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Abstract: Background: Little is known about the interaction between the nasopharyngeal bacterial
profile and the nutritional status in children. In this study, our main goal was to evaluate the
associations between overnutrition and the presence of four potentially pathogenic bacteria in the
nasopharynx of infants with viral lower respiratory tract infections (LRTI). In addition, we determined
whether changes in the nasopharyngeal bacterial profile were associated with mucosal and serum
proinflammatory cytokines and with clinical disease severity. Methods: We enrolled 116 children less
than 2 years old hospitalized for viral LRTI during two consecutive respiratory seasons (May 2016 to
August 2017); their nutritional status was assessed, and nasopharyngeal and blood samples were
obtained. S. aureus, S. pneumoniae, H. influenzae, M. catarrhalis, and respiratory viruses were identified
in nasopharyngeal samples by qPCR. Cytokine concentrations were measured in nasopharyngeal and
blood samples. Disease severity was assessed by the length of hospitalization and oxygen therapy.
Results: Nasopharyngeal pathogenic bacteria were identified in 96.6% of the enrolled children,
and 80% of them tested positive for two or more bacteria. The presence and loads of M. catarrhalis
was higher (p = 0.001 and p = 0.022, respectively) in children with overnutrition (n = 47) compared
with those with normal weights (n = 69). In addition, the detection of >2 bacteria was more frequent in
children with overnutrition compared to those with normal weight (p = 0.02). Multivariate regression
models showed that the presence and loads of S. pneumoniae and M. catarrhalis were associated with
higher concentrations of IL-6 in plasma and TNF-α in mucosal samples in children with overnutrition.
Conclusions: The nasopharyngeal profile of young children with overnutrition was characterized by
an over representation of pathogenic bacteria and proinflammatory cytokines.

Keywords: children; overnutrition; nasopharynx; pathogenic bacteria; viral respiratory infection;
co-detection
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1. Introduction

Studies have shown that viral coinfections in children hospitalized for lower respira-
tory tract infections (LRTI) are more common in children with overnutrition, suggesting
that overnutrition could influence the respiratory viral profile identified in the nasopharynx
of these children [1]. In adults, the mouth, nose, and lung microbiota along with the serum
proinflammatory cytokine profiles have proven to be altered in those with obesity [2].

The upper respiratory tract is colonized with different microorganisms that can po-
tentially become pathogenic and cause secondary infections. The most frequent bacterial
pathogens in children’s upper respiratory tract are Streptococcus pneumoniae, Staphylococcus
aureus, Hemophilus influenzae, and Moraxella catarrhalis [3–5]. In addition, respiratory viral
infections have proven to favor the colonization and replication of opportunistic bacteria
that can lead to secondary infections, such as otitis media or pneumonia [6,7]. Respiratory
syncytial virus (RSV) is the foremost cause of LRTI, leading to hospitalization in infants and
young children worldwide [8,9]. The interactions between RSV and the nasopharyngeal
microbiota could modulate the host immune response, potentially affecting clinical disease
severity [3,4]. Whether overnutrition modulates the presence of potential pathogenic bacte-
ria and of cytokine concentrations during viral LRTI in infants and young children is not
fully known.

In this study, our main goal was to define the association between overnutrition
and four potentially pathogenic bacteria in the upper respiratory tract of children with
viral LRTI. In addition, we determined if changes in the nasopharyngeal bacterial profiles
were associated with mucosal and serum proinflammatory cytokines and with clinical
disease severity as assessed by the length of stay and duration of supplemental oxygen
administration.

2. Materials and Methods
2.1. Study Population

We included 116 previously healthy infants and young children hospitalized with
viral LRTI that were enrolled as part of a cross-sectional study [1] conducted during two
consecutive respiratory seasons (from May 2016 to August 2017). Children were included
if they were <24 months old and hospitalized for viral LRTI, including bronchiolitis, bron-
chitis, or pneumonia, at two medical centers in Santiago, Chile: Urgencia Materno-Infantil
at Clínica Dávila and Dr. Exequiel González Cortés Hospital. Diagnoses were made based
on dyspnea, signs of lower respiratory tract infections (wheezing, retractions), and/or a
positive chest X-ray (infiltrates, atelectasis, and air trapping). Children were excluded if
they were: (i) undernourished, (ii) neonates < 28 days old, (iii) premature, defined as a
gestational age of <37 weeks, or if they had (iv) bronchopulmonary dysplasia, (v) congen-
ital heart disease, or (vi) any previous respiratory disease, including common cold and
acute otitis media, (vii) use of systemic corticosteroids within 72 h of sample collection,
(viii) confirmed bacterial infections, or (ix) if they had a negative viral respiratory molecular
panel at hospital admission.

