after parasite control [6], healed C57BL/6 mice lose their immunity to reinfection

if they are manipulated to clear completely the parasites [7]. This has been taken as an evi-

dence that persistence of live parasites is inevitably necessary for the maintenance of long-

term protection [8]. In this context, the use of live attenuated parasites as vaccine candidates

is a promising field of research. Live vaccines can induce adaptive immune responses rele-

vant to protection by mimicking natural infection, without the adverse effects of leishmani-

zation with virulent parasites.
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Heat Shock Protein 70 (HSP70) plays a central role in both prokaryotic and eukaryotic cells

because of its involvement in different aspects of protein metabolism (folding, assembly, acti-

vation, subcellular location, and so on) influencing many aspects of the cell biology, like cell

growth and differentiation [9]. In Leishmania, the HSP70 also plays important roles in particu-

lar aspects affecting host-parasite interaction like virulence, drug resistance as well as in the

induction of host immune responses (reviewed in [10]). There are two types of genes encoding

HSP70 in Leishmania infantum (= L. chagasi), the causative agent of canine and human VL in

the Mediterranean countries and in South America. Differences in their 3’ untranslated region

(UTR) sequences have a great importance in the regulation of Lihsp70 gene expression [11].

Since mRNAs having the 3’UTR-II are preferentially translated at 37˚C [12], the expression of

Lihsp70-II gene has been related to the response against the thermal stress caused by the parasite

entry in the vertebrate host. Genetic elimination of the Lihsp70-II alleles resulted in a knock-out

parasite line (LiΔHSP70-II) presenting a pleiotropic effect, influencing cell morphology, replica-

tion and, of special interest, virulence [13]. Hence, promastigotes (the form found in the insect

vector) of the mutant line present some growth deficiencies in culture, and amastigotes show a

limited capacity of multiplication inside macrophages, although Lihsp70-II gene deletion did

not alter parasites uptake by these host cells. The inoculation of the mutant line did not produce

any pathology in either hamster (highly susceptible for L. infantum infection) or in immune-

deficient SCID mice, even though specific cellular responses were observed [13, 14]. In addition,

the mutant LiΔHSP70-II was able to induce a short-term protection against L. major infection

in BALB/c mice [14].

In this work, we have extended the study of these protective capacities analyzing short- and

long-time protection after intravenous (i.v.) or subcutaneous (s.c.) infection with the LiΔH-
SP70-II line in the BALB/c-L. major model of progressive leishmaniasis. The immune corre-

lates of protection have been also analyzed. The studies regarding the prophylactic properties

of the LiΔHSP70-II line administration have been extended to the L. major infection resistant

C57BL/6 mouse model. The vaccine-mediated robust protection shown in this line has been

associated to the rapid recruitment of pre-existing CD4+ and CD8+ IFN-γ producing T cells to

the site of L. major challenge.

Results

BALB/c mice infected with the LiΔHSP70-II line showed a persistent

infection correlated to the induction of parasite specific IFN-γ
predominant responses

In a previous work, it was described that i.v. infection with the LiΔHSP70-II attenuated para-

sites (vaccination) resulted in short-term protection against L. major infection when chal-

lenged four weeks after vaccination [14]. This protection was correlated to the presence of the

attenuated parasites in the liver and spleen of the protected animals [14]. Here, we firstly ana-

lyzed the evolution of the attenuated parasites in the internal organs of the i.v. vaccinated mice

for a longer period of time. Parasites detected at week 4 after vaccination (S1 Fig panel A) [14]

were undetectable in the spleen or liver at week 12 after vaccination (Fig 1A). However, in the

bone marrow (BM), although at week 12 post vaccination parasite burden significantly decreased

compared to the 4th week (P< 0.05; unpaired T-test), we still detected parasites in 4 out of 8

mice (Fig 1A). Vaccination induced a Leishmania-specific cellular response that was revealed

after stimulation with soluble leishmanial antigen (SLA) of spleen cells. We detected SLA-specific

secretion of IFN-γ and IL-10 to a lesser extent, both at the 4th (S1 Fig panel B) or at the 12th (Fig

1B) week post-vaccination. Alternatively, we administered s.c. the LiΔHSP70-II based vaccine to

analyze its immunogenicity in a different vaccination setting. No parasites were observed in
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Fig 1. Evolution of parasite burdens and immune response induced after LiΔHSP70-II infection in BALB/c

mice. Mice (n = 8 per group) were inoculated with PBS (Saline) or with 1 × 107 LiΔHSP70-II promastigotes in the

vein tail (i.v.) (A, B) or in the right footpad (s.c.) (C, D, E). In A and C, scatter plots of LiΔHSP70-II parasite burdens

are shown including the mean ± standard deviation (SD). Parasite loads were analyzed by limiting dilution at week

12 (12 wk) for i.v. inoculated animals (A) and at week 4 (4 wk) and 12 wk for s.c. inoculated ones (C) in the spleen

(parasites per total organ), liver (parasites per g) or bone marrow (parasite per 1 × 107 cells) (A). In (C) parasite

burdens in the right popliteal lymph node (RP, parasites per total lymph node) and in the right footpad (RFP,

parasites per total footpad) are shown. * (P < 0.05) indicates the statistical differences in 4 wk and 12 wk parasite

burdens determined by a Mann-Whitney test. Spleen cell cultures for i.v. (B) or s.c. (D), or right popliteal lymph

node cell cultures for s.c. (E) vaccinated animals were established at the indicated times after the inoculation of the

LiΔHSP70-II line. The presence of cytokines in supernatants was measured after growing cells in the absence

(Med) or in the presence of L. infantum SLA. In B and D, data show the mean ±SD of at least 8 mice per group. In

E, data show the mean ± standard error of mean (SEM) of two independent assays performed with pooled cells

from 8 mice. * P < 0 .05 shows statistical differences between SLA-stimulated and non-stimulated cells (unpaired

Student t-test). The IgG1 and IgG2a reciprocal end-point titers against L. infantum SLA were analyzed by ELISA at

the indicated times for i.v and s.c. inoculated mice, and represented as whisker (min to max) plots (F). * (P < 0.05)

indicates the statistical differences between IgG1 and IgG2a anti-SLA titers (Kruskal-Wallis test and Dunn’s

Multiple Comparison post-test). No parasite loads or SLA-specific antibodies or cytokines were detected in mice

receiving saline. Results are representative of at least two independent experiments.

https://doi.org/10.1371/journal.pntd.0005644.g001
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liver, spleen and BM of these animals at any time. Parasites were detected in the right popliteal

which corresponds to the draining lymph node (DLN) close to the inoculation site (Fig 1C).

Although parasite numbers decreased over time (P = 0.003) (Fig 1C), all animals presented live

parasites in the DLN at week 12. The analysis of the parasite burden in the site of vaccination

(right footpad) revealed the presence of live parasites in all the animals at week 4 after vaccina-

tion, that decreased significantly at week 12 (P = 0.0013). At this time, parasites were only

detected in two out of eight vaccinated animals (Fig 1C). Interestingly, although only a local

infection occurred, the immune response detected in the spleen was similar in profile and mag-

nitude to that found in the i.v. vaccinated animals, with a predominant SLA-specific production

of IFN-γ, which was more prominent at 12 weeks after vaccination (Fig 1D). The analysis of the

parasite-specific production of cytokines by cells derived from the DLN (right popliteal) showed

also an IFN-γ predominant response, higher in magnitude at the short-term (Fig 1E), coinciding

with the presence of high numbers of the attenuated parasites (Fig 1C). In addition, at week 4

after vaccination, IL-10 and IL-4 were detected in SLA-stimulated cultures (Fig 1E). Regarding

the humoral response elicited by vaccination, i.v. inoculated mice showed a mixed IgG response

at week 4 (S1 Fig panel C and [14]) and at week 12 after vaccination (Fig 1F), with titers that

decreased over time and were predominantly of the IgG1 isotype rather than IgG2a. Very low

levels of anti-SLA IgG1 and IgG2a levels were detected in the sera of s.c. vaccinated animals,

especially at long-term (Fig 1F).

