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Abstract

Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral
signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-kB and IRF3 pathways.
Recent work has shown that the IkB kinase (IKK)c scaffolding protein is the final common adapter protein required by
RIG-I?MAVS to activate divergent rate-limiting kinases downstream controlling the NF-kB and IRF3 pathways. Previously we
discovered a ubiquitous IKKc splice-variant, IKKcD, that exhibits distinct signaling properties.

Methodology/Principal Findings: We examined the regulation and function of IKKc splice forms in response to ssRNA virus
infection, a condition that preferentially induces full length IKKc-WT mRNA expression. In IKKcD-expressing cells, we found
increased viral translation and cytopathic effect compared to those expressing full length IKKc-WT. IKKcD fails to support
viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-
viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I?MAVS or TNFa-induced
canonical NF-kB activation is preserved in IKKcD expressing cells. Increasing relative levels of IKKc-WT to IKKcD (while
keeping total IKKc constant) results in increased type I IFN expression. Conversely, overexpressing IKKcD (in a background of
constant IKKc-WT expression) shows IKKcD functions as a dominant-negative IRF3 signaling inhibitor. IKKcD binds both
IKK-a and b, but not TANK and IKKe, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKcD
displaces IKKcWT from MAVS explaining its domainant negative effect.

Conclusions/Significance: Relative endogenous IKKcD expression affects cellular selection of inflammatory/anti-viral
pathway responses to ssRNA viral infection.
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Introduction

Activation of the mucosal innate immune response in sentinel

epithelial cells is vital to the resolution of mucosal viral infection.

Here, viral replication intermediates are sensed by cytoplasmic

pattern recognition receptors, an event that activates two

important signaling pathways, one mediated by the NF-kB

transcription factor controlling inflammatory cytokine expression,

and the second mediated by IRF3 controlling anti-viral type I

IFN-a and -b expression. The coordinated expression of these two

pathways is responsible for limiting viral replication and activating

the adaptive immune response. Significant advances have been

made in identifying the structure of these two pathways and their

mechanism of control.

Cytoplasmic RNA virus infections, including Sendai (SeV)-,

influenza-, Japanese encephalitis-, respiratory syncytial (RSV)- and

others, produce 5’triphosphate modified- or ds-RNA products

during their replication cycle. These ‘‘non-self’’ RNA species are

bound by RIG-I, a cytoplasmic DExD/H box RNA helicase [1–3].

RNA-bound RIG-I is rapidly polyubiquitylated by E3 ligases

(TRIM25 and Riplet/RNF13) that catalyze addition of Lys 63-

linked ubiquitin polymers into the RIG-I?NH2 terminus [4,5]. Lys

63-ubiquitinated RIG-I, in turn, associates with the mitochondrial

antiviral signaling (MAVS) protein via its NH2 terminal caspase

recruitment domain (CARD), producing an activated dimeric

complex [6]. The assembled RIG-I?MAVS complex, in turn,

recruits the TNF Receptor-associated factors (TRAFs)- 2, -3 and -6

to multiple TRAF-interaction motifs located in the MAVS proline
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rich domain [7]. This complex, serves as a scaffold for recruitment

of signaling adapters mediating activation of the divergent NF-kB

and IRF3 pathways. Downstream activation of the IRF3 pathway

results in dramatic upregulation of RIG-I expression and signal

amplification.

RIG-I?MAVS activates two distinct pathways controlling NF-kB,

termed the canonical and cross-talk pathways. The canonical

pathway is mediated by activating the IKK complex, a signaling

complex containing the two closely related kinase subunits, IKKa
and IKKb, and a third regulatory subunit, IKKc [8]. In the process

