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INTRODUCTION

Fusarium oxysporum f. sp. lini is the one of notoriously known pathogens of flax (Linum
usitatissimum L.), causing wilt. In the case of young seedlings, the disease may lead to complete
yield losses (Kommedahl et al., 1970). At the same time, flax is an important crop used for
manufacturing oil of high nutritional value, food supplements, industrial products, and fiber (Jhala
and Hall, 2010; Czemplik et al., 2011; Kezimana et al., 2018; Parikh and Pierce, 2019). However, flax
production is dependent on the resistance of flax varieties to phytopathogens, whereas F. oxysporum
demonstrates considerable genetic diversity (Edel et al., 2001; Michielse and Rep, 2009).

At present, phytopathogenic strains of F. oxysporum are classified into numerous formae
speciales according to their ability to colonize different hosts (Armstrong and Armstrong, 1981).
Unfortunately, this system cannot provide researchers with enough information on a type of
the pathogen and the severity of the infection it causes (Edel-Hermann and Lecomte, 2019).
Like other representatives of the species, forma specialis lini is morphologically and genetically
heterogeneous. Strains of the pathogen differ in such characteristics as the type of sporulation,
conidia formation, pigment production, and the rate of growth on different media. Moreover,
the degree of pathogenicity varies within the forma and depends on the infected crop variety
(Kommedahl et al., 1970).

For molecular classification of F. oxysporum, numerous markers were used (Baayen et al., 2000;
Lievens et al., 2008; Baysal et al., 2010; Sharma et al., 2014; van Dam et al., 2018; Srinivas et al., 2019;
Sasseron et al., 2020), and genes associated with virulence were considered as targets for molecular
discrimination of strains of the fungus (Lievens et al., 2008; van Dam et al., 2018). It was shown that
secreted in xylem (SIX) genes are associated with pathogenicity of F. oxysporum, and the majority
of them are distributed within the sequence of one chromosome (Rep et al., 2004; Houterman et al.,
2007; Kashiwa et al., 2017; Carvalhais et al., 2019). Importantly, the combination of these genes
differs between and within formae (Lievens et al., 2009). Secreted in xylem are also responsible for
the resistance of cultivars to certain pathogen races due to gene-for-gene interaction between SIX
genes of a pathogen and R genes (resistance genes) of a plant. Breaking the resistance of plant
lineages to wild-type F. oxysporum could be accomplished by deletion of a certain SIX gene, which
is recognized by the immune system of a plant (Houterman et al., 2008). However, in the case of F.
oxysporum f. sp. lini, the connection between the degree of pathogenicity of a strain and the set of
its SIX genes is not investigated deeply, and gaining insights into the mechanisms of pathogenicity
offers an opportunity for effective disease control.

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.662928
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.662928&domain=pdf&date_stamp=2021-06-17
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alex_245@mail.ru
https://doi.org/10.3389/fgene.2021.662928
https://www.frontiersin.org/articles/10.3389/fgene.2021.662928/full


Dvorianinova et al. Sequencing of Fusarium oxysporum Strains

Besides, F. oxysporum representatives differ not only in the
content of genes and their sequences but also in the number
of chromosomes due to chromosomal rearrangements and the
mobility of lineage-specific chromosomes (Davière et al., 2001;
Ma et al., 2010; Schmidt et al., 2013; Vlaardingerbroek et al., 2016;
Wang et al., 2020). Having learned the statistics of deposited F.
oxysporum assemblies, one may conclude that genome sizes vary
from about 50 to 70Mb and differ between many formae (data
of the NCBI Genome database, https://www.ncbi.nlm.nih.gov/
genome/browse/#!/eukaryotes/707/).

Summing up, F. oxysporum f. sp. lini appears to be
heterogeneous. However, there is a lack of next-generation
sequencing data concerning the genome structure of the
flax pathogen and the molecular basis of pathogenicity in
relation to diverse virulence of the strains. In this work, we
have chosen six strains of F. oxysporum f. sp. lini of low,
medium, and high virulence (two strains per each degree
of pathogenicity), performed genome sequencing on Oxford
Nanopore Technologies (ONT) and Illumina platforms, and
obtained de novo assemblies of the sequenced strains.

MATERIALS AND METHODS

Fungal Material
F. oxysporum f. sp. lini samples were provided by the Institute
for Flax (Torzhok, Russia). The strains were of the following
pathogenicity degrees: the low (strains #456, #482), the medium
(#476, #525), and the high one (#483, #39). Mycelium was grown
in test tubes on potato dextrose agar medium for 3 weeks (Alpha
Biosciences, USA).

