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Summary

The septins make up a family of guanine-nucleotide binding proteins, most of which polymerize to
form filaments. Septin genes have been found in fungi and animals but not in protozoa or plants;
yeasts have seven septin genes and humans have twelve, but Caenorhabditis elegans has only two.
Some septin genes generate multiple polypeptides by alternative splicing or alternative translation
start sites. Of the five conserved motifs found in other members of the GTPase superfamily,
three are highly conserved in septins. Septin filaments are thought to form a cytoskeletal system
that organizes higher-order structures by self-assembly and templated assembly. These
multifunctional proteins are best known for their role in cytokinesis, but other functions in
dividing and non-dividing cells have evolved in different lineages: budding yeast has septins specific
for sporulation; nematode septins are implicated in postembryonic morphogenesis of multiple cell
lineages; fly septins are associated with the development of germ cells, photoreceptor cells and
nervous system; and mammalian septins are implicated in exocytosis, tumorigenesis, apoptosis,
synaptogenesis and neurodegeneration. 
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The septin genes were originally discovered through genetic

screening for budding yeast mutants defective in the cell-cycle

progression [1]. Mutants of any one of the genetic loci CDC3,

CDC10, CDC11 or CDC12 commonly form multinucleated cel-

lular clusters [2-4]. These mutants cannot organize the ‘bud

neck filaments’ that normally encircle and demarcate the cell

cortex between a mother cell and the bud (daughter) [5]. From

these and other data, the septins have been regarded as the

major constituents of the bud-neck filaments, which have

essential roles in cytokinesis [2-4]. Molecular genetic studies

revealed that the four CDC genes encode similar polypeptides,

each with some of the set of conserved motifs found in

GTPases. The four encoded proteins, termed septins, thus

founded a protein family within the GTPase superfamily [2-4].

The septins that were later found in other fungi, nematodes,

flies, and mammals have also been shown to have roles in

cytokinesis and other cellular processes.

Gene organization and evolutionary history
Septins have been found in diverse eukaryotes, including

animals and fungi but not protozoa and plants. Most septin

genes generate one or more polypeptides by alternative

splicing and/or multiple translation start sites; the number

of variants is not yet established for many of the genes. The

septin genes in five organisms, and the largest product of

each gene known from the current databases, are shown in

Table 1, and a phylogenetic tree illustrating their structural

relationships and molecular evolution is shown in Figure 1.

It is noteworthy that considerable diversity has been gener-

ated within each species; for example, the human septins

are 39-63% identical to human Sept2 at the amino-acid

level. It may be possible to classify the septins in each

species into two to four groups by sequence homology.

Orthologs can be found within the fungi (such as Saccha-

romyces cerevisiae CDC3, Schizosaccharomyces pombe

Spn1 and their Candida albicans orthologs, not shown) and

within metazoa (such as Drosophila Sep1 and mammalian

Sept2), but not between distant lineages (fungi and

metazoa). This pattern suggests that there have been inde-

pendent expansions of the family in different lineages.

Thus, any rules and functions found in the fungal septin

systems may not necessarily apply to the metazoan ones,

and vice versa.



Characteristic structural features 
The full-length septin cDNAs in the current sequence data-

bases encode polypeptides of 30-65 kDa. Most of these gene

products have a set of GTPase motifs, G-1, G-3 and G-4,

found in members of the GTPase superfamily, (Figure 2 and

not shown). The GTPase motifs of the septins are closer to

those of the Ras family than of other members of the GTPase

superfamily [6] such as the other cytoskeletal GTPases,

tubulins in eukaryotes or FtsZ in bacteria. The G-1 motif

(which has a consensus in the superfamily of GxxxxGK[S/T]

in the single-letter amino-acid code) is well conserved, and

the consensus around the G-1 motif of septins is GESGLGK-

STLINTLF (where the bold residues are strictly conserved).