Further, we explored the percentages of T cell populations in the spleen from control and

vaccinated animals by flow cytometry. Two subsets of helper T cells (CD3+CD4+) were charac-

terized according to the presence of CD44 and CD62L molecules. All vaccinated groups show-

ed an increase in the percentage of antigen-experienced CD4+ cells (CD44high) compared with

the control (Saline) (Fig 2A). Comparison between inoculation routes indicates that similar

levels of CD4+ central memory T cells (Tcm; CD44highCD62Lhigh) were found in both groups.

On the other hand, i.v. immunization elicited further expansion of CD4+ effector memory

(Tem) or effector (Teff) T cells (CD44highCD62Llow) compared with s.c. route (Fig 2A; S2 Fig

panel A). Also, we determined that i.v. and s.c. vaccinated mice exhibited a higher frequency

of both CD4+ and CD8+ IFN-γ producing splenic T cells compared to the unvaccinated group

after in vitro stimulation with anti-CD3/anti-CD28 antibodies (Fig 2B; S2 Fig panel C). This

increment was also observed in the DLN (right popliteal) of the s.c. group (Fig 2C; S2 Fig

panel D).

Altogether, these data allowed concluding that inoculation of the LiΔHSP70-II attenuated

line, independently of the inoculation route, caused a persistent regressive infection that

resulted in the induction of Tcm and Tem/Teff cell responses. Vaccinated animals showed a

parasite dependent production of IFN-γ in which CD4+ and CD8+ T cells seem to be involved.

The LiΔHSP70-II based vaccine is able to induce short- and long-term

protection against a L. major infective challenge in BALB/c mice

To analyze the effect of the live vaccine on the development of a progressive leishmaniasis,

BALB/c mice vaccinated with the LiΔHSP70-II line administered i.v. were challenged with L.

major parasites (5 × 104 stationary phase promastigotes) s.c. in the left footpad. As a control,

mice inoculated with PBS at the time of the vaccination were also infected with L. major. Infec-

tive challenge was performed short- (4 weeks) or long-term (12 weeks) after vaccination. Fig

3A shows that i.v. vaccination also induced long-term protection, since very low footpad swell-

ing was observed in the vaccinated groups, as it was reported for the short-term [14] and con-

firmed in this work (S1 Fig panel D). The lack of lesions correlated to a decrease in L. major
parasite burdens relative to saline controls in all analyzed organs (Fig 3B). Regarding the
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presence of the parasite in visceral organs, a significant decrease was observed in both vacci-

nated groups with respect unvaccinated controls (P< 0.05). In the 4 weeks group, 50% (4/8)

and 37.5% (3/8) of the mice had undetectable parasites in the spleen or liver, respectively (S1

Fig panel E). In the 12 weeks group the percentage of negative mice reached values of 87.5%

(7/8) in both organs (Fig 3B). Data comparison among control and vaccinated mice groups

revealed a higher decrease in parasite loads at the DLN for long-term infected mice (12 weeks;

2.4-log reduction; P< 0.001) (Fig 3B) than in the short-term group (4 weeks 1.2-log reduction;

P< 0.01) (S1 Fig panel E). A decrease in the evolution of footpad swelling was also observed in

mice s.c. vaccinated compared to control mice (saline group) (Fig 3C). Although no significant

differences were found in the cutaneous lesions developed between mice of the 4 weeks and 12

weeks groups, short-term infected mice showed a progressive evolution of the footpad swelling

Fig 2. Analysis of splenic T cell populations in vaccinated mice. Mice (n = 4 per group) were inoculated with PBS

(Saline; s.c.) or with 1 × 107 LiΔHSP70-II promastigotes in the vein tail (i.v.) or in the right footpad (s.c.). After 4 weeks

(vaccinated) and 12 weeks (saline and vaccinated), T cells from the spleen were studied in pool by flow cytometry.

Animals were age matched at the moment of the analysis. In (A) analyzed CD4+ T cells were: antigen-experienced

cells CD44high, central memory T cells (Tcm) CD44highCD62Lhigh and effector T cells or effector memory T cells (Teff/

Tem) CD44highCD62Llow. Spleen cells (B) or right popliteal lymph node cells (C) of the indicated groups were ex vivo

stimulated by anti-CD3/anti-CD28 and treated with brefeldin A to block cytokine secretion. Cells were characterized

by using anti-CD4 and anti-CD8 antibodies as well as by intracellular staining for IFN-γ. The ratio between the

percentages of CD4+ or CD8+ producing IFN-γ cells in vaccinated animals versus saline ones, derived from two

independent experiments is shown (mean ± standard error of mean).

https://doi.org/10.1371/journal.pntd.0005644.g002
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evident from week 7 to week 8. At that time, mice from all groups were euthanized because

of the appearance of necrotic lesions in some mice of the control group. The clinical lesions

evolution can be taken as an indication of a partial short-term protection driven by the s.c.

inoculation of the LiΔHSP70-II line that was improved long-term. Determination of L. major
parasite burdens in the spleen and liver (Fig 3D) also demonstrated a significant decrease com-

pared to control animals in both s.c. vaccinated groups (P< 0.05 and P< 0.001, for 4 weeks

and 12 weeks, respectively). In this case, most of the mice of the 4 weeks group were positive

for L. major parasites in the spleen (75%, 6/8) or liver (87.5%, 7/8), supporting the partial pro-

tection concluded from the clinical data. On the other hand, only two mice from the long-

term protected groups were positive for live parasites in both internal organs (Fig 3D). Regard-

ing parasite loads in the left popliteal DLNs, a significant decrease (P< 0.05 and P< 0.01, for

4 weeks and 12 weeks respectively) was obtained when vaccinated mice were compared to con-

trol mice. Similar decreased values with respect saline controls were found in the parasite

numbers for both vaccinated groups in the liver and in the spleen (1-Log and 1.3-Log for 4

weeks and 12 weeks groups, respectively) (Fig 3D).

Fig 3. Mice vaccinated with the attenuated LiΔHSP70-II line showed protection against an infective

challenge with L. major. BALB/c mice (n = 8 per group) inoculated with PBS (Saline) or with 1 × 107 LiΔHSP70-II

promastigotes in the vein tail (i.v.) (A, B) or in the right footpad (s.c.) (C, D) were challenged with 5 × 104 stationary-

phase L. major promastigotes in the left footpad at week 4 (s.c.) or at week 12 after vaccination (i.v. and s.c.).

Footpad swelling was monitored weekly. Mean ± standard deviation (SD) is shown (A, C). L. major parasite burdens

were determined by limiting dilution in the spleen, liver and in the draining lymph node (left popliteal). Scatter plots

with the individual number of parasite per total organ (spleen or lymph nodes) or per g of liver are shown including

the mean ±SD (B, D). * (P < 0 .05) shows the statistical differences determined by the one-way ANOVA test

followed by the Tukey post-test. Results are representative of two independent experiments.

https://doi.org/10.1371/journal.pntd.0005644.g003
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On the other hand, we evaluated the presence of the LiΔHSP70-II attenuated parasites in

different organs and tissues of the vaccinated mice after L. major challenge (S3 Fig panel A).