Upon enrollment, a nasopharyngeal swab and blood sample were collected to classify
children into three groups according to their nutritional status using the WHO Anthro 2011
v.3.2.2 program: normal weight, overweight and obese. The nutritional status was deter-
mined by z-scores according to the following anthropometric indicators: weight-for-age
z-scores, length, or height-for-age z-scores, and weight-for-height z-scores. Normal weight
was defined as −0.9 to 0.9 SD, overweight as 1.0 to ≤2.0 SD, and obese as >2 SD. Over-
nutrition (ON) was defined as ≥1.0 SD and included overweight and obese children.
Undernourished children and those with nutritional risk were defined with a weight-for-
age z-score and weight-for-height z-score of <1 SD below the mean and were, therefore,
excluded from the study.

Disease severity was assessed using different criteria as described in other studies,
including: duration of supplemental oxygen, need for mechanical ventilation, and length
of hospitalization [10–12].
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This study was approved by the ethics committees of all participating centers (Clínica
Dávila, Dr. Exequiel González Cortés Hospital, and Universidad Autónoma de Chile).
Written informed consent from parents or guardians was obtained before study enrollment.

2.2. Clinical Samples

Nasopharyngeal aspirates (NPA) were collected from all patients during the first 24 h
of hospitalization, most within the first 3 h of admission. Briefly, both nostrils were aspirated
without flushing using a soft catheter placed in a collection trap with 3 mL of sterile saline
solution and immediately transported on ice to the laboratory. Aliquots of 1 mL were
stored at −80 ◦C for subsequent viral, bacterial, and cytokine analyses.

In addition, blood samples (~2 mL) were collected as part of the study coinciding with
standard care blood draws. Briefly, ~2 mL of blood was collected and placed in sodium
heparin collection tubes (BD Vacutainer). Blood samples were then centrifuged at 1000 g
for 15 min at room temperature and plasma divided into aliquots and stored at −80 ◦C.

2.3. Viral Analysis

Viral RNA and DNA were simultaneously extracted using 150 µL of the NPA sample
using the viral RNA isolation kit NucleoSpin (Macherey-Nagel®, Düren, Germany) following
the manufacturer’s instructions and stored at −80 ◦C until use. Respiratory viruses were
detected using a real-time PCR kit ARGENE® (bioMérieux, Marcy-I’Étoile, France) that in-
cluded: respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza
virus 1 to 4 (HPIV), human coronavirus (HCoV) (229E, NL63, HKU1, and OC43), adenovirus
(AdV), bocavirus (HboV), influenza A (FluA), influenza B (FluB), and rhinovirus/enterovirus
(HRV/HEV) [13] following the manufacturer’s instructions. Viral coinfections were defined
as the presence of two or more respiratory viruses in the same sample.

2.4. Bacterial Identification

Aliquots of NPA aspirates stored at −80 ◦C were used to identify and quantitate four
pathogenic bacteria (Streptococcus pneumoniae, Staphylococcus aureus, Moraxella catarrhalis,
and Hemophilus influenzae) by real time (RT)-PCR with published primers [4]. Bacterial
loads were measured in copies/mL and log10 transformed for analyses. These bacteria
were selected based on previous studies demonstrating their relevant role in acute and
long-term respiratory morbidity in children [12,14–16].

2.5. Cytokine Determination

Concentrations of IL-6, IL-13, IFN-γ, and TNF-α in NPA and plasma were measured
using Magnetic Luminex® assay (R&D) (R&D Systems, Inc., Minneapolis, MN, USA),
according to the manufacturer’s instructions. All determinations were performed using
Luminex xMAP technology (Merck Millipore) at the Institute of Biomedical Science’s
Department of Virology (ICBM, Universidad de Chile).