of IKK activation, IKKc is required for recruiting the catalytic

IKK-a and b subunits to activated RIG-I?MAVS, where they are

serine phosphorylated in their activation loops. IKK activation

effects the phosphorylation and inducible degradation of the IkB

inhibitor, resulting in nuclear translocation of the NF-kB/RelA

transcriptional activator [9,10]. Here, activated nuclear NF-kB

induces expression of inflammatory cytokines such as Grob, IL-6,

IL-8 and others [11,12]. By contrast, the cross-talk pathway is

mediated by RIG-I?MAVS direct interacting with the IKKa-NF-

kB inducing kinase (NIK) complex, in an IKKc -independent

manner [13]. This pathway, time-delayed relative to the canonical

pathway, results in RelA and RelB release from cytoplasmic-

sequestered p100. In this way RIG-I?MAVS induces two effector

arms converging on NF-kB, producing mucosal inflammation.

RIG-I?MAVS also induces the IRF3 pathway, a pathway

controlled by a complex of two IKK-related kinases, TANK-

binding kinase 1 (TBK1) and an inducible subunit, IKKe [14].

Here, the TRAF-associated NF-kB activator (TANK) links

TBK1and IKKe with upstream TRAF molecules [15,16].

Importantly, IRF3 activation also requires the IKKc signaling

adapter; in IKKc-deficient cells, IRF3 activation is also abolished

in response to different RNA viruses [15]. As a result of IRF3

activation, the expression of type I IFNs results in a potent

upregulation of RIG-I and its ubiquitin ligases, thereby potenti-

ating coordinate signaling by the NF-kB and IRF3 innate

signaling responses [17]. In this way, IKKc serves as the final

adaptor molecule in RIG-I?MAVS signaling that is shared

between the canonical NF-kB and the IRF3 pathways.

In previous work, we identified an alternatively spliced IKKc
isoform, termed IKKcD. IKKcD is missing a crucial region in the

NH2 terminal coiled coil domain whose functional effect is to

couple IKK to distinct upstream signals. Interestingly, IKKcD
efficiently mediates cytokine-induced canonical NF-kB activation

by associating with the IKKa/b kinases, and mediates TAK/TAB

and NIK inducible NF-kB activation, but is resistant to HTLV

Tax [18]. Here we investigate its signaling role in response to

ssRNA infection. In response to RSV infection, we find that IKKc
WT isoform is potently upregulated relative to the IKKcD splice

form. In cells only expressing IKKcD, enhanced viral replication

and cytopathic effect were seen due to deficient IRF3 signaling

and type I IFN production. IKKcD functions as a dominant-

negative inhibitor of IRF3 signaling being unable to couple to

the TANK-IKKe complex and displaces IKKc from activated

RIG-I?MAVS. These data suggest that endogenous expression of

IKKcD is involved in balancing inflammatory and anti-viral

signaling response to ssRNA infection.

Materials and Methods

Cell Cultures
Human A549 pulmonary type II epithelial cells (American Type

Culture Collection [ATCC]) were grown in F12K medium (Gibco)

with 10% fetal bovine serum (FBS), penicillin (100 U/ml), and

streptomycin (100 g/ml) at 37uC in a 5% CO2 incubator. Wild type

and IKKc2/2 [19] MEFs were cultured in Eagle’s minimum

essential medium (Gibco) with 0.1 mM nonessential amino acids,

1.0 mM sodium pyruvate, and 10% FBS. IKKc and IKKcD
reconstituated stable MEFs were described previously [18]. HEK293

cells were cultured in Eagle’s minimum essential medium (Gibco)

with 0.1 mM nonessential amino acids, 1.0 mM sodium pyruvate,

and 10% FBS.

Virus Preparation and Infection
The human RSV A2 strain was propogated in Hep2 cells and

purified on sucrose cushion gradient [1]. Cells were infected at an

MOI of 1.0 for indicated times. Sendai virus was purchased from

Charles River Laboratory. Cells were infected with 100 hemag-

glutinin units/ml [20].

Plasmid Construction
Expression vectors encoding Flag epitope-tagged RIG-I?NH2

terminus and Flag eiptope-tagged MAVS were described [21,22].

pEF6-Flag-IKKa and pEF6-Flag-IKKb were described in [18].