The G-3 motif (DxxG) is moderately conserved, with the
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Table 1

The septin genes and proteins in five representative organisms

Species Approved gene Chromosomal Size (amino Mass Isoelectric Charge Number of Accession 
name location* acids) (kDa) point (pI) predicted number

coiled coils

Saccharomyces cerevisiae Cdc3 XII:764137 520 60.0 5.3 A 2 L16548

Cdc10 III:118342 322 37.0 5.6 A 0 L16549

Cdc11 X:576294 415 47.6 4.8 A 1 L16550

Cdc12 VIII:328038 407 46.7 8.2 B 1 L16551

Spr3 VII:607564 512 59.8 7.3 N 3 U24129

Spr28 IV:905043 423 48.2 5.8 A 1 NP_010504

Shs1/Sep7 IV:52446 551 62.6 5.3 A 2 Z74273

Schizosaccharomyces pombe spn1 I:1067997 469 53.7 5.3 A 1 U31742

spn2 I:960487 331 38.1 8.0 B 0 U29888

spn3 II:2682372 412 46.6 4.7 A 1 U29889

spn4 I:1962024 380 44.7 7.0 N 1 U29890

spn5 I:3044705 464 53.1 8.2 B 1 U29891

spn6 III:421493 380 44.0 6.9 N 1 AL032824

spn7 II:161221 428 49.2 5.2 A 0 AF417166

Caenorhabditis elegans unc-59 I:21.15 459 52.9 8.9 B 1 NM_060987

unc-61 V:6.66 530 60.7 8.9 B 1 NM_182356

Drosophila melanogaster Pnut 44C2 539 60.2 9.0 B 1 NM_165597

Sep1 19F5 361 41.1 6.1 A 2 NM_167747

Sep2 92F2 419 48.5 7.4 N 1 NM_079693

Sep4 15A1 427 49.0 6.9 N 2 NM_167530

Sep5 43F8 422 48.5 7.3 N 1 NM_165578

Homo sapiens Sept1 16p11.1 366 41.8 5.5 A 2 NM_052838

Sept2 2q37.3 361 41.5 6.2 A 2 NM_004404

Sept3 22q13.2 345 39.3 6.8 N 0 NM_145733

Sept4 17q23 478 55.1 5.7 A 2 NM_004574

Sept5 22q11.2 369 42.3 6.4 A 2 NM_002688

Sept6 Xq24 427 48.9 6.4 A 1 NM_145799

Sept7 7q36.1 418 48.8 9.0 B 1 NM_001788

Sept8 5q31 483 55.8 5.9 A 1 XM_034872

Sept9 17q25.3 586 65.4 9.3 B 0 AF189713

Sept10 8q11.23 517 60.0 6.6 N 1 BC020502

Sept11 4q21.22 429 49.4 6.4 A 1 NM_018243

Sept12 16p13.3 358 40.8 6.7 N 0 NM_144605

The data refer to the largest gene products for each gene, deduced from cDNAs on the sequence databases. *The numbers given for the yeast genes
refer to the position of the gene along the sequence of the chromosome. A, acidic (pI < 6.5); B, basic (pI > 7.5); N, neutral. The algorithm COILS [56,57]
was used to predict coiled coils, and the peaks above an arbitrary threshold (p > 0.8 at a window size of 14) were counted. The mouse genome has
counterparts to each of the 12 human septin genes (not shown). For comparative nomenclature of the mouse and human Sept1-Sept10 genes and the
products, see [58].



consensus sequence DTPG; the G-4 motif (xKxD) is strictly

conserved with a unique septin consensus of AKAD. The

G-2 and G-5 regions cannot be defined in septins; some

other classes of GTPases also lack these motifs. GTP-

binding and GTP-hydrolyzing activities of the purified and

recombinant septin complexes or polypeptides have been

demonstrated in vitro ([7-11] and M.K., C.M. Field, M.L.

Coughlin and T.J. Mitchison, unpublished observations).

The biochemical and biological significance of septin GTPase

activity remains a conundrum in the field, however.