2.6. Statistical Analysis

Descriptive analyses, medians (ranges), and frequency distributions were used to
summarize the demographic and baseline characteristics. Data were analyzed with chi-
square or Kruskal–Wallis tests, followed by Dunn’s test using a Bonferroni correction to
adjust for multiple comparisons. The relative risk (RR) of increased length of hospitalization
and duration of supplemental oxygen was calculated by taking the estimated Poisson
regression coefficient (β) for each variable and transforming it into the eβ (exp*confidence
interval) of each independent variable. The RR for mechanical ventilation was estimated
by the discrete change in the probability for each independent variable. All Poisson models
were adjusted for gender, age, and a dummy variable that included the RSV infection alone,
RSV-viral co-infections, and no RSV infection.

Ordinary least-square multivariate models were adjusted to analyze the associations
among cytokine concentrations, bacterial presence, and bacterial loads according to the
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nutritional status. Positive values indicate direct associations between cytokine concentra-
tion (in picograms) and bacterial profiles and vice versa. For these analyses, overweight or
obese children were categorized as children with overnutrition. The statistical significance
was set at two-tailed p < 0.05 for all analyses. All analyses were performed with Stata 14.1
software (Statacorp, College Station, TX, USA).

3. Results
3.1. Patient Demographic Characteristics and Viral Type

From May 2016 to August 2017, we enrolled a total of 116 children less than 2 years
old (median age 7 (1–20) months) hospitalized with a viral LRTI. Patients were stratified
based on weight into three exclusive categories: normal weight (n = 69, 59.4%), overweight
(n = 30; 25.9%), and obese (n = 17; 14.7%). Children’s demographic and clinical character-
istics are depicted in Table 1. For analyses purposes, overweight and obese infants were
grouped in an additional category termed “overnutrition”. The proportion of males in the
overweight cohort was lower, and 84% were vaccinated, according to the Chilean vaccine
schedule, with no differences between the vaccinated and unvaccinated groups.

Table 1. Demographic and clinical features of children according to nutritional status (n = 116).

Clinical Features Number of Cases
(n = 116)

Normal Weight
(n = 69)

Overweight
(n = 30)

Obese
(n = 17) p-Value

Age, months 7 (1–20) 5 (1–19) 10 (2–20) 6.5 (1–18) 0.013 1

Male gender, n (%) 60 (51.7) 39 (56.5) 10 (33.3) 11 (64.7) 0.021 1–0.030 2

Breastfeeding, n (%) 75 (65.8) 51 (75) 14 (48.3) 10 (58.8) 0.010 1

Vaccines, n (%) 97 (84.3) 57 (83.8) 25 (83.3) 15 (88.2) ns
Clinical diagnosis, n (%)
Pneumonia 65 (56.0) 41 (59.4) 17 (56.7) 7 (41.2) ns
Bronchiolitis 34 (29.3) 20 (29.0) 7 (23.3) 7 (41.2) ns
Bronchitis 17 (14.7) 8 (11.6) 6 (20.0) 3 (17.6) ns

Clinical Parameters
Days of hospitalization 6 (1–21) 6 (1–16) 6 (2–21) 7 (1–15) ns
Days of oxygen therapy 5 (1–20) 5 (0–15) 4 (2–20) 5 (1–15) ns
Mechanical ventilation, n (%) 15 (12.9) 10 (14.5) 3 (10.0) 2 (11.8) ns

Continuous variables are expressed as medians and ranges, and categorical data as numbers and percentages (%).
For continuous data, a Kruskal–Wallis test followed by a Dunn’s test, with Bonferroni correction, were conducted for
multiple pairwise comparisons among groups. For categorical data, a chi-square test was performed for comparisons
among groups. 1: Normal weight versus overweight; 2: Overweight versus obese. Ns, not significant.

Of the overall cohort, 56% of the children were diagnosed with viral pneumonia,
29% with bronchiolitis, and 15% with bronchitis. Based on laboratory data and clinical
parameters, none of the children showed signs or symptoms compatible with a bacterial
infection, and therefore, they did not receive antibiotic treatment. All of the children
included in the study required supplemental oxygen for a median duration of 5 days.
Fifteen children, the majority of normal weight, required mechanical ventilation. The
median duration of hospitalization was 6 days irrespective of the weight group (Table 1).