These analyses indicated that challenge with infective parasites did not reactivate the infection

of the attenuated line. For i.v. vaccinated mice (S3 Fig panel B) no LiΔHSP70-II parasites were

found in the internal organs, except parasites detected in the BM at short-term that were

equivalent to those determined in the 12 wk vaccinated group (Fig 1A). Interestingly, BM

became negative for LiΔHSP70-II parasites at week 20 (S3 Fig panel B). In addition, no attenu-

ated parasites were found in the left popliteal LNs, in spite of the presence of L. major. Regard-

ing the s.c. vaccinated mice, we only observed the persistent presence of the LiΔHSP70-II
parasites in the LN draining the site of vaccination at week 20 (S3 Fig panel C).

Once we determined that vaccination with LiΔHSP70-II parasites induced protection for

both, clinical manifestations and parasitemia, we analyzed the immune correlates of protec-

tion. For that, we next determined humoral and cellular responses specific for the parasite

using SLA in ELISA assays and for cell stimulation in all vaccinated groups and their corre-

sponding saline controls, 8 weeks after L. major challenge. Protection correlated with an IgG

subclass redirection to Th1-related IgG2a subclass of SLA-specific antibodies in the vaccinated

mice that were mainly of the IgG1 subclass in saline controls (Fig 4A and 4B, for i.v. and s.c.,

respectively). The magnitude of the IgG2a response was higher in long-term protected mice

than in short-term groups (P< 0.0018 and P< 0.023 for i.v. and s.c., respectively). Cellular

responses against SLA in the L. major infected mice were determined by stimulating spleen

cells from mice receiving saline or the attenuated line (4 weeks and 12 weeks groups) i.v. (Fig

4C–4E) or s.c. (Fig 4F–4H). In agreement with the Th1-like profile of the humoral response, a

SLA-dependent IFN-γ predominant response was found in all protected groups reaching

higher P values with respect to saline control in short-term protected mice (P = 0.0003 and

P = 0.001 for i.v and s.c. groups, respectively) than long-term groups (P = 0.026 and P = 0.021

for i.v and s.c. groups, respectively). Interestingly, long-term protected mice showed a con-

comitant significant decrease in the IL-10 levels secreted after stimulation with parasite pro-

teins when compared to saline controls (P = 0.0006 and P = 0.0063 for i.v and s.c. groups,

respectively) (Fig 4D and 4G). This decrease was absent in short-term protected mice. On the

contrary, short-term protected group secreted higher amounts of IL-10 than control mice

although only significant differences were observed in the i.v. vaccinated group (P = 0.0361)

(Fig 4D). When IL-4 production was analyzed (Fig 4E and 4H), a decrease in the levels of SLA-

specific IL-4 in the culture supernatant was only found when saline controls were compared to

long-term i.v. vaccinated mice (P = 0.003) (Fig 4E). The cytokine production specific for SLA

was higher in short- than in long-term protected mice: P = 0.0003, P = 0.0002 and P = 0.0062

for IFN-γ, IL-10 and IL-4, respectively in the i.v. group (Fig 4C, 4D and 4E) and P = 0.022 and

P = 0.0072 for IFN-γ and IL-10, respectively in the s.c. group (Fig 4F and 4G).

C57BL/6 mice s.c. vaccinated with LiΔHSP70-II attenuated parasites

showed no clinical manifestations when challenged with L. major

Since s.c. inoculation of the attenuated parasites was able to long-term protect BALB/c mice

against a L. major infective challenge, we decided to analyze the prophylactic properties of the

s.c. administered vaccine in C57BL/6 mice. Inoculation of 1 × 107 LiΔHSP70-II promastigotes

in the right footpad of mice produced a chronic infection in the DLN (right popliteal) as

revealed by the analysis of parasite burdens at week 4 and week 12 post-vaccination, whereas

parasites were found in the site of vaccination (right footpad) at week 4 after vaccination but

disappeared at week 12 (in 87.5% of the mice; 7/8 mice) (Fig 5A). Attenuated parasites were

absent of the internal organs (Fig 5A). The presence of a persistent number of LiΔHSP70-II
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parasites in the popliteal lymph node draining the site of the attenuated line inoculation was

maintained after L. major challenge up to 25 weeks (S4 Fig). Short-term and long-term

Fig 4. Humoral and cellular parasite induced responses after L. major challenge. BALB/c mice (n = 8 per group) inoculated with PBS

(Saline) or with 1 × 107 LiΔHSP70-II promastigotes in the vein tail (i.v.) (A, C, D, E) or in the right footpad (s.c.) (B, F, G, H) were infected with

5 × 104 stationary-phase L. major promastigotes in the left footpad at week 4 or at week 12 after vaccination. Animals were euthanized 8

weeks after L. major challenge. IgG1 and IgG2a reciprocal end-point titers against L. major SLA were determined by ELISA (A, B). Results

are shown as whisker (min to max) plots of at least 8 mice per group. * (P < 0.05) indicates the statistical differences between IgG1 and

IgG2a anti-SLA titers within each group or differences in IgG2a between short- and long-term protected mice (Mann-Whitney test). For

cytokine determinations spleen cells were cultured in the absence (Med) or in the presence of L. major SLA. Levels of IFN-γ (C, F), IL-10 (D,

G) and IL-4 (E, H) were assessed by ELISA in culture supernatants and shown as whisker (min to max) plots of at least 8 mice per group.

* (P < 0.01) shows the statistical differences of saline and short-term or long-term vaccinated mice groups, or the statistical differences

between short-term and long-term vaccinated mice groups (Mann-Whitney test). Results are representative of two independent experiments.

https://doi.org/10.1371/journal.pntd.0005644.g004
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vaccinated mice showed an IgG2c predominant antibody response against the parasite (Fig

5B) and their spleen cells secreted IFN-γ after in vitro stimulation with L. infantum SLA (Fig

5C). Contrary to the long-term vaccinated group, short-term vaccinated mice secreted detect-

able levels of IL-10 in response to SLA (Fig 5C). A SLA-dependent production of IFN-γ was

detected in the popliteal LN culture supernatants from both vaccinated groups, higher in mag-

nitude at week 4 after infection along with IL-10 production (Fig 5D).

Most importantly, neither short-term nor long-term vaccinated mice showed any inflam-

matory lesion when challenged with 1 × 103 L. major metacyclic promastigotes in the ear der-

mis (Fig 6A). At week five after challenge, L. major burdens were similar in short- and long-

Fig 5. C57BL/6 mice chronically infected with the LiΔHSP70-II showed a Th1 like response against Leishmania.

C57BL/6 mice (n = 8) were infected with 1 × 107 LiΔHSP70-II promastigotes in the right footpad (s.c.). LiΔHSP70-II parasite

burdens were analyzed at week 4 or at week 12 after vaccination by limiting dilution in the spleen (Sp, parasites per total

organ), liver (Liv; parasites per g), bone marrow (BM; parasites per 1 × 107 cells), in the right popliteal lymph node (RP;

parasites per total lymph node) or right footpad (RFP; parasites per total footpad) (A). Scatter plots are shown including the

mean ± standard deviation (SD). No statistical differences were found in the parasite burdens in the RP from week 4 to week

12 whereas a significant decrease was shown in the RFP (unpaired Student t-test). At week 4 or at week 12 after vaccination,

animals were euthanized and spleen cell cultures and sera were prepared. The IgG1 and IgG2c reciprocal end-point titer

against L. infantum SLA was determined by ELISA and represented as whisker (min to max) plots (B). * (P < 0.05) indicates

the statistical differences between IgG1 and IgG2c anti-SLA titers within each group (Mann-Whitney test). For cytokine

determinations spleen cells (C) or RP cells (D) were cultured in the absence (Med) or in the presence L. infantum SLA. Levels

of IFN-γ, IL-10 and IL-4 were assessed by ELISA in culture supernatants. Mean ± standard deviations (SD) are shown in C

and mean ± standard error of mean (SEM) are shown in D. * (P < 0.01) shows the statistical differences between SLA-

stimulated and non-stimulated cells (unpaired Student t-test). No parasite loads or SLA-dependent cytokines were detected

in saline immunized mice. Results are representative of two independent experiments.