Septins polymerize to form rod-shaped hetero-oligomeric

complexes, which in turn are arranged in tandem arrays to

form filaments that appear by electron microscopy to be
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Figure 1
A phylogenetic tree of the septins in Saccharomyces cerevisiae (Sc), Schizosaccharomyces pombe (Sp), Caenorhabditis elegans (Ce), Drosophila melanogaster
(Dm) and humans (Hs). The longest amino-acid sequence among the putative polypeptides generated by each gene was analyzed with the software Phylip
[59] using the default mode with the UPGMA method, 1,000 bootstrap replicates and systematic tie-breaking, and Poisson-corrected distances with
proportionally distributed gaps. The numbers of predicted coiled coils are shown in parentheses. The scale bar represents 0.1 substitutions.
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Figure 2 (see the legend on the next page)
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7-9 nm thick. These filaments can assemble in vitro into

even higher-order structures by self-assembly and templated

assembly. Repeating unit complexes made up of Cdc3p,

Cdc10p, Cdc11p, and Cdc12p in budding yeast, Sep1, Sep2

and Pnut in flies, and Sept2, Sept6, and Sept7 in mouse and

human have been purified and characterized [4,7,10,12-14].

The majority of septins are predicted to have one or more

coiled-coil regions, each spanning about 50-100 amino-acid

residues, mostly near the carboxyl termini. In the metazoan

septins, proteins that are close on the phylogenetic tree have

the same number of coiled coils (Figure 1). Some of the

coiled-coil regions are necessary for intermolecular interac-

tion upon septin complex formation [10], whereas others are

dispensable ([11,15] and M.K., C.M. Field, M.L. Coughlin and

T.J. Mitchison, unpublished observations). Some septins

have no predictable coiled-coil region (for example, S. cere-

visiae Cdc10p, S. pombe Spn2p and Spn7p, and human

Sept3, Sept 9 and Sept12). The mechanism of inter-septin

interaction other than through coiled coils is unknown.

The isoelectric points of most septin polypeptides are within

the acidic to neutral range, but each organism has one or two

septins of basic charge (for example, S. cerevisiae Cdc12p,

S. pombe Spn2p and Spn5p, both C. elegans septins,

Drosophila Pnut and human Sept7 and Sept9; these are indi-

cated in Table 1). The nematode is exceptional in that it has

only two septin genes, both of which encode highly basic pro-

teins. The significance of the isoelectric points of septins is

currently unknown. Regardless of the total charge, a short

stretch of basic residues preceding the G-1 region is shared by

most, but not all, of the septins. Some of these basic residues

are critical for interactions with phospholipids in vitro [9,11]. 

The budding yeast septins Cdc3p, Cdc11p and Shs1p have

one or more motifs for sumoylation, [I/V/L]KX[E/D]; the

lysine is the attachment site for the ubiquitin-like protein

SUMO. Mutating these sites results in loss of bud-neck-

associated SUMO and persistent septin rings [16]. Thus,

SUMO conjugation is a prerequisite for septin-ring disas-

sembly. This discovery provided a breakthrough towards an

understanding of the regulatory mechanism of yeast septin

dynamics, and it also suggests that the significance of the

sumoylation motifs found in septins from other organisms

should be tested.

Localization and function 
Expression of the septin genes seems to be regulated

according to the cell cycle, cell lineage, and developmental

stage. In accordance with a generally accepted notion that

the hetero-oligomeric complex is the main functional unit of

the septin system [4], the cell-type distributions of different

septin proteins largely overlap one another. Paradoxically,

however, their subcellular localization is not necessarily

identical; this is demonstrated, for example in postmitotic

cells in the mouse brain [17]. The differential localization of

septin proteins or complexes may reflect their distinct roles

in vivo. Besides the best-known functions in cytokinesis, the

septin system seems to have evolved to fulfill multiple roles

in dividing and non-dividing cells. The normal localization,

mutant phenotypes, and possible functions inferred from

genetic and cell biological data are summarized for key

organisms below. 

S. cerevisiae and S. pombe
The ‘classical’ septins of budding yeast (Cdc3p, Cdc10p,

Cdc11p, Cdc12p, and Shs1p/Sep7p) predominantly occur as

ring(s) encircling the mother-bud neck, but they also localize

at the cell cortices near the presumptive bud site, at the bud

scar after cytokinesis, and at the tapering part and the tip of

the shmoo, a pheromone-induced protrusion [2,18,19]. As

described above, the main phenotype of the original temper-

ature-sensitive mutants (cdc3, cdc10, cdc11 and cdc12) is a

lack of bud-neck filaments and cytokinesis defects. The

CDC3� and CDC12� mutants are lethal; the CDC10� and

CDC11� mutants are viable but are unable to organize the

bud-neck filaments (the septin ring), and the other septins

localize to the bud neck to partially fulfill the functions of the

missing septins [12,19]. 