Half of the cohort (50.8%; 60/116) tested positive for a single respiratory virus, whereas
39.7% (46/116) and 8.6% (10/116) tested positive for two and three respiratory viruses,
respectively. RSV was the most commonly identified respiratory virus (71.6%) either alone
(34.5%) or in combination with other respiratory viruses (37.1%) (Figure 1). Detection of
RSV alone was more frequent in children with normal weight (24.1%) than in those with
overnutrition (10.3%; Figure 1). Moreover, RSV viral loads were higher in children with
normal weight (8.06 log10 copies/mL) as compared to overweight (6.49 log10 copies/mL)
and obese children (5.91 log10 copies/mL; p = 0.02), as previously reported [1].
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Figure 1. A two-dimensional heatmap showing the frequency of detection of the respiratory viruses
both in mono-infection and co-infections according to patients’ nutritional status. RSV, respira-
tory syncytial virus; HMPV, human metapneumovirus; HRV/HEV, rhinovirus/enterovirus; HboV,
bocavirus; PIV, parainfluenza virus; FluA, influenza A; FluB, influenza B.

3.2. Bacterial Carriage, Nutritional Status, and Severity of Infection

The overall detection of any of the four potentially pathogenic bacteria evaluated in
these children with confirmed viral LRTI was 96.6% (112/116); in most cases, more than
one bacterium was identified. A single bacterium was identified in 19 children (16.4%), and
two or more bacteria were identified in the remaining children. Specifically, in 37 (31.9%)
children, two pathogenic bacteria were identified, three bacteria in 46 (39.7%) children,
and all four bacteria in 8 (6.9%) children. H. influenzae was the most frequently identified
bacteria (68.1%), followed by S. pneumoniae (62.9%), M. catarrhalis (61.2%) and S. aureus
(34.5%). The most frequent bacterial combinations were S. pneumoniae/M. catarrhalis/H.
influenzae in 33 children (28.4%) followed by S. pneumoniae/H. influenzae in 11 children
(9.5%) (Figure 2). Similar to viruses, the detection of a single bacterium was more common
in children with normal weights (13.8%) than in those with overnutrition (4.3%). No
significant differences in the distribution and load of the four different bacteria were
identified based on the type of viral infection that were grouped according to the presence
of only RSV, RSV and other viruses, and non-RSV viral infections.

We then analyzed the presence and bacterial burden for each bacterium according to the
children’s nutritional status. Only detection of M. catarrhalis was more frequent (p = 0.001) as
well as M. catarrhalis loads (p = 0.022) in children with overnutrition (which included those
with overweight or obese) compared with those with normal weight (Figure 3A,B).

No significant differences were found regarding the frequency of detection and bacte-
rial burden of S. pneumoniae, H. influenzae, and S. aureus according to the nutritional status.
However, the detection of >2 bacteria was significantly more common in children with
overnutrition compared to children with normal weight (p = 0.020) (Figure 4).
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Figure 2. A two-dimensional heatmap showing the frequency of four nasopharyngeal pathogenic
bacteria, as a single or multiple detection according to the nutritional status of children. -: no bacteria
detected; Sp, S. pneumoniae; Mc, M. catarrhalis; Sa, S. aureus; Hi, H. influenzae.
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Figure 3. Frequency of M. catarrhalis detection and M. catarrhalis loads according to nutritional status.
(A) Frequency of M. catarrhalis detection according to nutritional status. Proportions were analyzed
with a chi-square test. (B) M. catarrhalis loads according to nutritional status. Kruskal–Wallis followed
by Dunn’s test with Bonferroni correction were applied to adjust for multiple comparisons (p = 0.01).
NW, normal weight; OW, overweight; O, obese; ON, overnutrition * and ** refer to significant levels
at <5% and <1%, respectively. p < 0.05 was considered statistically significant.
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Detection of S. pneumonia, as well as bacterial loads of the four potentially pathogenic
bacteria was significantly but modestly associated with increased clinical disease severity.
Disease severity was assessed by an increased duration of supplemental oxygen and a
lengthier hospital stay regardless of nutritional status (Supplementary Tables S1–S3).