DNA Extraction and Purification
Following the previously developed protocol, pure high-
molecular-weight DNA of the fungal samples was obtained
(Krasnov et al., 2020). In brief, the DNA was extracted using
the CTAB method followed by its isolation with Blood and
Cell Culture DNA Mini Kit (Qiagen, USA). The quality and
concentration of the DNA were evaluated on a NanoDrop 2000C
spectrophotometer (Thermo Fisher Scientific, USA) and a Qubit
2.0 fluorometer (Life Technologies, USA). The assessment of
DNA length and the control of RNA absence were performed by
electrophoresis in a 0.8% agarose gel (Lonza, Switzerland).

DNA Library Preparation and Sequencing
on the Oxford Nanopore Technologies
Platform
Before library preparation, DNA fragments up to 10 kb were
removed from the samples with a Short Read Eliminator Kit
(Circulomics, USA), and the remaining DNA was purified with
AMPure XP beads (Beckman Coulter, USA) in a ratio of 1:0.7
(sample:beads). SQK-LSK109 Ligation Sequencing Kit (ONT,
UK) for 1D genomic DNA sequencing was used to prepare
the library. During this procedure, minor modifications were
introduced to the recommended protocol that included sample
barcoding with the EXP-NBD103 (Native Barcoding Expansion)
kit (ONT). Namely, at the steps of DNA recovery at 20◦C and
ligation the time of incubation was increased to 20 and 60min

respectively. Sequencing was performed on a MinION (ONT)
instrument with a FLO-MIN-106D (R9.4.1) flow cell (ONT).

DNA Library Preparation and Sequencing
on the Illumina Platform
Upon DNA shearing on a S220 ultrasonic homogenizer (Covaris,
USA), the library was prepared from 1 µg of fragmented DNA
with the NEBNext Ultra II DNA Library Prep Kit for Illumina
(New England Biolabs, UK) according to the manufacturer’s
protocol with size selection of adaptor-ligatedDNAof about 600–
800 bp. A 2100 Bioanalyzer instrument (Agilent Technologies,
USA) and a Qubit 2.0 fluorometer (Life Technologies) were
used to evaluate the quality and concentration of the DNA
library respectively. The DNA library was sequenced on a MiSeq
instrument (Illumina, USA) with a read length of 300+300 bp.

Preliminary Data Analysis
On genome sequencing of five strains (#456, #476, #482, #483,
#525), we obtained 2.7 Gb of ONT data (374–756Mb per
strain, N50 = 32–44 kb) and 26.7 million Illumina paired-
end reads (2.9–7.9 million 300+300 bp reads per strain).
Since F. oxysporum f. sp. lini genome size is about 60–70Mb
(Kanapin et al., 2020; Krasnov et al., 2020), the obtained data
corresponded to 10x genome coverage with ONT reads and
50x coverage with Illumina reads on average. The Nanopore
and Illumina sequencing data for these five strains and isolate
#39, which was sequenced by us earlier, were deposited in
NCBI under the BioProject accession number PRJNA721899.
For further use in performing de novo genome assemblies of
the five sequenced strains, ONT fast5 files were basecalled with
Guppy 3.6.1 (https://community.nanoporetech.com/protocols/
Guppy-protocol/v/GPB_2003_v1_revU_14Dec2018) using the
dna_r9.4.1_450bps_hac.cfg config file. Adapter removal and
demultiplexing were carried out with Porechop 0.2.4 (https://
github.com/rrwick/Porechop). Reads with an average quality
below 6 (Q < 6) were discarded with Trimmomatic 0.39 (Bolger
et al., 2014). To perform the initial genome assemblies, we chose
the Canu tool (version 2.1) developed for long-read datasets
(Koren et al., 2017), as it provided us with the best results when
assembling the genome of isolate #39 in our previous study
(Krasnov et al., 2020). The approximate size of the genomes was
set as 60Mb, and the other Canu parameters were kept default.
The resulting quality of the assemblies was judged by QUAST
features (version 5.0.2) (Mikheenko et al., 2018) and BUSCO
completeness (version 4.1.2, hypocreales_odb10 dataset) (Seppey
et al., 2019). BUSCO and QUAST statistics for the Canu genome
assemblies of the five strains were the following: completeness
laid in a range of 61.9–94.5%, N50 was 0.2–2.0Mb, L50 varied
between 9 and 82 (Table 1, Canu). These assemblies were not
good enough for further analysis that can be explained by the
low coverage of genomes with ONT reads (about 6–13x). So,
we decided to perform hybrid assemblies of the genomes of
the five strains with MaSuRCA (version 3.4.2, CA algorithm)
(Zimin et al., 2013) using both ONT and Illumina data, as the
obtained coverage with Illumina reads was high (30–80x) and
MaSuRCA showed decent results for isolate #39 earlier (Krasnov
et al., 2020). The N50 parameter of the hybrid assemblies of
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TABLE 1 | QUAST and BUSCO statistics for Canu and MaSuRCA genome assemblies of six F. oxysporum f. sp. lini strains.

