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Abstract

While it is widely held that an organism’s genomic information should remain constant, several protein families are known
to modify it. Members of the AID/APOBEC protein family can deaminate DNA. Similarly, members of the ADAR family can
deaminate RNA. Characterizing the scope of these events is challenging. Here we use large genomic data sets, such as the
two billion sequences in the NCBI Trace Archive, to look for clusters of mismatches of the same type, which are a hallmark of
editing events caused by APOBEC3 and ADAR. We align 603,249,815 traces from the NCBI trace archive to their reference
genomes. In clusters of mismatches of increasing size, at least one systematic sequencing error dominates the results (G-to-
A). It is still present in mismatches with 99% accuracy and only vanishes in mismatches at 99.99% accuracy or higher. The
error appears to have entered into about 1% of the HapMap, possibly affecting other users that rely on this resource.
Further investigation, using stringent quality thresholds, uncovers thousands of mismatch clusters with no apparent defects
in their chromatograms. These traces provide the first reported candidates of endogenous DNA editing in human, further
elucidating RNA editing in human and mouse and also revealing, for the first time, extensive RNA editing in Xenopus
tropicalis. We show that the NCBI Trace Archive provides a valuable resource for the investigation of the phenomena of DNA
and RNA editing, as well as setting the stage for a comprehensive mapping of editing events in large-scale genomic
datasets.
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Introduction

With the exception of infrequent random somatic mutations, it

is widely believed that the same genomic content should be fixed

in an organism throughout its lifetime. This information will also

serve as a template for exact RNA copies. Proteins that can modify

genomic content, nevertheless, have been identified in humans

and in many other organisms.

RNA editing involves alteration of particular RNA nucleotides

by specifically changing Adenosine (A) into Inosine (I), which in

turn is read as Guanosine (G) [1]. It is performed by the adenosine

deaminase that acts on RNA (ADAR) family of deaminases [2–5]

and this process has been implicated in several vital neurological

functions [6]. A-to-I editing is known to target only RNA

molecules [7] with numerous instances of editing events in the

human transcriptome [8–12]. A different family of proteins, the

AID/APOBEC family of deaminases, can edit both DNA and

RNA nucleotides, specifically changing Cytosine (C) into Uracil

(U) [13]. The first family member to be found and studied was the

apolipoprotein B editing complex 1 (APOBEC1). This protein

edits the apolipoprotein B (ApoB) RNA, which is involved in lipid

transport [14,15] but APOBEC1 can also deaminate cytidine in

DNA [16]. Additional members of the family were found to target

DNA. Activation-induced deaminase (AID) was discovered to be

vital for the antigen-driven diversification of immunoglobulin

genes in the vertebrate adaptive immune system [17–19] and the

APOBEC3s were shown to be involved in the restriction of

retrovirus proliferation in primates [20,21].

For many years, the only known human endogenous target of

the APOBEC protein family was the apoB RNA transcript. In this

case, editing in position 6,666 by APOBEC1 leads to a stop codon

and eventually results in two functionally distinct isoforms of

apolipoprotein B (ApoB) [15,22]. This editing reaction is mediated

by the APOBEC complementation factor (ACF) [23,24] which

guides APOBEC1 to the target locus.

Deamination of cytosines to uracils in DNA (DNA editing) by

various APOBEC protein families is characterized, in many cases,

by clusters of G-to-A mismatches between the reference genome

and the edited sequence. These mismatches are the end product of

deamination of ‘‘C’’ into ‘‘U’’ in the other DNA strand. Recently,

it was found that APOBEC3G can serve as a potent inhibitor of a

wide range of retroviruses, including endogenous retrotransposons.

This protein introduces large numbers of C-to-U mutations in the

minus-strand of the viral DNA, eventually leading to G-to-A

mutations after plus-strand synthesis [25–29]. Also, it has been

demonstrated that APOBEC3G is capable of editing the mouse

IAP retrotransposon [30]. Little is known, however, about the

frequency or localization of editing in vivo.
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Although editing of retrotransposons and their integration back

into the genome is expected to be rare, very deep DNA sequencing

can be used to identify these events. In this paper we report initial

results of a novel bioinformatic approach for detection of

endogenous RNA and DNA candidate sites in various organisms.

We obtained 600 million sequence traces from the NCBI Trace

archive. This data repository contains DNA sequence chromato-

grams (traces) from various large-scale capillary electrophoresis

sequencing projects, base calls, and quality estimates. Next, we

aligned these traces to their consensus reference genomes and

searched for clusters of mismatches. Interestingly, we have found

not only evidence of genuine RNA and DNA editing events but

have also isolated a very common technical sequencing artifact

that leads to such clusters.