3.3. Cytokine Profiles According to Nasopharyngeal Bacterial Burden and Nutritional Status

We also analyzed a panel of innate immunity cytokines in plasma and nasopharyn-
geal samples according to nasopharyngeal bacterial detection and quantification. We
constructed different multivariable models to assess the impact of bacterial detection and
bacterial loads on cytokine profiles according to the nutritional status. Of all four cytokines
analyzed, only plasma and mucosal IL-6 and TNF-α showed significant differences and are
included in Tables 2 and 3, respectively.

Table 2. Relationship between Nasopharyngeal Bacterial Detection and Bacterial Loads with Plasma
IL-6 According to Nutritional Status.

Overnutrition (n = 30) Normal Weight (n = 47)

Bacterial detection (yes/no) Coefficient (95% CI) p Coefficient (95% CI) p
S. pneumoniae 16.8 (4–29) 0.01 19.1 (−4–42) 0.10
M. catarrhalis 19.6 (1–38) 0.04 −2.8 (−26–20) 0.80
H. influenzae −4.3(−25–17) 0.67 −0.9 (−24–22) 0.94
S. aureus 4.2(−12–21) 0.60 10.5 (−14–35) 0.32

Bacterial load (log10 copies/mL)
S. pneumoniae 1.0 (−2.8–4.8) 0.59 1.5 (−2–5) 0.44
M. catarrhalis 3.9 (0–8) 0.05 1.1 (−4–6) 0.66
H. influenzae 0.1 (−4–4) 0.96 −2.5 (−6–1) 0.13
S. aureus −0.2 (−5–4.6) 0.92 0.2 (−4–4) 0.92

Cytokine concentrations are expressed in pg/mL. Coefficients and 95% confidence intervals are reported for each
covariate and analyzed using ordinary least square regressions. Analyses not yielding positive results are not included
in the table (i.e., TNF-α, IL-13, and IFN-γ). p < 0.05 was significant. Overnutrition: obese and overweight children.
Regressions were controlled for infection by VRS only, VRS coinfection, and non-VRS as a dummy variable.
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Table 3. Relationship between Nasopharyngeal Bacterial Detection and Bacterial Loads with Mucosal
TNF-α According to Nutritional Status.

Overnutrition (n = 39) Normal Weight (n = 48)

Bacterial detection (yes/no) Coefficient (95% CI) p Coefficient (95% CI) p
S. pneumoniae 178.3 (−26–382) 0.08 53.4 (−56–1623) 0.33
M. catarrhalis 131.1 (14.6–248) 0.03 90.1 (−45–226) 0.19
H. influenzae −140.1 (−407–127) 0.29 78.8 (−58–216) 0.25
S. aureus −25.6 (−188–137) 0.75 115.6 (−88–319) 0.25

Bacterial load (log10 copies/mL)
S. pneumoniae 22.1 (−11–55) 0.19 7.4 (−14–28) 0.48
M. catarrhalis 43.7 (11–76) 0.01 25.5 (−2–53) 0.07
H. influenzae −18.4 (−58–21) 0.34 22.7 (−9–55) 0.16
S. aureus −7.8 (−39–24) 0.62 18.9 (−20–58) 0.33

Cytokine concentrations are expressed in pg/mL. Coefficients and 95% confidence intervals are reported for each
covariate and analyzed using ordinary least square regressions. Regressions with no significant results are not
reported in the table (i.e., IL-6, IL-13, and IFN-γ as outcome variables). p < 0.05 was significant. Overnutrition:
obese and overweight children. Regressions were controlled for infection by VRS only, VRS coinfection, and
non-VRS as a dummy variable.

Specifically, detection and loads of M. catarrhalis were associated with higher concen-
trations of IL-6 in plasma and TNF-α in nasopharyngeal samples only in children with
overnutrition (Table 2). In addition, S. pneumoniae detection was associated with higher
concentration in plasma IL-6 only in children with overnutrition (Table 3).

4. Discussion

Studies conducted in adults have shown that overnutrition can influence both the
diversity of the gut microbiota profiles [17,18] and the microbial communities identified in
the airway [2]. Data in children are limited. In this study, we found an association between
nasopharyngeal pathogenic bacteria, proinflammatory cytokines, and overnutrition in
infants and young children with viral LRTI. Although numbers are small, these data
suggest that overnutrition can modulate the respiratory bacterial profile in these children.