https://doi.org/10.1371/journal.pntd.0005644.g005
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term vaccinated mice, showing a 1.5-Log (Fig 6B) and 2-Log (Fig 6C) reduction in the ears

and DLNs, respectively, when compared to the saline controls. No L. major parasites were

found in visceral organs (liver or spleen). Retromandibular LNs cells from mice of the saline

group were able to secrete higher amounts of cytokines than vaccinated mice when analyzed at

week 5 after L. major challenge (Fig 6D). A significant increment in IFN-γ (P = 0.023 relative

to week 4 and P = 0.041 relative to week 12) and IL-10 (P = 0.022 relative to week 4 and

Fig 6. Evolution of L. major infection in C57BL/6 vaccinated mice. Animals (n = 8 per group) inoculated with PBS (Saline) or with

1 × 107 LiΔHSP70-II promastigotes in the right footpad (s.c.) were challenged with 1 × 103 metacyclic L. major promastigotes in the

dermis of both ears at week 4 or at week 12 after vaccination. (A) Ear lesion diameter was monitored weekly (16 ears from week 1 to 5

and 8 ears from week 6 to 13). Mean ± standard deviation (SD) is shown. L. major parasite burdens were determined at week 5 after L.

major challenge by limiting dilution in the ears (n = 8 per group) (B) or in the retromandibular draining lymph node (n = 8 per group) (C).

Scatter plots with the individual number of parasite per total organ are shown including the mean ± standard deviation (SD), * (P < 0.05)

shows the statistical differences determined by the one-way ANOVA test followed by the Tukey post-test. For cytokine determinations

the DLNs (D) or the spleen (E) from mice sacrificed at week 5 after L. major challenge (n = 4 mice) cells were cultured in the absence

(Med) or in the presence L. major SLA. Levels of IFN-γ and IL-10 were assessed by ELISA in culture supernatants. The means ± SD are

shown. * (P < 0.01) shows the statistical differences among saline and short-term or long-term vaccinated mice groups (unpaired

Student t-test). The IgG1 and IgG2c reciprocal end-point titer against L. major SLA was determined by ELISA at week 5 after L. major

challenge (n = 8 mice per group) and represented as whisker (min to max) plots (F). * (P < 0.05) indicates the statistical differences

between IgG1 and IgG2c anti-SLA titers within each group (Mann-Whitney test). Results are representative of at least two independent

experiments.

https://doi.org/10.1371/journal.pntd.0005644.g006
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P = 0.012 relative to week 12) was observed in LN culture supernatants from cells obtained

from saline controls when compared with both vaccinated samples after in vitro stimulation

with SLA. As it was expected because of the presence of inflammatory lesions, control mice

DLN cells secreted IFN-γ in the absence of SLA stimulation whereas this cytokine was absent

in unstimulated cultures stablished from vaccinated mice (Fig 6D). On the other hand, similar

amounts of IFN-γ were observed among the three groups when the stimulation assay was per-

formed in spleen cell cultures (Fig 6E). These data, besides the presence of IgG2c anti-SLA

antibodies in all groups (Fig 6F) allowed the conclusion that all mice groups have a systemic

Th1 response against the parasite. In controls, the lymph node inflammatory response was

related to the presence of high numbers of L. major parasites (i.e. showing inflammatory

lesions). In the vaccinated mice the limited infection in the DLNs was correlated to a lower

IFN-γ local response. Thus, systemic response mounted by the asymptomatic infection of the

attenuated line, resulted in a protective response against L. major challenge in the absence of

pathological lesions.

C57BL/6 vaccinated mice mounted a moderate and rapid IFN-γ
response able to control L. major intradermal infection progression

Next, we tested whether the Th1 response induced by the inoculation of the attenuated line is

able to anticipate the response against L. major parasites in the site of infection, resulting in a

non-pathological protection. For that purpose, C57BL/6 mice were inoculated with the attenu-

ated line 4 weeks or 12 weeks before, and then challenged in the ears with 1 × 103 metacyclic

forms of L. major. A progressive increment in the number of parasites found in the ear an in

the DLNs was observed in the saline groups up to day 28 post-challenge (Fig 7A–7D). On the

contrary, the number of parasites were stabilized in vaccinated mice 28 days after challenge in

the short-term protected mice (Ear Fig 7A; DLNs Fig 7B), and from day 14 in the ear or day 21

in the DLNs in the long-term group (Fig 7C and 7D, respectively). Parasite replication control

was correlated to the early presence of circulating anti-SLA IgG2c antibodies in the sera from

vaccinated mice after L. major challenge (Fig 7E). A higher reactivity that was not statistically

different was observed in mice of the long-term group when compared to the short-term vacci-

nated animals. In addition, short-term and especially long-term vaccinated mice were able to

mount earlier cellular responses against the parasite than control mice, as demonstrated by the

levels of IFN-γ secreted to the culture supernatants in the three groups, after in vitro stimula-

tion with SLA of the cells obtained from L. major infected DLNs (Fig 7F).

Finally, we analyzed IFN-γ synthesis at the site of L. major challenge upon long-term vacci-

nation (Fig 8 and S5 Fig). For that purpose, mice inoculated with the attenuated parasites and

their corresponding saline controls were challenged, 12 weeks after vaccination in the ear der-

mis with L. major (1 × 105). As an additional control, a group of vaccinated mice was i.d.

injected with PBS in the ears at the time of L. major challenge. Three days after inoculation,

the presence of IFN-γ secreting cells in the ears and the DLNs was analyzed by flow cytometry.

Both CD4+ (Fig 8A) and CD8+ (Fig 8B) IFN-γ secreting T cells were detected in mice vacci-

nated with the attenuated line shortly after L. major challenge. Such cells were absent from the

site of infection of unchallenged vaccinated mice, or in non-vaccinated and infected animals.

Discussion

The fact that patients recovered from CL disease are usually resistant to reinfection has been

taken as an indication that a vaccine against this form of the disease is feasible. Historically,

leishmanization (inoculation of live virulent L. major parasites) was employed to induce

immunity against CL, and although it is currently in disuse, the practice is coming back in
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regions of high incidence because of its effectiveness [15–17]. The use of murine models of CL

demonstrated that leishmanization protects C57BL/6 resistant mice from vector transmitted L.

major infection contrary to vaccines based on parasite extracts [18] which failed to protect

Fig 7. Vaccinated mice mounted an early immune response against Leishmania. Animals inoculated with PBS (Saline) or with 1 × 107

LiΔHSP70-II promastigotes in the right footpad (s.c.) were challenged with 1 × 103 metacyclic L. major promastigotes in the dermis of both ears at

week 4 and at week 12 after vaccination. Mice (n = 5) per group were weekly sacrificed to analyze parasite loads in both ears (A and C), or in the

corresponding retromandibular draining lymph nodes (B and D). Scatter plots with the individual number of parasites per total organ are shown

including the mean ± standard deviation (SD). * (P < 0 .05) shows the statistical differences determined by the unpaired Student t-test. The IgG2c

reciprocal end-point titer against L. major SLA was analyzed by ELISA weekly after L. major challenge and represented as whisker (min to max)

plots (E). * (P < 0.05) indicates the statistical differences in IgG2c anti-SLA titers among the three groups (Kruskal-Wallis test and Dunn’s Multiple