Results

One hallmark of editing enzymes is a cluster of mismatches of the

same type in the edited substrate. While the results of the RNA

editing ADARs are clusters of A-to-G mismatches, the hallmark of

members of the APOBEC3s protein family is a cluster of G-to-A

mismatches in the newly formed DNA strand after reverse

transcription. In order to find new endogenous editing events we

looked for such mismatch clusters in the largest available repository

of ‘‘raw’’ sequencing data, before they have been processed and

assembled. We aligned ‘‘raw’’ sequencing reads from the NCBI

trace archive to their consensus, reference genome. We repeated

this procedure, in parallel, for each of ten organisms (in total more

than 600 million reads - see Materials and Methods). In order to

reduce noise caused by low sequencing quality or from misalign-

ment to the genome, only long alignments (400bp or more) with

97% identity to the reference were considered. In addition, no

insertions or deletions and no ambiguity in the location of the

alignment were accepted (see Materials and Methods). Applying

these strict criteria we do not expect results from current ABI

SOLiD, Roche 454, Illumina GA, or Helicos sequencing reads.

In sum, we curated more than 56 gigabases of aligned sequence

in human, about 62 gigabases of aligned sequence in mouse and

much lower numbers for other organisms reflecting smaller

genomes and/or lower coverage. In human, 85,181,171 traces

aligned uniquely to the reference genome, 4,626,984 traces

aligned to multiple locations, and 123,110,314 traces had no

alignment under our strict cutoffs. For all organisms combined,

approximately 300 million, out of 603,249,815 traces in total, were

analyzed further (See Table 1).

Clusters of consecutive mismatches of the same type (C-to-T or

G-to-A) are common in APOBEC targets, such as IAP mouse

retroelements edited by APOBEC3 [30], thus we focused on such

‘‘runs’’ in the aligned traces. In human, we found G-to-A

mismatches to be over-represented compared to other types of

mismatch, with longer runs. There were 657,826 human traces

with runs of five or more mismatches of the same type. Of these,

218,595 (33%) human traces had runs of five or more G-to-A

mismatches, much more than any other mismatch type.

Since editing enzymes have a preferred sequence context, the

large data set allows us to restrict our search to traces with the

same three base-pair motif centered at each mismatch site in the

trace [31]. Moreover, as sequencing errors tend to cluster in

certain regions, especially in low complexity areas, hence forming

relatively short mismatch-dense regions, we applied another filter

and discarded runs that span less than 100 base-pairs (the distance

between the first and last consecutive mismatch). We also

Author Summary

Most biomedical, genomic research begins with the
painstaking assembly of a ‘‘reference genome’’ for the
organism of interest. Implicit in this process is an
assumption that genomic information is constant through-
out an organism. There are enzymes, however, that can
change, or ‘‘edit,’’ genomic information so that variations
from the reference can exist within a single organism. In
this work, we analyze the raw data used to assemble the
reference genomes of ten organisms to discover evidence
for editing. We found candidates for DNA and RNA editing
as well as a sequencing error that has become incorpo-
rated into commonly used genomic resources. Our analysis
demonstrates the utility of raw genomic data for the
discovery of some editing events and sets the stage for
further analysis as sequencing costs continue to decrease
exponentially.

Table 1. Summary of computation.

Organism name
#reference bp
(millions)

#unique traces
(millions) Mean coverage Space (Gb)

Time (millions of node
seconds)

Anopheles gambiae 260 4.3 9.9 13 0.56

Callithrix jacchus 2,900 22 4.6 160 1.5

Canis familiaris 2,400 33 8.3 370 3.4

Drosophila melanogaster 160 0.67 2.5 2.5 0.06

Gallus gallus 1,000 12 7.2 30 1.3

Homo sapiens 2,900 85 18 530 30

Mus musculus 2,600 93 21 4,200 114

Pan troglodytes 2,900 32 6.6 150 7.0

Takifugu rubripes 350 2.5 4.2 6.4 1.2

Xenopus tropicalis 1400 14 6.0 360 4.8

Total 298.47 5821.90 163.82

Total data generated from analysis of 603,249,815 traces, 30% of the total number of traces at NCBI (outside the short-read archive). Approximately half were placed
uniquely while applying our cutoffs, with total data consuming six terabytes of disk and more than five ‘‘node years’’of CPU time. The computation on mouse traces
produced the bulk of the data.
doi:10.1371/journal.pgen.1000954.t001

Common Sequencing Error, RNA and DNA Editing
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discarded traces in which the reference or the trace nucleotides

around or at the mismatch site were not called (‘‘N’’).

Out of the 53,639 total examples conforming to the above

criteria, we found 46,483 (82%) examples of G-to-A traces in

human. Thus, the restrictions above reduced the total number of

traces more than 12-fold while only reducing the number of G-to-

A examples by less than 5-fold. Moreover, we found a striking

preference for either an ‘‘AGA-to-AAA’’ mismatch motif (26,694/

53,639 traces) or an ‘‘AGG-to-AAG’’ motif (21,274/53,639

traces). This tendency was observed in traces from all sequencing

centers tested but one (Celera) (see Figure 1B). Since most of the

sequencing for the human genome project was done in eight

centers, results from only these centers are shown.

Sequence traces are derived from both DNA strands, thus one

would expect to observe a symmetric over representation of C-to-

T mismatch clusters. Lack of similar numbers of complementary

mismatches led us to the conclusion that most of these mismatches

are not caused by a biological source but rather are sequencing

artifacts.