Strain number 456 482 476 525 483 39

Pathogenicity low medium high

ONT data volume, Gb* 0.38 0.76 0.59 0.37 0.56 4.87

Canu assemblies

QUAST Number of contigs 338 53 191 323 226 36

statistics Total length, Mb 51.4 51.1 64.0 49.2 63.4 69.5

N50, kb 204 2,036 634 193 436 4,152

L50 80 9 35 82 41 6

GC, % 48.05 47.70 47.95 48.28 47.95 47.99

BUSCO Complete, % 68.0 94.5 85.6 61.9 86.4 97.8

statistics Single, % 67.4 93.9 84.8 61.3 85.6 96.8

Duplicated, % 0.6 0.6 0.8 0.6 0.8 1.0

MaSuRCA assemblies

QUAST Number of contigs 113 43 67 123 97 74

statistics Total length, Mb 61.7 53.4 65.9 63.1 63.8 69.3

N50, kb 1,063 2,363 2,485 961 1,594 2,336

L50 17 7 9 21 11 5

GC, % 47.86 47.30 47.87 48.11 47.98 48.07

BUSCO Complete, % 96.5 99.7 99.1 98.2 98.4 99.7

statistics Single, % 95.0 98.0 97.5 97.2 97.2 97.9

Duplicated, % 1.5 1.7 1.6 1.0 1.2 1.8

*The volume of ONT data after basecalling with Guppy, adapter trimming with Porechop, and quality filtration with Trimmomatic is presented.

strains #456, #476, #482, #483, and #525 laid in a range of 1.0–
2.5Mb, L50 was 7–21, and the BUSCO completeness varied from
96.5 to 99.7% (Table 1, MaSuRCA). These statistics indicate fairly
high contiguity and completeness of the obtained MaSuRCA
assemblies. They were deposited in NCBI under the BioProject
accession number PRJNA721899. Besides, we tested if ONT reads
were crucial for assembly quality and assembled the genome
of strain #525 from only Illumina reads using MaSuRCA, as
the smallest amount of ONT data was obtained for this strain
(0.37Mb). It appeared that even 5–10x coverage of a genomewith
long ONT reads significantly improved assembly contiguity—
N50 = 961 kb and L50 = 21 for the hybrid assembly against N50
= 92 kb and L50 = 145 for the assembly from Illumina reads
only. Each of the received assemblies of the five strains contained
a circular contig representing a complete mitochondrial genome
which can be used in phylogenetic studies of Fusarium species.
The obtained assemblies are a useful resource for comparative
genomic studies of the flax pathogen strains.

The comparison of the F. oxysporum f. sp. lini strains studied
in the present work was also performed based on Illumina
reads mapped to reference genomes. We trimmed Illumina
reads of the six strains with Trimmomatic 0.39 (trailing:28)
and discarded the short ones (minlen:50); the remaining data
were mapped to reference assemblies of F. oxysporum using
Bowtie 2 (version 2.3.5.1) (Langmead et al., 2019), which
also reported the overall alignment rate, and the alignments
were sorted with samtools (version 1.10) (Li et al., 2009).
Samtools was also used to determine the coverage of contigs