Comparison post-test). Level of L. major dependent IFN-γ produced in retromandibular cell cultures (F). Mean ± SD are shown. * (P < 0.01) shows

the statistical differences between saline vaccinated mice groups (unpaired Student t-test).

https://doi.org/10.1371/journal.pntd.0005644.g007

Vaccines based on L. infantum HSP70-II null mutant

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005644 May 30, 2017 13 / 26

https://doi.org/10.1371/journal.pntd.0005644.g007
https://doi.org/10.1371/journal.pntd.0005644


Fig 8. Analysis of the early response after L. major challenge in the site of infection. C57BL/6 mice

were inoculated with PBS (12 week saline group; n = 6) or with 1 × 107 LiΔHSP70-II promastigotes (12 week

vaccinated group; n = 10) in the right footpad (s.c.). After 12 week, vaccinated animals were inoculated with

PBS (PBS challenge; n = 5) or infected with 1 × 105 L. major metacyclic promastigotes (L major challenge;

n = 5) in the dermis of both ears. Mice inoculated in the right footpad (s.c.) with PBS (12 week saline group)

were also challenged with L. major in the ear dermis. Three days after infection T cells from the ears and

retromandibular lymph nodes were analyzed in pool by flow cytometry after anti-CD3/anti-CD28 ex vivo

stimulation. Contour plots of IFN-γ intracellular staining for CD4+ (A) or CD8+ (B) cells (gated on CD3+) are

shown. Numbers represent the percentage of each population.

https://doi.org/10.1371/journal.pntd.0005644.g008
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against natural infection. Also, some limitations were observed in the prophylactic properties

of the most evolved recombinant molecules based vaccines showing different protection

degree in distinct murine models of CL due to sand fly transmitted infection [19, 20]. In addi-

tion, to maintain immunity, protein-based vaccines require boosting doses, since transient

effector T cell responses preclude the induction of long-term immunity [21]. On the contrary,

the balanced effector/memory T response induced by the infection with virulent parasites can

be maintained by parasite persistence, resulting in long-term immunity [16, 17]. A possible

limitation of leishmanization has emerged after analyzing the influence of L. major challenge

on the evolution of leishmaniasis caused by other species of Leishmania in murine models.

Whereas cutaneous infection with L. major provided heterologous protection against VL due

to L. infantum infection in C57BL/6 mice [22] the IL-4 mediated humoral response elicited

against the parasite by leishmanization in BALB/c mice caused an aggravation of VL disease

when ‘leishmanized’ mice were challenged with L. infantum [23].

In recent years, vaccination with genetically attenuated parasites is being contemplated as a

promising alternative to leishmanization, avoiding the problems derived from using non-

attenuated parasites [17, 24]. As reviewed in [25] genetically modified L. major attenuated

lines have shown some limitations when tested as vaccines against CL. Thus, protection against

L. major challenge induced in resistant or susceptible mice by the inoculation of the L. major
conditional auxotroph due to targeted deletion of the dihydrofolate reductase-thymidylate

synthase gene (Lmdhfr-ts-/-) [26] was not reproduced in a primate model [27]. In addition,

vaccines based on the L. major line lacking phophoglycans (LmLpg2-) presented differ-

ences in the induced protective immunity depending on the murine model assayed [28,

29]. Also, infection of a L. major genetically modified arginase deficient line resulted in a

chronic disease in which lesions did not disappear in the resistant mouse strain [30]. The

most efficient genetically modified vaccine for CL was constructed in L. major by the

inclusion of two suicide genes (Lmtkcd+/+) that render the parasite susceptible to ganciclo-

vir and 5-flurocytosine [31]. This vaccine has been tested to be effective in the BALB/c [31]

or in the C57BL/6 models [32], but treatment needs to be administered to recipients after

vaccination complicating the vaccine schedule. As an alternative, in this work we propose

the use of single dose of a live vaccine based on a L. infantum genetically attenuated line

[13] to induce protection against CL.

Regarding the evolution of the attenuated parasite burdens in the vertebrate host, inocula-

tion of LiΔHSP70-II in BALB/c mice using the i.v. route led to a systemic infection with a

pattern of parasite clearance with time post-infection in all internal organs. Importantly, chal-

lenge with infective L. major, did not produce the reactivation of the attenuated line. Similarly,

i.v. inoculation of the latest and more promising attenuated vaccines based on L. donovani
(LdCen-/-) deficient in centrin, a calcium binding cytoskeletal protein [33] or Ldp27-/-; lacking

a protein forming part of the active cytochrome c oxidase complex [34]) produced a transient

systemic infection, resulting in the impossibility to detect vaccine parasites in internal organs

at long-term [34, 35]. The absence of detectable parasites in the spleen is characteristic of the

infection with different attenuated viscerotropic lines and differs from the chronic infection of

the spleen observed after challenge with infective parasites [36, 37], reinforcing the attenuated

nature of the LiΔHSP70-II line. Further, a previous report indicated that the LiΔHSP70-II line

tend to be undetectable when inoculated i.v. in immuno-deficient SCID mice [14]. These data

were taken as a suggestion that parasite clearance did not strictly depends on the induction of

T cell dependent responses. Something similar occurred with the LdCen-/- attenuated line [35],

but not with other versions of genetically modified parasites, as for example the SIR2-deficient

L. infantum (LiSIR+/- single knock-out for the sirTuin encoding gene) [38]. Additionally, it

was reported that LiΔHSP70-II intra-cardiac (i.c.) inoculation of hamsters, a highly susceptible
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VL model by L. infantum challenge [39], generates an asymptomatic infection. The absence of

clinical signs of disease was correlated to the impossibility to detect attenuated parasites in the

internal organs up to 9 months after inoculation [14]. All these data may be taken as an indica-

tion of the high biosafety degree of the LiΔHSP70-II line. Interestingly, s.c. inoculation induced

a localized infection without dissemination to internal organs, resulting in the persistence of

the parasites in the DLN of the infection site in BALB/c and C57BL/6 mice. On the contrary,

footpad parasite burdens decreased after infection and became undetectable at longer times.

The presence of parasites in the DLN accompanied by a parasite clearance with time in the site

of challenge has been also described for infective L. donovani [40] or L. infantum [41], but in

these models spleen macrophages resulted chronically infected. Since mice from the s.c. and i.

v. vaccinated groups showed similar long-term protection against L. major challenge, it can be

hypothesized that in the i.v. vaccinated mice some parasites may persist dispersed in different

internal organs, but remain undetectable perhaps due to their low number. In addition, the

presence of parasites in other cell types maintaining latent infections can be also a source of

parasite persistence [42, 43]. This is an important issue, since maintenance of the parasite in

the vertebrate host would be assuring the maintenance of immunity in the absence of recall

doses against Leishmania [8] or other parasitic infections [44–47]. In this regard, the persis-

tence of parasites may be indispensable to produce a concomitant immunity maintaining

the number of Teff cells [48]. Nevertheless, other cells implicated in protection, namely

Tcm or tissue resident memory T (Trm) cells can persist after parasite clearance [6, 49–51].

In this context, immunization with the LiΔHSP70-II line elicits both Tcm cells and Teff or

Tem responses. One limitation of this work is the lack of studies performed to analyze the

implication of Trm cells in the observed protection, an interesting question that should be

addressed in future research. On the other hand, the implication of Teff cells in the robust

protection associated with vaccination was demonstrated by the data obtained in the C57BL/6

mice model. It has been described that C57BL/6 mice healed from a first infection with L.

major develop concomitant immunity to re-challenge consisting in the rapid migration of

IFN-γ producing Teff cells to the site of reinfection [22, 48, 52, 53]. Here, we observed that 3

days after L. major challenge, a group of IFN-γ producing CD4+ and CD8+ T cells were specif-

ically detected in the ears and lymph node cells of vaccinated mice. These cells may corre-

spond to pre-existing Teff cells, since Tcm cells may need more time to elicit a protective

response [48]. Another limitation of our work is related with the fact that L. major was admin-

istered using a needle. However, the rapid Teff cell response demonstrated in the ear and ret-

romandibular DLNs of C57BL/6 mice after L. major challenge may be considered as a good

predictor for protection against natural challenge as occur in ‘leishmanized’ C57BL/6 mice

[18].