In order to understand the origin of the artifact, we analyzed

sample traces, and noticed that traces with ‘‘runs’’ of mismatches,

with identical three base-pair motifs, centered on the mismatch,

often had a peculiar defect in their chromatograms. Such defects

can arise when the florescent dyes used in DNA sequencing have

sequence specific incorporation differences which lead to unevenly

spaced or shaped peaks in the electronic trace chromatogram after

capillary electrophoresis. Figure 2 shows a comparison of

representative chromatograms: one with the ‘‘AGA-to-AAA’’

motif (Figure 2A) and one that matches the consensus genome

(Figure 2B). A mismatch is highlighted at position 244 and

matches position 90 in the control. We can see that every peak is

preceded by a small, identical sub-peak. There is also another

‘‘AAA’’ motif at position 253 which corresponds to an ‘‘AGA’’

motif at position 99 in the control. Independently, we noticed that

‘‘AGA’’ sequences are prone to form a pattern of high, low, high

intensity peaks, hence the ‘‘G’’ has a low peak while the preceding

and the subsequent ‘‘A’’ peaks are much taller (see control). The

combination of these two common effects, in one trace, leads to

occurrences where the sub-peak from the high ‘‘A’’ can dominate

the ‘‘G’’ resulting in a G-to-A mismatch in an ‘‘AGA’’ context.

We used strict criteria to construct the artifact set, thus the

actual number of those errors is probably much larger than the

260K we found and may disrupt the accuracy of genomic

assemblies. Indeed, we found evidence that these common errors

influence the consensus sequence of a few genomes. The number

of runs of G-to-A mismatches with the AGA motif was much

higher in genomes with high coverage, where each position in the

reference genome has many traces to support each call. In these

Figure 1. Evidence for editing events emerges by enrichment for clusters of mismatches. (A) Human traces are mined for clusters of
mismatches of the same type. Shown is the percent frequency of clusters by type. The G-to-A mismatch type becomes more dominant with
increasing numbers of mismatches (as does T-to-G). (B) Runs of five (or more) mismatches by type and sequencing center with an identical 3bp motif
centered on each mismatch. Data from eight sequencing centers is shown. All of these centers had at least 1000 examples that meet the above
criteria. (C) Clusters with three (or more) mismatches with at least two very high quality mismatches (Phred 40). A mismatch spectrum consistent with
editing can be observed.
doi:10.1371/journal.pgen.1000954.g001

Common Sequencing Error, RNA and DNA Editing
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cases, the reference is determined according to the ‘‘majority

voting’’ of all the supporting traces. Since the reported type of

mismatch is much less abundant than the correct call, the

reference will have the correct ‘‘G’’ in virtually all cases. In

genomic projects with lower coverage, however, such events can

become part of the reference genome and therefore could not have

been detected by our method. Indeed, we found that genomes

with lower coverage tended to be free of G-to-A mismatches. This

effect is most striking in drosophila where mean coverage of the

reference by aligned traces is only 2.5 (See Table 1 and Table 2).

This finding suggests the integration of these sequencing errors

into the reference genome in many cases.

Another effect of this error was found in the assignment of single

nucleotide polymorphisms (SNPs). A sequencing error in one

genomic trace will not usually lead to the determination of a SNP

at this position. However, since many of the ‘‘AGA’’ mismatches

have a quality score of phred 20 or higher, which is considered an

acceptable quality with an estimated error probability of only 1%

[32] we suspected that some of them might be classified as SNPs.

Indeed, we found 46,483 traces with 3bp G-to-A motif in runs of

five or more. Of ,260K G-to-A mismatches with this motif, we

found that 28,722 appear as SNPs in dbSNP (The Single

Nucleotide Polymorphism database) and 11,145 even appear in

the HapMap dataset and were genotyped in four populations.

Strong support that the vast majority are actually errors and not

real SNPs comes from the observation that 10,532 (94.5%) of the

mismatches that appear in HapMap are homozygous for the

reference allele (G) with no representation of the other SNP allele

in any of the 90 individuals that were genotyped in the Yoruba

population, a population that is typically the most diverse. By

contrast, only 521,405 out of the 3,782,819 (13.8%) of SNPs that

appear in the HapMap show a similar lack of variability (p-

value%e-200, Fisher’s Exact Test). Over-representation of G as

the observed allele in A/G SNPs (or C in C/T SNPs) in the group

of SNPs that have only one observed allele, when comparing it to

the SNPs with two observed alleles, suggests that up to 1.8% of the

HapMap SNPs are a result of the artifact and are not real SNPs

(data not shown) the ratio is probably larger in dbSNP which is less

curated.