The septin ring is a multifunctional structure that serves

several functions: firstly, as a spatial landmark to establish

cell polarity for bud-site selection, in cooperation with other

proteins (such as the bud-site selection proteins Bud3p and

Bud4p) [20,21]; secondly, as a barrier that prevents bud-spe-

cific cortical molecules (Spa2p, Sec3p, Sec5p, Ist2p and

others) from diffusing laterally into the mother-cell cortex

[22,23]; thirdly, as a scaffold to recruit molecules for cell-wall

synthesis (for example, the chitin synthases Chs4p and Chs3p

and the scaffold protein Bni4p) [24] and for positioning of the

mitotic spindle [25]; and finally, as an apparatus to monitor

and control progression of mitosis in conjunction with the

cell-cycle regulatory kinases Gin4p, Hsl1p and Kcc4p [26-28],

and a component of the mitosis exit network, Tem1p [29,30].

The ‘non-classical’ S. cerevisiae septins (Spr3p and Spr28p)

are expressed in a temporally limited manner during spore

formation and are targeted beneath the developing prospore
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Figure 2 (see the figure on the previous page)
Multiple alignment of the central regions of representative septins. Amino-acid sequences of the representative septins were aligned using MacVector.
Acidic, basic and hydrophobic residues are in purple, blue, and yellow respectively. The GTPase motifs that are conserved in this family - G-1, G-3 and
G-4 - are indicated above the sequence. A few other conserved stretches of hydrophobic and charged residues are also recognizable. Species
abbreviations are as in Figure 1. 



wall [15,31,32]. Deletion of the SPR3 or SPR28 genes causes

no obvious phenotype, and a double mutant has minimal

defects in sporulation, suggesting that there is compensation

by the other septins [15,32].

S. pombe Spn1p, Spn3p, and Spn4p localize to medial ring(s)

around the circumference of the dividing cell, where they

functionally interact with Mid2p (which is related to the

actin-binding protein anillin in animals). The spn1� and

spn4� mutants show mild cytokinetic defects such as

delayed cell-cell separation and accumulation of cells with

one or more septa [2,33,34].

Animals
The C. elegans UNC-59 and UNC-61 septin proteins localize

to the leading edge of the cleavage furrow and the spindle

midbody. Mutants of either or both of them exhibit minimal

defects in embryonic cytokinesis, but abnormalities in post-

embryonic morphogenesis occur in multiple organs; these

include vulva protrusion, germ-cell defects including gonad

extrusion, egg-laying defects, and deformities in the male

tail and male sensory neurons. The uncoordinated move-

ment defect through which the mutants were originally iso-

lated also indicates some functional defects in the mutants’

nervous systems. Some of these phenotypes are recapitu-

lated by silencing unc-59 and/or unc-61 through siRNA

microinjection of small interfering RNAs (siRNAs) [35,36].

In the Drosophila embryo, the Pnut, Sep1, and Sep2 septin

proteins have been found in the front of cellularization

moving along the early embryo, in the cleavage furrows of

dividing cells, and at the leading edges of the epithelium

during embryonic dorsal closure. Later in development, they

are found in the apical and basal cell cortices of larval imagi-

nal discs, in the cell cortices of the embryonic and larval

central nervous system and of photoreceptor cells in the eye

imaginal discs [37-39], and in ring canals (stable intercellu-

lar bridges formed by incomplete cytokinesis of male and

female germ cells) [7,40,41]. The pnut gene was identified as

an enhancer of the seven in absentia defect, which results in

loss of the R7 photoreceptor cells; pnut-null mutant larvae

have severely reduced cell number, with multinucleated cells

in the imaginal discs and brain, and they die shortly after

pupation [37]. Mutant embryos lacking the Pnut contribu-

tion from both the mother and the zygote have abnormal

organization of actin rings in the late cellularization stage of

embryogenesis and extensive morphological defects during

gastrulation and in the formation of cuticle, head, tail, and

denticles [39].