Myc-epitope tagged IKKc and IKKcD were constructed by

cloning PCR generated IKKc cDNA into BamH1/HindIII sites

of pcDNA3Myc. The PCR primers used were: 59-ATCAATG-

GATCC ATGGAACAGAAGTTGATTTC CGAAGAAGAG

CTCGGATCCATGAATTAGGCA CCT-39 (upstream, Bam

site underlined) and 59-AGTATCAAGCTTCTACTC AATG-

CACTCC ATGACAT-39 (downstream). pEGFP IKKc and

IKKcD were constructed by cloning the same cDNAs amplified

using the same upstream primer and the downstream primer 59-

AGTATCAAGCTTCTC AATGCACTCC ATGACAT-39 (to

remove the stop codon) into Bam H1/HindIII digested

pcDNA3EGFP, encoding a EGFP fusion on the COOH terminus

of the IKKc isoform. Plasmids were purified on Qiagen columns

and sequenced for authenticity.

Transfection
Two million freshly isolated cells were transfected in suspension

with indicated plasmids according to the manufacturers recom-

mendation (Amaxa). After transfection, cells were immediately

transferred to DMEM and cultured for 24 h before treatment.

Luciferase reporter assays were performed as previously described

[23]. Data represents mean6SD of triplicate plates of normalized

luciferase reporter activity.

Quantitative Real-Time PCR (QRT-PCR)
Total RNA was extracted using acid guanidium phenol

extraction (Tri Reagent; Sigma). For IFN and ISG analyses,

1 mgm of RNA was reversely transcribed using Super Script III in

a 20 ml reaction mixture. One ml of cDNA product was diluted 1:2,

and 2 mL was amplified in a 20 mL reaction mixture containing

12.5 mL of SYBR Green Supermix (Bio-Rad) and 0.4 mM each of

forward and reverse gene-specific primers (Supplementary
data, Table S1), aliquoted into 96-well, 0.2-mm thin-wall PCR

plates, and covered with optical-quality sealing tape. The plates

were denatured for 90 s at 95uC and then subjected to 40 cycles of

15 s at 94uC, 60 s at 60uC, and 1 min at 72uC in iCycler

(BioRAD). The IKKc isoform specific QRT-PCR assays were

performed in triplicate in an ABI Prism 7000 Sequence Detection

System using the SYBR Green PCR Master Mix (ABI #4364344)

as specified by the manufacturer. The final primer concentration

was 900 nM (Supplementary data, Table S1). The PCR

assays were denatured for 10 min at 95uC, followed by 40 cycles of

15 s at 95uC and 60 s at 60uC. After PCR was performed, PCR

products were subjected to melting curve analysis to assure a single
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amplification product was produced. Quantification of changes in

gene expression was using the DDCt method using uninfected cells

as a calibrator [1].

Electrophoretic Mobility Shift Assay (EMSA)
A total of 35 mg whole cell extracts (WCEs) were incubated in

DNA-binding buffer containing 5% glycerol, 12 mM HEPES,

80 mM NaCl, 5 mM DTT, 5 mM MgCl2, 0.5 mM EDTA, 1 mg

of poly (dA-dT), and 100,000 cpm of 32P-labeled double-stranded

oligonucleotide containing NF-kB binding sites [24] and IRF3

binding site [1] in a total volume of 25 mL. After fractionation in

TBE acrylamide, gels were dried and exposed to BioMax film

(Kodak) for autoradiography.

Native PAGE for IRF-3 Dimer Formation
50 mg protein was fractionated by 7% native acrylamide gel in

running buffer containing 1% sodium deoxycholate (Sigma

Aldrich) as described [25]. After electrophoresis, proteins were

transferred and analyzed by Western Immunoblot.