Once we realized that the majority of ‘‘AGA’’ and ‘‘AGG’’

mismatch motifs were caused by a sequencing error, we

endeavored to eliminate such errors from our dataset. To do so,

we incorporated phred quality scores, also available from the trace

archive. We obtained quality scores for all traces with a run of

three or more substitutions of the same type. This set contains 20.7

million traces out of the 300 million that aligned uniquely. We

then applied various quality score thresholds on to the data (see

Materials and Methods). At quality scores above phred 40, where

the chances of incorrect calls are just 1 in 10,000 [33], the number

of G-to-A substitutions becomes roughly equivalent to C-to-T, A-

to-G and T-to-C substitutions, in agreement with the current

Figure 2. G-to-A sequencing artifact. (A) A chromatogram, from a trace matching the criteria in Figure 1B. An AAA motif is centered at position
244 and corresponds with position 90 in the control; another AAA motif occurs at position 253 which corresponds to position 99 in the control. It can
be seen that each peak in this chromatogram is preceded by a smaller, identical sub-peak. This has the effect of making it likely that a normally small
peak (see control) will be overwhelmed by the sub-peak of the adjacent, normally tall peak (see control). (B) A chromatogram from a control trace
that matches the reference—position 90 is the center of an AGA motif.
doi:10.1371/journal.pgen.1000954.g002

Table 2. Editing enriched traces—higher quality.

Reference genome
version G-to-A C-to-T A-to-G T-to-C Other

anoGam1 2836 2830 2907 3098 440

calJac1 3012 3362 2735 3133 145

canFam2 3170 3777 3270 3027 212

dm3 1 1 0 1 0

galGal3 1290 878 1026 1760 48

hg18 17719(82) 16778(72) 13701(188) 15301(419) 700(8)

mm9 1801(219) 1644(272) 1346(276) 1411(346) 76(11)

panTro2 3485 3120 2918 4046 240

fr2 467 449 390 482 45

xenTro2 1483(202) 1574(262) 1461(1289) 1631(1066) 269(28)

Number of traces by mismatch type with two or more mismatches at or above a
quality threshold of phred 40, spanning 100bp or more. All mismatches belong
to runs of three consecutive mismatches of the same type of any quality. The
number of traces from the next largest substitution type, or the largest
substitution type if it is not one of A-to-G, T-to-C, G-to-A, or C-to-T, is shown in
the ‘‘other’’ column for comparison. The numbers in parentheses indicate traces
of RNA origin. See Materials and Methods for more details.
doi:10.1371/journal.pgen.1000954.t002

Common Sequencing Error, RNA and DNA Editing
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knowledge of mutations and the expected distribution of SNPs.

This suggests that the systematic sequencing error we detected is

diminished at such high phred values and traces are further

enriched for genuine editing sites (Figure 1C).

DNA editing
Recently, DNA editing has been reported to be a powerful

defense mechanism against the threat of genomic instability

imposed by viruses and retrotransposons. However, the full

magnitude of the phenomenon in vivo is not yet elucidated. We

wanted to investigate whether our curated dataset of G-to-A

mismatch clusters may actually include some examples of DNA

editing. To test this assumption we looked at mismatch clusters in

the mouse genome. We found that the total number of A-to-G and

T-to-C mismatches was similar to the number of C-to-T and G-to-A

mismatches (7,860 vs. 9,799). However, in genomic regions of IAP

(intracisternal A-particle) elements, for which a few members are

still active, there was a significant dominance of the G-to-A / T-to-C

mismatches (114 compared to 49 A-to-G / T-to-C) (p-value of

0.00018, Fisher’s Exact Test). This supports the idea that the origin

of the mismatches is a result of editing by APOBEC after reverse

transcription of the retrotransposons. An example of a DNA editing

candidate, in a mouse retrotransposon, is given in Figure S1.

Active retrotransposons exist in human. For example, two

edited HERVK elements have been recently discovered [34].

Thus, we applied our approach to human genomic sequences.

Indeed we found evidence for DNA editing. We detected 247

events of G-to-A / C-to-T mismatch clusters versus 129 A-to-G /

T-to-C events (while overall in the genome the ratio is 91,120 to

79,401 respectively) (p-value of 0.0000017, Fisher’s Exact Test).

One such candidate of editing by APOBEC in human retro-

transposon HERVL-A1 is shown in Figure 3. An additional

example for a probable editing event in a human retrotransposon

is present in Figure 4 where clusters of G-to-A mismatches are

found in the most active SINE family in human, AluY. All of these

mismatches have high sequencing quality (Phred 40 or greater).

Moreover, previously it was demonstrated that APOBEC3 can

inhibit retrotransposition of Alu [35].

The actual number of edited traces in the trace archive is most

probably much higher than we have found, for several reasons:

More than half of all traces were rejected with our alignment

parameters, at least partially due to the fact that DNA editing

tends to lead to hyper-mutation in its target sequences [31].