The humoral and cellular response elicited by the BALB/c mice inoculated with the LiΔH-
SP70-II was quantitatively similar to that observed in BALB/c mice when infected i.v. or s.c.

with the L. infantum infective parasites [36, 41] or to that generated after intraperitoneal inoc-

ulation with another L. infantum based attenuated line vaccine (LiSIR2+/-) [38]. A mixed IgG1/

IgG2a humoral response, higher in titer at short-term, was observed concomitant with the sys-

temic secretion of parasite-specific IFN-γ and IL-10 by splenocytes and a local production of

SLA-dependent IFN-γ, IL-10 and IL-4 cytokines in the LN draining the site of s.c. vaccination,

especially at short-term. The higher IFN-γ/IL-10 ratio showed at long-term can be correlated

with clearance of the attenuated parasite, since IL-10 production has been largely related to

parasite persistence of viscerotropic species [54–57]. LiΔHSP70-II s.c. administration to

C57BL/6 mice resulted in the induction of both local and systemic Th1-like response in short-

and long-term vaccinated groups, characterized by the induction of SLA-dependent IFN-γ
and the presence of IgG2c anti-Leishmania antibodies.
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The existence of susceptible and resistant models of L. major infection is an advantage when

testing experimental vaccines. In the case of C57BL/6 mice, infection with a low number of

metacyclic promastigotes in the dermis of the ear generates a clinically silent phase in which

parasite replicates. In a second phase the IFN-γ mediated local inflammatory response reduces

parasitic load leading to skin lesions similar to those of CL human patients [58]. In contrast,

challenge with large numbers of parasites in the footpad of BALB/c mice generates a progressive

infection associated with parasite-specific responses mediated by IL-10 and IL-4 [4, 59, 60].

Many vaccine candidates have been tested in both models with different results. In the resistant

model, the protection has been linked to an anticipation of the inflammatory response, with the

induction of CD4+ and CD8+ T cells producing IFN-γ which results in early control of the para-

site and, therefore, in the appearance of lower grade lesions [61–64]. In the BALB/c model,

numerous evidences suggest that the control of the infection not only depends on the induction

of IFN-γ-mediated responses, but also on the control of IL-10 and IL-4 cytokines that are associ-

ated with pathology [29, 62, 65]. This is the case of the LmLpg2- line that was able to control the

pathology in BALB/c mice alleviating disease associated responses, but did not reach the same

degree of protection in the resistant model when inoculated in the absence of a cellular inducing

adjuvant [28, 29]. As occurred for some subunit [62] or live vaccines [31, 32], LiΔHSP70-II line

inoculation was able to induce a robust protection in both murine models of CL. For the suscep-

tible BALB/c mice, we first used the i.v. route, since it is the classical route of administration for

viscerotropic specie based vaccines. Given that more acceptable routes of vaccination are desir-

able for human use the s.c. administration was also tested. Independently of the administration

route and compared to unvaccinated mice, BALB/c mice inoculated with the LiΔHSP70-II line

showed significant control of the leishmaniasis disease. This is an interesting property of our

vaccine, since the Lm dhfr-ts-/- line conferred protection against L. major infective challenge in

BALB/c mice when it is i.v. but not s.c. administered [26]. It was also reported that protection

conferred against L. mexicana by intraperitoneal inoculation of an attenuated line of the same

species (lacking guanosine diphosphate-mannose pyrophosphorylase; LmΔGDP-MP) was not

attained when it was s.c. administered [66].

Our data demonstrated that i.v. or s.c. BALB/c vaccinated mouse groups showed a Th1-like

response against parasite antigens after L. major challenge. Anti-SLA humoral responses changed

from the IgG1 subclass (found in the non-vaccinated controls) towards a IgG2a response. Higher

IgG2a titers were observed long-term compared to short-term, correlating to a better protection

degree. The parasite dependent IFN-γ response was higher in vaccinated than in control animals.

The production of this cytokine was detected in short-term groups, but accompanied by the secre-

tion of the highest levels of IL-10 among all groups. On the other hand, long-term protected mice

showed a moderate SLA dependent IFN-γ production accompanied by very low parasite depen-

dent IL-10 responses, similar to the protection conferred by the Lmlpg2- parasites that was associ-

ated with control of parasite mediated IL-10 responses in this susceptible model [29].

For C57BL/6 mice, whereas the infection of non-vaccinated mice evolved as described [5,

48, 58], vaccinated mice showed no lesions at all. During the first two weeks after L. major
challenge parasites similarly grew in the ear and the DLN in both vaccinated and non-vacci-

nated mice. Afterwards, control group continued in the silent phase incrementing their para-

site burdens, while immunized mice do not allow parasites to expand further and showed

earlier production of IFN-γ in the DLN. The anticipation of the effector response implies that

the production of low levels of IFN-γ is sufficient to control parasite burdens without produc-

ing tissue damage. Then, LiΔHSP70-II parasites achieve the gold standard of protection against

CL in C57BL/6 mice reaching a degree of protection comparable to that described for the

more protective subunit based vaccines [61–63].
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Although genetically attenuated vaccines may be an alternative to leishmanization to con-

trol human CL, concerns regarding biosafety remain, as it is mandatory that the attenuated

phenotype is maintained even in cases of severe immunosuppression. In this regard, it is very

important to target parasite genes whose function cannot be regained by compensatory muta-

tions that can lead to recover the virulent phenotype to genetically modified parasites [67].

Nevertheless, the results shown in this work together with promising results observed using

attenuated parasites to control malaria [68–71] and other pathologies [72–76] support the idea

that live attenuated vaccines might be the basis for the development of vaccines against human

CL in the next future.

Methods

Mice and parasites

Female BALB/c mice and C57BL/6 (6–8 weeks old) were purchased from Harlan (Barcelona,

Spain). All procedures were performed according to the Directive 2010/63/UE from the Euro-

pean Union and RD53/2103 from the Spanish Government. Procedures were approved by the

Animal Care and Use Committee at the Centro de Biologı́a Molecular Severo Ochoa (CEEA-

CBMSO 21/138), the Bioethical Committee of the CSIC (under reference 100/2014). The final

approval was authorized by the Government of the Autonomous Community of Madrid

under the reference PROEX121/14.

The following parasites cell lines were employed: L. major clone V1 (MHOM/IL/80/Frie-

dlin); L. infantum (MCAN/ES/96/BCN150) and the attenuated line (L. infantum MCAN/ES/

96/BCN150 [Δhsp70-II::NEO/Δhsp70-II::HYG])[12]. The attenuated line was created as

described in [12]. Briefly, both alleles of the single hsp70-II gene located at chromosome 28 of

the L. infantum genome were replaced sequentially with the ORF of the NEO and the HYG

selectable marker genes by homologous recombination using plasmids constructions contain-

ing the marker genes flanked by specific regions located upstream and downstream of the

ORF for hsp70-II gene [12]. The LiΔHSP70-II line showed a mild growth-rate defect in the log-

arithmic growth phase, concomitant with a longer duration of the G2/M phase of the cell

cycle. In addition, promastigotes of the mutant line reached lower cell density than wild type

parasites in culture, suffering a rapid decrease after reaching the stationary growth phase [12,

13]. Lack of functional HSP70-II gene did not affect the rate of macrophage in vitro infection

but the infected macrophages showed reduced number of internal amastigotes when com-

pared to the wild type line [13]. Parasite persistence was demonstrated in experimental infec-

tions performed in the BALB/c mice strain, since four weeks after challenge viable parasites

were recovered from different organs [13, 14].