Co-Immunoprecipitation and Western Immunoblot
Whole cell extracts (WCEs) were prepared using modified

radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl

[pH 7.4], 150 mM NaCl, 1 mM EDTA, 0.25% sodium deoxy-

cholate, 1% IGEPAL CA-630, 1 mM PMSF, 1 mM NaF, 1 mM

Na3VO4, and 1 mg/ml each of aprotinin, leupeptin, and

pepstatin). WCEs were pre-cleared with protein A-Sepharose 4B

(Sigma) for 10 min at 4uC and immunoprecipitation was

conducted for 2 hours at 4uC with primary Ab. Immune

complexes were then precipitated by adding 50 mL of protein

A-Sepharose beads (50% slurry) and incubated for 1 h at 4uC.

Beads were washed three times with cold TB buffer (150 mM

NaCl, 5 mM EDTA, 50 mM Tris-HCl [pH 7.4], 0.05% IGEPAL

CA-630), and immune complexes were fractionated by 10% SDS-

polyacrylamide gel electrophoresis and transferred to a polyviny-

lidene difluoride membrane by electroblotting. Membranes were

blocked in 5% nonfat dry milk in Tris-buffered saline–0.1%

Tween and probed with the indicated primary Ab. Membranes

were washed and incubated with IRDye 700-conjugated anti-

mouse Ab or IRDye 800-conjugated anti-rabbit Ab (Rockland,

Inc.). Finally, the membranes were washed three times with TBS-

T and imaged by an Odyssey infrared scanner. Sources of primary

Ab were: anti-Flag M2 mAb (Stratagene), rabbit anti-IRF3

polyclonal Ab (Santa Cruz), anti-Myc mAb (Santa Cruz), anti-

STAT1 polyclonal Ab(Santa Cruz) and anti-phospho-STAT1

(Cell Signaling).

Confocal Immunofluorescence Microscopy
Transfected cells were plated on cover glasses pretreated with

rat tail collagen (Roche Applied Sciences). After indicated

stimulation, the cells were fixed with 4% paraformaldehyde in

PBS and incubated with 0.1 M ammonium chloride (10 min).

Cells were permeabilized with 0.5% Triton-100, followed by

incubation in blocking buffer (5% goat serum, 0.1% triton X-100,

0.05% NaN3, and 1% BSA) and incubated with Anti-Rel A Ab

(c-20, sc-372, Santa Cruz) in incubation buffer (0.1% triton X-100,

0.05% NaN3, and 2% BSA) overnight at 4uC. After washing, cells

were stained with Alexa Fluor 555-conjugated Goat anti-rabbit

IgG (Invitrogen) in incubation buffer for 1 h. After removing

secondary antibody, the cells were fixed and counterstained with

DRAQ5 (2 mM). The cells were visualized by Zeiss fluorescence

LSM510 confocal microscope at 63X magnification.

Results

Selective IKKc Expression in Response to ssRNA Infection
Previously we found that full length IKKc-WT and the

alternatively spliced IKKcD transcripts were expressed at 2:1 ratios

in uninfected A549 cells [18]. To determine whether IKKc
expression is affected by ssRNA virus infection, selective QRT-

PCR assays were designed to measure total IKKc isoform expression.

Total IKKc was quantified using primer pairs that selectively

amplified the region corresponding to Exons 2–3; IKKc-WT was

quantified using primer pairs that selectively amplified the Exon 4-5

boundary; and IKKcD was quantified using primers that selectively

amplified the Exon 4–6 boundary (Supplementary Table SI online).

A549 cells were infected with sucrose cushion purified RSV, and

IKKc transcripts quantitated. Strikingly, relative to uninfected cells,

total IKKc transcripts were markedly induced 55- fold 6 h after RSV

infection and returned to baseline 16 h later (Figure 1A, top panel).

Similarly, full length IKKc-WT was transiently induced 80-fold 6 h

after RSV infection (Figure 1A, middle panel). By contrast, the

IKKcD isoforms was only weakly (7-fold) induced by RSV infection

at the same time point (Figure 1A, bottom panel). Together these data

indicate that the differential expression of IKKc splice forms is

regulated by ssRNA infection.