Furthermore, we expect that a significant number of traces from

retrotransposons, which are known targets for the APOBEC in

their cDNA stage, are too redundant to align uniquely. Indeed, we

Figure 3. DNA editing in human HERVL-A1. Trace 1735626615 aligns uniquely to chromosome 2 where the known retrotransposon HERVL-A1 is
located (chr2: 100697697–100700125). A cluster of 15 G-to-A mismatches (worst mismatch phred 35; best mismatch phred 49) suggests that the trace
originates from an edited version of the element. Support for the APOBEC source of the editing comes from the preferred GG-to-AG motif (11 out of
the 15 cases) and GA-to-AA (remaining 4 cases) which is the dinucleotide context (in the same order) in an HIV hypermutated genome, and is the
sequence motif of APOBEC3G and APOBEC3F [31].
doi:10.1371/journal.pgen.1000954.g003

Common Sequencing Error, RNA and DNA Editing
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found that in many cases the second best alignment of a putatively

edited trace almost qualified for the 97% cut-off criteria, meaning

that the trace was close to being rejected for having multiple

possible genomic alignments. Thus, future work should find ways

to curate the data in a less stringent manner so that editing, in

traces with multiple hits to the genome or that do not meet our

identity cut-offs, can still be detected. This would foster the

development of a more complete picture of the occurrence of

DNA editing in mammalian genomes.

RNA editing
RNA editing is a general term for the modification of RNA after

it is transcribed from DNA. The most common modification in

mammals is A-to-I editing by the ADAR protein family. As I

(Inosine) is read as a G (Guanosine) after sequencing, this editing

type manifests itself as an A-to-G substitutions after cDNA

sequencing and alignment to the original genomic locus. Recently

it was found that the human genome harbors large numbers of

editing events that are located in clusters, mainly in Alu repeats

[9,10,11,12]. The origin of mismatch clusters in some of our

traces, therefore, can be the result of ADAR activity.

A fraction of the human, mouse and Xenopus tropicalis sequences

obtained from the trace archive are labeled as derived from RNA,

rather than DNA. In total, after passing the stringent alignment

criteria, 250K, 513K and 454K traces, respectively, of those

genomes have RNA origin, thus A-to-G or T-to-C mismatches in

these traces could be the result of RNA editing. No over-

representation (38% of the total MM clusters) of A-to-G or T-to-C

clusters appear in the RNA trace set (Figure 5A), but as

demonstrated above, the vast majority of mismatches are probably

derived from a sequencing artifact. To overcome this issue we

filtered those RNA traces and generated a higher quality, enriched

set which required 3 consecutive mismatches of any quality and

two mismatches separated by at least 100bp of phred 40 or

greater. When we consider our higher quality, editing enriched set

(See Figure 5B), we find, in human, over-representation of

mismatches that can be the result of RNA editing (A-to-G and

T-to-C), a total of 79% of the mismatch clusters are now of this

type (p-value 1.5e-119; Fisher’s Exact Test.) These observations

suggest that RNA editing is the cause of the mismatches in the

higher quality RNA sets.

Further evidence that the higher quality set is indeed a result of

RNA editing comes from two additional observations. First, a

significant under-representation of ‘‘G’’ immediately upstream to

the editing sites which is in agreement with the known sequence

motif of the ADAR proteins [36]. In the enriched, higher quality

set there was a G upstream of the mismatch in only 7.85% (265

out of 3,374) of the cases versus 30.3% (41,661 out of 137,313) in

the non-enriched set (p-value 1.9e-143) [36,37](See Figure 6).

Second, most known editing events in human are located in Alu

Figure 4. DNA editing in human AluY. Example of possible DNA editing in human chr21:40977741–40978045. Alignment of trace 1745107496 to
the human reference genome lead to large number of G-to-A mismatches which are indications for possible DNA editing in this retrotransposon. All
the mismatches are located in high quality sequence positions, reducing the possibility of sequence errors.
doi:10.1371/journal.pgen.1000954.g004

Common Sequencing Error, RNA and DNA Editing

PLoS Genetics | www.plosgenetics.org 6 May 2010 | Volume 6 | Issue 5 | e1000954



Figure 5. Evidence for RNA editing in the cDNA traces. (A) While no over-representation of the RNA derived mismatches (A-to-G and its
complimentary T-to-C) clusters are observed in the full set of RNA traces in human (n = 238,370) and Xenopus tropicalis (n = 444,526), (B) significant
over-representation of RNA editing type is observed in high quality cDNA sequencing set of human (n = 769; p-value 1.5e-119; Fisher’s Exact Test.)
and Xenopus (n = 2,847; p-value%e-200). (C) No such over-representation was observed in the set of high quality DNA traces (human: n = 64,191;
Xenopus: n = 3,471). These observations support that RNA editing is the cause of the mismatches in the sets of higher quality cDNA.
doi:10.1371/journal.pgen.1000954.g005

Figure 6. ADAR signature in the cDNA edited traces. Significant under-representation of ‘‘G’’ immediately upstream to the editing sites which
is in agreement with the known sequence motif of the ADAR proteins.
doi:10.1371/journal.pgen.1000954.g006

Common Sequencing Error, RNA and DNA Editing
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repeats and indeed 72% of the mismatches in the higher quality set

are located in Alu repeats while Alu represents only about 10% of

human DNA (p-value of 1.7e-110).