by Illumina reads in each assembly, and the overall coverage
was calculated as the sum of covered bases in each contig
divided by the number of all bases in an assembly. The only
two complete F. oxysporum genomes deposited in GenBank
were downloaded to be used for mapping—the assembly of
strain Fo5176 (GCA_013112355.1, https://www.ncbi.nlm.nih.
gov/genome/707?genome_assembly_id=1472496) by Fokkens
et al. (2020) and the assembly of strain Fo47 (GCA_013085055.1,
https://www.ncbi.nlm.nih.gov/genome/707?genome_assembly_
id=910449) by Wang et al. (2020). Besides, the genome of F.
oxysporum f. sp. lini isolate #39 was reassembled with Canu,
using the earlier obtained data (Krasnov et al., 2020) and
according to the same strategy as described above (ONT read
processing with Guppy, Porechop, Trimmomatic, assembling
with Canu), and with MaSuRCA (basecalling with Guppy,
assembling from ONT and Illumina reads with MaSuRCA)
(Table 1). Polishing of the Canu assembly was conducted
using ONT reads according to the previously optimized
scheme—two iterations with the Racon polisher and one with
Medaka (Dmitriev et al., 2020). The accuracy of the Canu
assembly was also improved by polishing with POLCA (from
MaSuRCA) using Illumina reads (Zimin and Salzberg, 2020).
The MaSuRCA assembly does not need additional polishing
(Zimin et al., 2017). The resulting Canu assembly consisted
of 41 contigs with N50 of 4.15Mb, had a length of 69.5Mb,
and completeness of 99.8%. As expected, the polished Canu
assembly outperformed the MaSuRCA one in terms of QUAST
and BUSCO statistics, so the Canu-assembled and polished
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TABLE 2 | Percentages of aligned Illumina reads against the assembly of F. oxysporum f. sp. lini isolate #39 and the complete genomes of F. oxysporum strains Fo47 and

Fo5176 and percentages of the genomes covered by Illumina reads for six F. oxysporum f. sp. lini strains.

Strain number 456 482 476 525 483 39

Pathogenicity low medium high

Illumina data volume, Gb 4.76 3.22 3.32 3.00 1.72 1.78

Genome to be aligned against Genome

size, Mb

Percentage of aligned reads, %

F. oxysporum f. sp. lini #39 69.5 82.85 78.48 83.45 93.17 83.99 95.03

F. oxysporum Fo5176 (GCA_013112355.1) 68.0 74.30 76.72 74.44 78.07 75.23 77.09

F. oxysporum Fo47 (GCA_013085055.1) 50.4 63.75 75.11 63.79 63.11 65.35 62.87

Genome to be covered Genome

size, Mb

Percentage of a genome covered, %

F. oxysporum f. sp. lini #39 69.5 89.29 71.40 95.97 95.51 88.34 99.34

F. oxysporum Fo5176 (GCA_013112355.1) 68.0 82.74 71.02 85.75 83.26 80.94 95.84

F. oxysporum Fo47 (GCA_013085055.1) 50.4 88.23 85.61 89.90 84.69 87.82 83.54

genome of F. oxysporum f. sp. lini isolate #39 was used for
further mapping.

Illumina reads of the six differently virulent strains of F.
oxysporum f. sp. lini were separately mapped to the two complete
genomes of strains Fo5176 and Fo47 and also the assembly
of isolate #39 obtained anew (Table 2). The overall alignment
of the mapped reads corresponding to the six strains against
the genomes of isolate #39 and strains Fo5176 and Fo47 as
well as the percentages of the genome covered were higher for
isolate #39 than for Fo5176 and Fo47. Fo5176 infects Arabidopsis
thaliana (Fokkens et al., 2020) and has a comparable to isolate
#39 genome size (68.0 and 69.5Mb respectively), while Fo47
is classified as an endophyte and has a significantly smaller
genome size−50.4Mb (Wang et al., 2020). The percentages of
aligned reads and covered genome fractions varied between
F. oxysporum f. sp. lini strains; however, we did not reveal
the similarity between genomes of the strains with the same
pathogenicity degree. For example, high-virulent isolate #39 had
less resemblance to another high-virulent strain #483 than to
strains #476 and #525 with medium virulence. At the same
time, low-virulent strain #482 had the most significant difference
from isolate #39. Thus, mapping our Illumina sequencing data
of differently virulent strains enabled us to evaluate broad-
scale differences in genomes. Besides, using the present Illumina
data, one can also reveal single nucleotide polymorphisms
(SNPs) or small insertions/deletions in the loci of interest and
perform a comparison of the F. oxysporum f. sp. lini strains
with F. oxysporum strains of other formae speciales. At the
same time, the genomes of the six studied strains, even of
those ones with similar virulence, differed in the amount of
mapped Illumina data, and, therefore, mapping Illumina reads
to a reference genome can result in the loss of significant part
of information. Besides, chromosomal rearrangements may be
implicated in gene regulation, and, for evaluation of the role
of such variations in fungal pathogenicity, de novo genome

assemblies obtained from long reads are indispensable (Demené
et al., 2021). Thus, both Illumina and ONT data obtained by
us for F. oxysporum f. sp. lini strains of different virulence
are essential for a comprehensive comparative analysis of the
genomes and identification of genetic differences associated
with pathogenicity.