Mammalian septins have been found in the cell cortex,

contractile ring and midbody of mitotic cells (Sept2, Sept4,

Sept6, Sept7, and Sept9) and in the cell cortex, actin stress

fibers (Sept2, Sept4, Sept6, Sept7, and Sept9) and micro-

tubules (Sept9) of interphase cells ([8,9,13,14,42-46] and

M.K., C.M. Field, M.L. Coughlin and T.J. Mitchison,

unpublished observations). In the nervous system, they are

seen on the cytoplasmic side of presynaptic membranes

(Sept7) and synaptic vesicles (Sept5 and Sept6) and in the

endfeet of astroglia  (Sept4 and Sept7) [17]. Cytokinesis is

perturbed by microinjection of anti-septin antibodies

(against Sept2 and Sept9) or transfection of siRNAs (against

Sept2, Sept7, Sept9) [8,45,46]. Depletion of Sept2 or Sept7

protein by RNA interference also causes disorganization of

actin stress fibers, leading to a flat cell morphology in inter-

phase cells [14]. Although Sept5 is highly expressed in

mature nervous systems, no brain abnormality is seen in the

Sept5-null mice, probably because of compensation by

redundant septin species [47]. Sept5-null mice do, however,

aggregate and release granules from blood platelets more

readily than do wild-type mice [48].

Frontiers 
A number of open questions remain with regard to the

septins. Firstly, the fine structures of septins beyond the

ultrastructural level are totally unknown. Resolving the

atomic structures of septin monomers, oligomers and poly-

mers should help us to address the major questions in septin

biochemistry, such as the mechanisms of septin polymer

assembly and disassembly and how GTP hydrolysis might be

coupled to changes in the structure and activity of the pro-

teins. It will be important to elucidate the mechanisms by

which sumoylation and phosphorylation might control

septin assembly and disassembly at the structural, biochemi-

cal, and cellular levels [16,49].

The interactions of septins with non-septin molecules - such

as actin and anillin [8,14,33,34], microtubules [25,45,46],

mitosis-associated proteins (see above), and lipids [9,11] -

should help to reveal their unknown cellular functions and

to clarify the mechanisms underlying the events in which

they are involved. Likewise, the discovery of new subcellular

localizations of septins may also lead to discoveries of novel

roles for the proteins, as is illustrated by a mitochondrial

septin variant that has been implicated in apoptosis [50].

Many research groups have found independently that two

human septin genes from different groups (Sept6 and Sept9;

see Figure 1) have translocated to, and fused in-frame with,

the mixed lineage leukemia (MLL) gene, and that a few

human and mouse septin genes (Sept2, Sept4, and Sept9)

are amplified and/or aberrantly expressed in a variety of

malignancies, including leukemia, lymphoma and solid

tumors (see, for example, [51,52]). Although the hypotheti-

cal oncogenic activities of these septins and the fusion pro-

teins remain to be tested, exploring the involvement of

septins in carcinogenesis should bring novel perspectives to

cancer research as well as to septin biology.

As mentioned above, a subset of septins are abundantly

expressed in metazoan nervous systems, but the biological
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significance of septins in postmitotic neurons and glial cells

has not been understood. Considering the functional redun-

dancy and complexity of the septins, determining their

precise roles in neural development and in synaptic or glial

functions is challenging, even using systematic genetic

analysis including multiple and conditional gene disruption.

The septins of nematodes have the potential to lead the field

of septin neurobiology, given their relative simplicity.

Finally, in addition to the elusive functions of septins in

normal brains, aberrant deposits of septins have been found in

neurofibrillary tangles in Alzheimer’s disease, in Lewy bodies

in Parkinson’s disease, and in related pathological aggregates

in human brains [53,54]. Exploring the possible linkages

between septins and the major players in each disease (such as

amyloid-precursor protein, presenilins, and tau proteins in

Alzheimer’s disease and parkin, the Pael receptor, and synu-

cleins in Parkinson’s disease [54,55]) is expected to reveal

functions for septins in the brain and help to clarify the

unknown pathophysiology underlying these disorders. 
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