The promastigote forms of the parasites were grown at 26˚C in Schneider medium (Gibco,

NY, U.S.A.) supplemented with 10% Fetal Calf Serum (FCS) (Sigma, MO, U.S.A.), 100 U/ml

of penicillin and 100 μg/ml of streptomycin. For the attenuated line, medium was supple-

mented with 20 μg/ml of G418 and 50 μg/ml of hygromycin. Parasites were kept in a virulent

state by passage in BALB/c mice.

LiΔHSP70-II administration, L. major challenge and parasite

quantification

For vaccination, two administration routes were employed. BALB/c mice were immunized by

the administration of 1 × 107 LiΔHSP70-II promastigotes suspended in 100 μl of phosphate

saline buffer (PBS) in the vein tail (intravenously; i.v.). Subcutaneously (s.c.) immunization of

BALB/c and C57BL/6 mice were performed with 1 × 107 LiΔHSP70-II promastigotes suspended
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in 30 μl of PBS in the right footpad. As control, mice were inoculated with PBS. In all experi-

ments performed with BALB/c mice and in those shown in Fig 6 for C57BL/6 a single control

group was employed for long- and short-term protection analyses. In these cases, mice were

inoculated twice with PBS (week 12 and 4) i.v. (BALB/c) or s.c. (both mice strains). To obtain

data shown in Fig 7 employing C57BL/6 mice, two different control saline groups were

employed for long- or short-term analyses, receiving only one PBS dose coinciding with

vaccination.

For challenge, BALB/c mice were infected with 5 × 104 stationary-phase promastigotes of L.

major suspended in 30 μl of PBS into the left footpads. Infection follow-up was performed by

measuring footpad swelling with a metric digital caliper. Lesion size was expressed as thickness

of the L. major infected left footpad minus thickness of the right footpad. C57BL/6 mice were

challenged with 1 × 103 (or 1 × 105 when indicated) L. major metacyclic promastigotes isolated

by negative selection with peanut agglutinin, suspended in 10 μl of PBS into the dermis of both

ears (intradermal; i.d.). Ear lesions diameter was measured with a metric caliper.

The number of LiΔHSP70-II parasites was determined in the liver, spleen, BM (after i.v. or

s.c. administration) and also in the DLNs and footpads after s.c. administration. In addition, L.

major parasite burdens were determined in the DLNs (popliteal for BALB/c mice and retro-

mandibular for C57BL/6 mice), ears (C57BL/6 mice) or liver and spleen (both strains). The

number of parasites was determined by a limiting dilution assay as described in [77]. For cell

preparation, the complete spleens, lymph nodes and footpads, or a piece of approximately 20

mg of liver were stored in Schneider medium containing 20% heat-inactivated, 100 U/ml of

penicillin and 100 μg/ml of streptomycin at 4˚C. Tissues were homogenized and filtered

through 70 μm cell strainers (Corning Gmbh, Kaiserslautern, Germany) to obtain a cell sus-

pension. BM samples were obtained by perfusion of the mouse femur marrow cavities with

Schneider medium before filtration. For ear processing, the ventral and dorsal sheets were sep-

arated and incubated in Dulbecco’s modified Eagle medium (DMEM; Thermo Fisher Scien-

tific, MA, U.S.A.) containing Liberase CI enzyme blend (50 μg/ml; Roche Diagnostics, Basel,

Switzerland). After 2 h of incubation at 37˚C, the tissues were cut into small pieces, and

homogenized and filtered using a cell strainer as indicated above. Each homogenized tissue

sample was serially diluted (1/3) in a 96-well flat-bottomed microtiter plate containing the

same medium employed for homogenization (in triplicates). For LiΔHSP70-II parasite number

determination, medium was also supplemented by 20 μg/ml G418 and 50 μg/ml hygromycin.

The number of viable parasites was determined from the highest dilution at which promasti-

gotes could be grown up to 10 days of incubation at 26˚C and is indicated per whole organ

(spleen, lymph nodes and footpads), per g (liver) or as number of parasites in 107 cells for the

BM samples.

Sera preparation and ELISA assays

Sera were obtained from blood samples taken before and after leishmanization with the atten-

uated line or after infective challenge. The reactivity against parasite proteins was determined

by ELISA, using SLA prepared from L. major or L. infantum promastigotes. Briefly, SLA was

prepared by three freezing and thawing cycles of stationary promastigotes suspended in PBS

followed by centrifugation for 15 min at 12,000 × g using a microcentrifuge. After determining

protein concentration by the Bio-Rad Protein Assay Dye Reagent (Bio-Rad laboratories, Mün-

chen, Germany) supernatants were collected and stored at -70˚C. Sera reactivity was calculated

as the reciprocal end-point titer calculated as the inverse value of the highest serum dilution

factor giving an absorbance > 0.15. Briefly, MaxiSorp plates (Nunc, Roskilde, Denmark) were

coated with 100 μl of SLA diluted in PBS (12 μg/ml for 12 h at 4˚C). After four washes with
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200 μl of PBS-Tween20 0.5% (washing buffer), wells free binding sites were blocked with the

same volume of the blocking solution (PBS-Tween 20 0.5%–5% non-fat milk) for 1 h at room

temperature (RT) and incubated with serial dilutions (1/2 dilution factor in blocking solution)

of mouse sera for 2 h at RT. After four washes with 200 μl of washing buffer, wells were incu-

bated for 1 h at RT with secondary antibodies. Anti-IgG, anti-IgG1, anti-IgG2a or anti-IgG2c

horseradish peroxidase-conjugated anti-mouse immunoglobulins were used as secondary

antibodies at 1/2,000 dilution in blocking buffer (Nordic BioSite Täby, Sweden). After four

washes performed as above, the reaction was developed through incubation with orto-pheny-

lenediamine for 10 min in the dark. Color development was stopped by the addition of 2 N

H2SO4. Optical densities were read at 490 nm in an ELISA microplate spectrophotometer

(Model 680, Bio-Rad Laboratories).

In vitro cell stimulation and analysis of cytokine concentration in culture

supernatants

For cytokine analysis, primary cultures were stablished from spleens and LNs as described

above, but using RPMI complete medium (RPMI medium (Sigma) supplemented with 10%

heat-inactivated FCS, 20 mM L-glutamine, 200 U/ml penicillin, 100 μg/ml streptomycin and

50 μg/ml gentamicin instead of Schneider medium. Cells (5 × 106) were cultured during 72 h

at 37˚C in 5% CO2 in the absence or in the presence of SLA at 12 μg/ml of final concentration.

The levels of IFN-γ, IL-10 or IL-4 in culture supernatants were determined by sandwich

ELISA using commercial kits (Pharmingen, San Diego, CA, USA).

Analysis of T cell populations by flow cytometry

For the analysis of effector T cells (Teff) or effector memory T cells (Tem) (CD44+ CD62Llow

subset) and central memory T cells (Tcm) (CD44+ CD62Lhigh subset), single cell suspensions

from the spleen on the BALB/c mice were processed as above, and the single splenocytes were

harvested, washed in PBS with 1% heat-inactivated FCS and incubated with Rat Anti-Mouse

CD16/CD32 (FcBlock, BD, Franklin Lakes, NJ, USA) followed by the staining with the surface

markers: AlexaFluor 647 Rat Anti-Mouse CD3 Molecular Complex (17A2 Clone, BD), APC/

Fire 750 Anti-Mouse CD44 (IM7 Clone, BioLegend, San Diego, CA, USA), BV421 anti-mouse

CD62L (MEL-14 Clone, BioLegend) and BV570 anti-mouse CD4 (RM4-5 Clone, BioLegend)

for 20 min at 4˚C. After washing, cells were fixed and permeabilized with Cytofix/Cytoperm

(BD). Finally, cells were washed and analyzed.