Studies indicate that the microbiota composition of the upper airway is an important
determinant for the development of LRTI and could thus influence acute disease sever-
ity as well as the future development of asthma [19]. Although numbers are small, we
showed that in children with viral LRTI, the nutritional status and specifically overnu-
trition was associated with a distinct nasopharyngeal bacterial profile and with specific
mucosal and systemic proinflammatory responses. Whether these microbiota profiles and
cytokine responses will be associated with increased respiratory morbidity in children with
overnutrition in the long-term is not yet known but deservers further follow-up studies.

M. catarrhalis was the most common bacterium identified, which is consistent with
previous studies that showed the predominance of Moraxella-dominated nasopharyngeal
profiles in upper respiratory tract infections and sinusitis in children [20,21]. Interestingly,
our results showed that the frequency of the detection of M. catarrhalis was significantly
higher, as were M. catarrhalis bacterial loads in children with overnutrition compared to
those with normal weight. In addition, we found that concentrations of proinflammatory
cytokines were higher in children with overnutrition in association with the detection
of M. catarrhalis and to a lesser extent S. pneumoniae, which could partially explain the
baseline proinflammatory state that has been described in obese patients. In addition,
obese individuals have a higher risk of developing asthma compared to individuals with a
normal weight, and it is plausible that immune and microbiome changes may play a role in
the increased susceptibility of obese individuals to develop asthma [22].

Studies have shown that profiles dominated by the presence of Streptococcus, Haemophilus,
and Moraxella in the upper airway significantly increase the risk of early allergic sensi-
tization and persistent wheezing in school-aged children, the hallmark of the asthma
phenotype [23]. Thus, our observations could be relevant and helpful for the early identi-
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fication of children with an increased risk for respiratory morbidity. Monitoring changes
in the bacterial profiles of the upper airway could aid in early interventions aimed at
modifying the respiratory microbiota, which could potentially prevent the development of
LRTI and/or of asthma in the long term.

Previous studies have described the dynamics of polymicrobial transport and bacterial
cooperative relationships in patients with acute respiratory infections [24,25], which we
also explored in this study. We found that the simultaneous detection of S. pneumoniae
and H. influenzae was the most frequent combination, which is in agreement with previous
studies [24,25]. On the other hand, only two patients showed the simultaneous co-detection
of S. pneumoniae and S. aureus, which has also been previously reported in young children
with RSV infections [4]. The negative association between S. pneumoniae and S. aureus
appears to be associated with immune-mediated inter-species inferences [24,26,27] and
possibly by the nutritional status. The combination of three or four bacteria was found more
frequently in children with overnutrition, suggesting the relationship between overnutrition
and an increased bacterial burden in the upper respiratory tract.

A previous study conducted in children less than 2 years old hospitalized with RSV
bronchiolitis showed that the colonization with Gram-negative bacteria (M. catarrhalis and
H. influenzae) was associated with higher concentrations of proinflammatory cytokines in
plasma and a trend towards greater disease severity [12]. Although we also found higher
plasma IL-6 concentrations in children with M. catarrhalis detection, the association with
clinical disease severity was modest, which could be partially explained by differences in
the patients studied, as we included both children with RSV and non-RSV LRTI.

Our study has limitations. As expected, RSV alone or in combination with other
respiratory viruses was the main pathogen identified in most children hospitalized with
LRTI, which limited our ability to perform analyses of bacterial profiles based on specific
respiratory viruses. In addition, we did not conduct microbiome studies but rather limited
the detection of pathogenic bacteria to the most relevant pathogens that play a role in infants
and young children. Our sample size was small, which limited the number and the type of
analyses that we were able to perform. Nevertheless, our results were consistent using either
bivariate or multivariate analyses. Further studies performing broader microbiome analyses
with a larger sample size in addition to determining the relationships between microbial
communities and respiratory viruses in relation to nutritional status are warranted.

5. Conclusions

In conclusion, this preliminary data suggest that in infants and young children with viral
LRTI, the colonizing bacteria and local and systemic host pro-inflammatory responses may
be intimately connected and associated with overnutrition in children. Future studies with
long-term follow-up initiatives would aid in determining whether these initial changes in
microbiota profiles influence the development of long-term respiratory morbidity in children.
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