Detection of RNA editing from short EST sequences has proven

to be challenging, due to their relatively low sequence quality [38]

and indeed, almost all A-to-I sites found until now were detected

from alignment of a small set (,200,000) of full length RNAs

[9,10,11,39]. In the present work we used the human EST data

deposited in the trace archive (currently including 2M ESTs which

are mostly derived from poly-A mRNA) and found thousands of

potential editing sites. Only 156 sites out of the 3374 sites in the

higher quality, enriched set overlap with the known set of about

20,000 editing sites reported by alignment of RNA to the genome

(total of 3,218 new sites). This suggests that ESTs, after accounting

for sequence quality, can serve as a rich source for RNA editing

site predictions.

Of the organisms we studied, only human, mouse and Xenopus

tropicalis had significant numbers of RNA traces. If we use our

enriched, higher quality set as a proxy for the total number of

editing events, our data shows that in mouse, editing occurs at an

estimated rate of 1 mismatch per 100,000 unique, expressed base-

pairs. In human, in agreement with previous publications

[11,39,40], our figures show ten-fold higher frequency. A striking

picture emerges in Xenopus tropicalis. A closely related species,

Xenopus laevis, is a principal model organism for the study of RNA

editing as ADAR activity was first described in Xenopus laevis

oocytes [41] and recently, research on hyper edited sequences in

Xenopus laevis lead to the suggestion that editing can down-regulate

gene expression in trans [42]. Only one endogenous hyper editing

target is known in Xenopus - basic fibroblast growth factor (bFGF)

[43,44]. Using our approach for detection of RNA editing we have

observed significant over-representation of A-to-I derived mis-

match in Xenopus tropicalis. In the enriched set 83% of the

mismatch clusters are of the A-to-G and T-to-C type, while these

types contribute only 39% of the mismatch clusters in the non-

enriched set (p-value%e-200) (Figure 5). This strongly suggests that

the mismatches in the enriched set are caused by RNA editing.

The Xenopus tropicalis genome has not been completed yet and

the annotation is still partial. Thus, we cannot determine if the

editing sites are located in one type or a small number of genomic

repetitive regions. Interestingly, we found that 10001 out of the

total 18161 mismatches in our editing-enriched, higher quality set

occur in clusters of ten sites or more, larger than the common

clusters detected in human RNAs sequences which have a typical

size of less than 6 mismatches. By further examining a few

mismatch clusters, we found that they tend to occur in palindromic

regions that can form tight double stranded RNA. These

structures are known to be required for ADAR editing (See

Figure 7). As in human, we observed the ADAR signature of low

abundance of ‘‘G’’ upstream of editing sites (5.8% for the higher

quality enriched set versus 24% in the non-enriched set) (Figure 6,

Tables S1, S2, S3, S4.). A full list with genomic coordinates

of RNA editing sites in human and Xenopus is given in

Datasets S1, S2.

Figure 7. RNA editing in Xenopus tropicalis. (A) Evidence for RNA editing can be seen in this locus as multiple traces of RNA origin align to it with
numerous A-to-G mismatches. The trace accession numbers and their coordinates are given in the multiple alignment. (B) Predicted RNA structure of
the genomic locus indicates a long and stable dsRNA structure which is a favorite target for editing by ADARs. Each editing site from the multiple
alignment is marked by an arrow. The length of the arrow corresponds to the editing level.
doi:10.1371/journal.pgen.1000954.g007
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Discussion

The NCBI trace archive serves as a repository of raw data for

the assembly of consensus genomes. Recently, it was utilized for a

different purpose in the search for structural variation in the

human genome [45]. Here, we show that it can also be used in the

search for DNA and RNA editing. In the future, sequencing

results deposited in the NCBI short-read archive might shed more

light on these phenomena. Shorter reads, however, will pose a

more challenging analysis problem.

Recently, we did an initial analysis of Illumina’s human

resequencing reads and the SOLiD reads from the same

individual. These reads are available at the NCBI short-read

archive and are the basis for the first individual African consensus

genome [46,47]. Given the importance of read-length and quality

scores on the outcome of our current work, the current SOLiD

and Illumina reads represent interesting trade-offs for the

detection of editing. While Illumina’s current read lengths are

generally longer than SOLiD, the latter has much higher per-base

quality. Adapting the techniques presented here to this new data

presents an interesting opportunity for future research.

The availability of computational resources for carrying out our

analyses was essential to this project, as large computational effort

was needed, six terabytes of disk for intermediate data and more

than five ‘‘node years’’ of CPU time. With further computational

effort, combining existing data in the trace archive with next

generation sequencing data sets from multiple sequencing

platforms and chemistries, it should be possible to greatly improve

genomic databases and eliminate the sequencing errors reported

here.

By using well-calibrated quality scores and selecting traces with

clusters of consecutive mismatches, we are able to investigate the

scope of RNA editing sites in human and other genomes. The

application of this technique in the search for editing events will

make many large EST datasets more accessible for other

organisms where quality scores are available. Currently, only a

very small number of organisms, with large sets of full length RNA

sequences, have been the subject of large-scale editing studies.