For identification of cell producing cytokines in BALB/c mice, single cell suspensions from

the spleens or the popliteal lymph nodes of the BALB/c mice were processed as above. Subse-

quently, cells (1 x 106) were stimulated for 2 h at 37˚C in RPMI complete medium with anti-

mouse CD28 (eBioscience, San Diego, CA, USA) in flat-bottom 96-well plates previously

coated with anti-mouse CD3e antibody (eBioscience) 24 h before. Afterwards, 10 μg/ml Brefel-

din A was added to stimulated and non-stimulated cells and incubation continued for 4 h

more. Then, cells were harvested, washed in PBS with 1% heat-inactivated FCS and incubated

with Fc block followed by the staining with the surface markers FITC anti-mouse CD8a (53–

6.7 Clone, BioLegend), and BV570 anti-mouse CD4 for 20 min at 4˚C. After washing, cells

were fixed and permeabilized with Cytofix/Cytoperm (BD). Next, PE/Cy7 anti-mouse IFN-γ
(XMG1.2 Clone, BioLegend) antibody was added for 30 min at 4˚C. Finally, cells were washed

and analyzed.

For the analysis of the frequency of T cell producing IFN-γ in the ears and retromandibular

lymph nodes of C57BL/6 mice, single cell suspensions were processed 3 days after L. major chal-

lenge and 1 × 106 cells were stimulated for 2 h at 37˚C with anti-mouse CD3/CD28 (eBioscience)
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as described above. Afterwards, 10 μg/ml Brefeldin A was added and cells were incubated for 4 h

more. Then, cells were washed and incubated with FcBlock followed by the staining with the sur-

face markers FITC anti-mouse CD8a, AlexaFluor 647 Rat Anti-Mouse CD3 Molecular Complex

and BV570 anti-mouse CD4 for 20 min at 4˚C. After washing, cells were fixed and permeabilized

with Cytofix/Cytoperm. Next, PE Rat Anti-Mouse IFN-γ (XMG1.2 Clone, BD) antibody was

added for 30 min at 4˚C. Finally, cells were washed and analyzed.

All cells were analyzed using a FACS Canto II flow cytometer and FACSDiva Software

(BD) and processed and plotted with FlowJo Software (FlowJo LLC, Ashland, Oregon, USA).

Statistical analysis

Statistical analysis was performed using the Graph-Pad Prism 5 program. Data were first ana-

lyzed by the D’Agostino & Pearson normality test when sample was n� 8. Parametric data

were analyzed by a two-tailed Student t-test when comparing two samples or one-way ANOVA

followed by the Tukey test when comparing more than two groups. Non-parametric data (or

data with n< 8) were analyzed by a Mann Whitney test or a Kruskal-Wallis test (Dunn’s post-

test) when comparing two or more groups, respectively. Differences were considered significant

when � P< 0.05.

Supporting information

S1 Fig. Mice intravenously challenged with LiΔHSP70-II were short-term protected against

L. major infective challenge. Mice (n = 8 per group) were inoculated with PBS (Saline) or

with 1 × 107 LiΔHSP70-II promastigotes in the vein tail (i.v.). At week 4 after challenge, mice

(n = 8 per group) were sacrificed and the LiΔHSP70-II parasite burdens were determined in the

spleen, liver and bone marrow. In A, scatter plots of the parasite burdens showing the mean ±
standard deviation (SD) are shown. Spleen cells were cultured in the absence (Medium) or in the

presence of SLA. Cytokine levels in supernatants were determined by ELISA (B). Data show the

mean ± SD. � P< 0 .05 shows statistical differences between SLA stimulated and non-stimulated

cells (unpaired Student t-test). The IgG1 and IgG2a reciprocal end-point titers against L. major
SLA were analyzed at the time of the sacrifice by ELISA and represented as whisker (min to

max) plots (C). � (P< 0.05) indicates the statistical differences between IgG1 and IgG2a anti-

SLA titers (Kruskal-Wallis test and Dunn’s Multiple Comparison post-test). No parasite loads or

SLA-dependent antibodies or cytokines were detected in mice receiving saline. Both mice groups

(n = 8 per group) were infected with 5 × 104 stationary-phase L. major promastigotes in the left

footpad at week 4 after vaccination. Footpad swelling was monitored weekly. Mean ± standard

deviation (SD) is shown (D). Leishmania major parasite burdens were determined by limiting

dilution in the spleen, liver and in the draining lymph node (left popliteal). Scatter plots with the

individual number of parasite per total organ (spleen or lymph nodes) or per g of liver are

shown including the mean ± SD (E). For D and E, � (P< 0 .05) shows the statistical differences

determined by the unpaired Student t-test. Results are representative of at least two independent

experiments.

(PDF)

S2 Fig. Related to Fig 2. Analysis of splenic T cell populations in vaccinated mice. In (A)

and (B) representative panels and the gating strategy and Fluorescence Minus One Control

(FMO controls) of Fig 2A are shown, respectively. In (C) and (D) representative panels of Fig

2B and 2C are shown, respectively. In (E) the gating strategy and FMO controls of (C) are

shown.

(PDF)

Vaccines based on L. infantum HSP70-II null mutant

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005644 May 30, 2017 21 / 26

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0005644.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0005644.s002
https://doi.org/10.1371/journal.pntd.0005644


S3 Fig. Determination of LiΔHSP70-II parasite burdens in vaccinated and Leishmania
major BALB/c infected mice. BALB/c mice (n = 8 per group) inoculated with 1 × 107 LiΔH-
SP70-II promastigotes in the vein tail (i.v.) or in the right footpad (s.c.) were infected with

5 × 104 stationary-phase L. major promastigotes in the left footpad at week 4 or at week 12

after vaccination (A). Presence of the LiΔHSP70-II parasite burdens was determined in i.v. (B)

or s.c. (C) vaccinated mice at week 20. Parasite loads were calculated by limiting dilution in the

presence of G418 and hygromycin selection antibodies in the spleen, left popliteal lymph node

(LP) (per total organ), in the liver (parasites per g of tissue) or in the bone marrow (BM) (para-

sites per 1 × 107 cells) for all mice and in the right footpad (RFP) or right popliteal lymph node

(RP) (per total organ) in the s.c. vaccinated mice. Scatter plots from data are shown including

the mean ± standard deviation (SD).

(PDF)

S4 Fig. Determination of LiΔHSP70-II parasite burdens in vaccinated and Leishmania
major C57BL/6 infected mice. Presence of the LiΔHSP70-II parasite burdens in the spleen

(Sp; parasites per total organ), liver (Liv; parasite per g), bone marrow (BM; parasites per

1 × 107 cells) and right popliteal lymph node (RP; parasites per total organ) of mice immunized

with the attenuated line in the right footpad before and after L. major challenge (5 weeks and

13 weeks). Parasite determinations were made at weeks 17 and 25 after vaccination in the

long-term group. Parasite loads were calculated by limiting dilution in the presence of G418

and hygromycin selection antibodies. Scatter plots from data are shown including the

mean ± standard deviation (SD). Results are representative of at least two independent experi-

ments.

(PDF)

S5 Fig. Related to Fig 8. Analysis of the early response after Leishmania major challenge in

the site of infection. (A) and (B); gating strategy of Fig 8. (C) and (D) Fluorescence Minus

One Control (FMO controls) of Fig 8.

(PDF)
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