Another example of the use of the obtained dataset is the
identification of genes of interest and their further analysis.
For instance, we performed the search for genes involved in a
process of plant colonization. The blastn analysis showed that
the obtained assemblies of all the strains but low-virulent #482
contained regions with high homology (e-value< 10−10, identity
of 99% on average) to partial coding sequences of virulence genes
found in forma specialis lini: SIX1 (NCBI: KM893920.1), SIX7
(KM893928.1), SIX10 (KP964982.1), SIX12 (KP964992.1), SIX13
(KP964998.1) (Laurence et al., 2015; Taylor et al., 2016). The
identified SIX sequences were found arranged in clusters. For
example, in the genome of isolate #39, partial coding sequences
of SIX1, SIX7, SIX10, SIX13mapped completely against the locus
of 400 kb of tig00000022, and SIX7 mapped twice against this
locus. Besides, homologs of SIX7, SIX12 sequences were present
in tig00000001, and those of SIX7, SIX10, SIX12, SIX13 were
found in a 100 kb locus of tig00000029. Similar clustering of
SIX sequences was observed in the assemblies of strains #456,
#476, #483, and #525. Thus, the obtained data are valuable
for identifying genes of a particular family, including those
responsible for pathogenicity and playing an important role in
the interaction between F. oxysporum and plants.

One more illustration of a way to use our dataset is the
study of the role of DNA modifications in the regulation of
F. oxysporum genome. DNA methylation is implicated in gene
expression regulation, repression of transposable elements, and
chromatin remodeling. To date, it is known that cytosines in
fungi can be methylated within the context of CpG sites, CN
(N for any nucleotide) pairs, and long clusters of cytosines;
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the type of the most methylated motif varies between fungal
species, while the overall level of methylation in fungal genomes
is relatively low (He et al., 2020). Several approaches of
the ONT data use for the evaluation of methylation level
throughout the genome of an object were developed (Xu
and Seki, 2020; Tourancheau et al., 2021). We assessed DNA
methylation levels in the genome of isolate #39, for which
high coverage with ONT reads was obtained (about 70x),
using the nanopolish tool (https://nanopolish.readthedocs.io/
en/latest/quickstart_call_methylation.html), which is trained for
methylation evaluation within the CpG context. The basecalled
ONT reads were mapped against the assembly of isolate
#39 with minimap2, alignments were derived using samtools,
and methylation levels of CpG sites were estimated with
nanopolish. Methylation across the whole genome was low
(Supplementary Data 1) that is in concordance with other
studies on DNA methylation in fungi (Bewick et al., 2019).
Nevertheless, in the assembly of F. oxysporum f. sp. lini isolate
#39, more than 500 CpG sites (with coverage >20 ONT reads)
had methylation levels ≥0.5. Then, due to poor annotation of F.
oxysporum genomes, we performed a blast-search for the regions
containing these CpG sites in fungi taxa. Most of the methylated
CpG sites were not assigned to specific functional elements of the
genome; however, there were also CpG sites that were located in
promoter regions, transposons, and gene bodies. Therefore, our
dataset is useful for the evaluation of the role of DNAmethylation
in genome regulation of F. oxysporum f. sp. lini.

Finally, the obtained genome assemblies of F. oxysporum
f. sp. lini strains can be used in gene expression studies, for
example, as a reference for transcriptome assembly with further
expression analysis or in selection of conservative regions suitable
for primer design for the assessment of gene expression by
quantitative PCR in different F. oxysporum strains or even
different Fusarium species.

CONCLUSIONS

This work mainly focused on genome sequencing of strains
of the flax pathogen F. oxysporum f. sp. lini, possessing
diverse pathogenicity degrees, on two platforms—ONT and
Illumina. The collected data allowed us to assemble the
genomes of five strains and reassemble the genome of isolate
#39 (the used data were obtained in our previous work),
which lay the basis for further investigation of F. oxysporum
virulence mechanisms and contribute to understanding
the general structure of the pathogen population. Due

to F. oxysporum f. sp. lini includes a vast number of
genotypes, it is of high significance to study the origins
of pathogenicity at molecular level. Our dataset can be of
great use for researchers working on breeding resistant flax
varieties and developing methods to prevent the disease and
economic losses.
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