Using quality scores, many additional genomes can be surveyed

for editing with the opportunity for new discoveries in this

emerging field.

As a demonstration of the value of using quality data for ESTs,

we are able to find a large number of candidate RNA editing

events in Xenopus tropicalis. This discovery makes X. tropicalis the

non human organism with the largest number of known editing

sites so far. Since Xenopus is already an important model

organism for the research of RNA editing, this new data-set could

help foster new discoveries in this field.

Despite the identification of thousands of newly discovered

RNA editing sites in the current work, it is reasonable to believe

that the actual number of editing sites is still significantly under-

estimated. Support for this assertion comes from the stringency of

our parameters: including length of alignment, percentage of

identity and exclusion of insertions or deletions. These choices

most likely limited the subset of EST data that we analyzed.

Refinement of these criteria could lead to more comprehensive

detection of RNA editing levels and, due to the breadth of EST

data, even permit the comparison of editing levels in different

tissues and disease conditions.

In this work we also found evidence for recent or active events

of DNA editing. While the true scope of these phenomena must be

explored in future work, our approach, including the use of strict

alignment criteria and quality scores, has proved effective at

finding many intriguing examples. Using different parameters,

mainly lower cutoffs and relaxation of the requirement for unique

alignments, more DNA editing sites could be detected in the trace

archive. Careful investigation, most likely combined with next-

generation sequencing experiments, will help unravel the mech-

anisms of retroelement defenses in a variety of organisms.

Moreover, DNA editing is known not to be limited to retro-

transposons and can take place in other genomic loci. The most

recognized example is the AID protein, which is a member of the

AID/APOBEC protein family, and targets single stranded DNA

in the immunoglobulin locus in B-cells. Similar approaches to the

ones used here provide an exciting opportunity to survey how

leakage of DNA editing events, outside retroelements, or

immunoglobulins could cause many simultaneous mutations in

the genome, a process that can eventually lead to cancer.

Materials and Methods

We obtained all traces for 10 organisms (600M traces in total),

in FASTA format, at the NCBI Trace Archive [48] (http://www.

ncbi.nlm.nih.gov/Traces/home/, May 2008) and aligned them

with their reference genomes obtained from the UCSC Genome

Browser [49]. We did not attempt to filter the initial set of traces

by type which would have required the combination of FASTA

format sequences with auxiliary information that provides the

trace type. Instead we used strict placement criteria, described

further below, to obtain the initial dataset summarized in Table 1.

We inspected chromatograms for individual traces using the tools

provided at the trace archive. We further downloaded SCF raw

binary data from the archive, by hand, and analyzed them using

Phred version ‘‘0.071220.b’’ [32]. This Phred version can generate

an alternate base call for every position in the trace. This results in

two sets of sequences for any given trace. By aligning the two

sequences from the same trace separately, and looking for a large

alignment with a single base-pair offset, we can identify the

sequencing error from Figure 1. This might be the basis for an

automated test to eliminate this particular sequencing error.

We augmented the above data by downloading auxiliary

information and quality scores for a subset of about 20.7 million

traces which were, potentially, enriched for editing events. We

used runs of three consecutive mismatches of the same type as the

enrichment criteria. The number of high quality traces for each

editing type (G-to-A, C-to-T, A-to-G, and T-to-C) - is listed in

Table 2. For all organisms, except for mosquito and fly, there are

more than ten times the number of examples from these four types

than the next most frequent type. Furthermore, we extracted the

lowest quality subset of these traces enriched for editing to be used

for comparison purposes. The number of traces of each editing

type from this set, G-to-A, C-to-T, A-to-G, T-to-C, as well as the

most frequent or next most frequent type, is listed in Table S5. For

Mouse, Human, and Xenopus tropicalis these tables also provide (in

brackets) the number of traces that likely originated from RNA.

The complete set of mismatches found in these two sets of traces is

available to the community as two files, ‘‘all.c2.t100.q40+.bed.gz’’

(5.95MB) and ‘‘all.c2.t100.q0-9.bed.gz’’ (122MB), respectively. The

first set is included on the journal’s web-site while the second file is

available, on request, from the authors. The files contain: the

genomic coordinate of the mismatch, the mismatch type, the position

on the trace, the quality of the mismatch, the length of the run in

which the mismatch was found, the sequencing center, the trace id,

the organism, and the likely origin of the trace, DNA or RNA. In

order to be counted, each trace must have at least two mismatches

with phred 40 or greater that are separated by 100bp or more. Only

mismatches with phred scores of 40 or greater are included in the

high quality set (see Figures S2, S3, S4 for more data). In the lower
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quality set, at least two mismatches with phred less than 10 separated

by 100bp or more are required. Only mismatches with phred scores

of less than 10 are included in the low quality set.

For sequence alignment, we used MegaBlast [50] version 2.2.13

from NCBI. The parameters used were: -W60 (a 60bp seed was

selected as a good compromise between computational efficiency

and sensitivity, given our requirement of high identity to the

reference), -s 400 -p 97 (at least 400bp with 97% identity) -F F (no

filtering) -G25 -E10 (these gap and extension penalties preclude

insertions and/or deletions in matches). In addition, only unique

alignments matching the above criteria were retained. These

parameters were chosen for simplicity of subsequent analysis and

to reduce the already onerous computational requirements.

Two computational clusters were used to perform the analysis.

These clusters were built to assist in deploying data intensive web

services [51]. In total, the clusters use a variety of older and newer

hardware and consist of 96 nodes w/ (predominantly) 461.8GHZ

Opteron cores, 4–16GB of RAM per node, and 0–3750GB disk per

node. The workflows to generate the initial analysis of the data are

written in Perl. The human analysis consumed 347 node days and

530GB of space which was reduced to 22GB of compressed data

after parsing the MegaBlast output and discarding redundant

matches. A summary of the traces and space/time used by the

computation can be found in Table 1. The startling amount of

intermediate space required by the mouse analysis, greater than 4.2

terabytes, suggests that many traces in mouse did not place uniquely

and consumed large amounts of space, even with our strict chosen

cut-offs and using gzip compression on the output of MegaBlast.

Supporting Information

Dataset S1 Enriched set of editing candidates.

Found at: doi:10.1371/journal.pgen.1000954.s001 (5.95 MB ZIP)

Dataset S2 Xenopus RNA editing sites.

Found at: doi:10.1371/journal.pgen.1000954.s002 (0.36 MB

TXT)

Figure S1 DNA editing of mouse MMTV-int retrotransposons

(both clone mates). DNA editing in a mouse retrotransposon. Two

traces (ti#71971190 and ti#71976546 which are mate pairs from

one sequencing clone) are aligned to the mouse genomic full length

MMTV-int retrotransposon (ERVK family) locus (chr6:68193707-

68200951). Both aligned with a large number of G-to-A

mismatches, an indication of DNA editing in this active retro-

transposon. Additional mismatches are present as well, probably

due to the activity of DNA damage proteins.

Found at: doi:10.1371/journal.pgen.1000954.s003 (0.03 MB

DOC)

Figure S2 Substitution spectrum, by quality score, sampled from

runs of three substitutions of the same type in ten organisms. In all

organisms examined the abundance of G-to-A mismatches

dominates all other substitution types for mismatches with Phred

quality scores between 10 and 40. From Phred40 and onward the

spectrum becomes more even with G-to-A, C-to-T, A-to-G and T-

to-C all roughly the same with each of those mismatch types

representing 20% of all substitutions.

Found at: doi:10.1371/journal.pgen.1000954.s004 (0.06 MB TIF)

Figure S3 Absolute abundance of mismatches in human w/

100 bp runs. Shows absolute abundance of runs from Figure 1A.

Found at: doi:10.1371/journal.pgen.1000954.s005 (0.03 MB TIF)

Figure S4 Absolute abundance of mismatches in human. Shows

absolute abundance of runs from Figure 1A, removing the 100 bp

restriction.

Found at: doi:10.1371/journal.pgen.1000954.s006 (0.08 MB TIF)

Table S1 Summary of traces without enrichment (RNA origin)

by mismatch type. ‘‘Other’’ indicates the most abundant type

other than those listed. No enrichment for the ADAR derived

mismatches are observed in the full set.

Found at: doi:10.1371/journal.pgen.1000954.s007 (0.03 MB

DOC)

Table S2 Sequence context preceding mismatch (enriched,

higher quality, RNA). There is a clear under representation of

the ‘‘G’’ nucleotide upstream to the mismatch, in agreement with

known ADAR signatures in both human and Xenopus. RNA

editing is known to be less common in mouse, thus, this is

consistent with a lack of depletion.

Found at: doi:10.1371/journal.pgen.1000954.s008 (0.03 MB

DOC)

Table S3 Sequence context preceding mismatch (not enriched,

RNA). The position preceding an edited site is known to be

depleted in ‘‘g’’. We looked at the position preceding an A-to-G or

T-to-C mismatch in RNA derived traces. The depletion is clearly

visible in the enriched set (see Materials and Methods) but no such

signature was observed in the complete set of RNA derived traces.

Found at: doi:10.1371/journal.pgen.1000954.s009 (0.03 MB

DOC)

Table S4 Summary of Traces without enrichment (RNA origin).

‘‘unique bp’’ indicates the total number of genomic positions

covered by the placed traces of the RNA traces.

Found at: doi:10.1371/journal.pgen.1000954.s010 (0.03 MB

DOC)

Table S5 Editing enriched traces-lower quality. Number of

traces, by mismatch type, with two or more mismatch below a

quality threshold of Phred 10, spanning 100 bp or more. For

Mouse, Human, and Xenopus tropicalis these tables also provide (in

brackets) the number of traces that likely originated from RNA.

See Materials and Methods for more details.

Found at: doi:10.1371/journal.pgen.1000954.s011 (0.03 MB

DOC)
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