The Replication of RNA Viruses Is Increased in IKKcD
Reconstituted MEFs

To selectively compare the function of IKKc and IKKcD in

response to RNA viruses, IKKc2/2 mouse embryonic fibroblasts

(MEFs) were transfected with full length IKKc WT or IKKcD
expression vectors and isoform expression quantified by Western

immunoblot (Figure 1B). At equivalent amounts of expression vector,

IKKcD expressed at a 2-fold higher level than did IKKc-WT, and

was not affected by RSV infection. To determine if IKKc isoform

expression affects RSV replication, the expression of RSV proteins

were detected in Western immunoblot using a pan-anti-RSV Ab. As

expected from their inability to produce type I IFN, RSV replicated

to high levels in the IKKc2/2 cells. In cells expressing IKKc-WT,

the level of RSV replication was significantly reduced (Figure 1C),

consistent with the robust IFN production in RSV infected cells and

the actions of type I IFN to restrict RSV replication [26]. By contrast,

despite the findings that ectopic IKKcD had a slightly higher

expression level than that of IKKc-WT, there was a significant

increase of RSV proteins produced 16 h after RSV infection

(Figure 1C, compare G, N and M protein expression). Quantification

of the RSV N protein by near-infrared scanning (LiCOR Odyssey)

showed that the normalized abundance of N was 53 arbitrary units

(AU) in IKKc2/2 MEFs, 24 AU in IKKc-WT expressing cells and

46 AU in IKKcD expressing cells. Similar findings were seen for

RSV G and M proteins.

To confirm this result, multinucleated cell (MNC) formation, a

consequence of RSV Fusion protein expression, was measured in

IKKc2/2 MEFs expressing either EGFP, EGFP-IKKc-WT or

EGFP-IKKcD [18]. MNCs were quantified by scoring 100 EGFP-

positive cells in 5 randomly selected images by an observer blinded

to the experimental condition. Twenty MNCs were observed in

RSV-infected empty vector transfectants, whereas 9 were observed

in EGFP-IKKc-WT and 18 in EGFP-IKKcD transfectants. The

reduction in MNC formation in IKKc-WT transfectants is highly

significant compared to empty vector transfectants (p,0.01, x2

statistic ), whereas the number of MNCs in IKKcD was not different

from empty vector. These data indicate that IKKcD is more

permissive for RSV replication than IKKc-WT. Similar findings

were produced in IKKc2/2 cells stably expressing IKKc-WT,

IKKcD or empty vector (Supplementary Figure S1 online).

IRF3-NF-kB Pathway Utilization
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We also investigated Sendai virus (SeV) replication in IKKc-WT

and IKKcD reconstituted IKKc2/2 MEFs. Both at 12- and 24 h

after infection, a significant increase of Sendai viral protein was

observed in IKKc2/2 and IKKcD reconstituted MEFs, as

compared to those reconstituted with IKKc-WT (Figure 1E).

Quantification of the normalized protein abundance is shown in the

Figure 1. Enhanced viral protein expression in IKKcD reconstituted cells. (A) QRT-PCR of IKKc isoforms in response to RSV infection. A549 cells
were RSV infected (M.O.I. = 1) for indicated times, after which total RNA was extracted and assayed by QRT-PCR for IKKc. Top panel, QRT-PCR for total
IKKc isoforms (using primers spanning Exon 2–3). Middle panel, QRT-PCR for IKKc-WT isoform (using primers spanning the Exon 4–6 junction). Bottom
panel, QRT-PCR for IKKcD isoform (using primers spanning the Exon 4–5 junction). Shown is fold change relative to uninfected cells. Data was
reproduced twice, with similar results. (B) IKKc2/2-deficient MEFs were reconstituted with empty vector (IKKc2/2), IKKc-WT or IKKcD and RSV infected
(MOI = 1) for 0 or 16 h. 100 mc whole cell extracts (WCEs) were assayed by Western immunoblot using anti-FLAG Ab. The locations of the two isoforms
are shown. Bottom blot, the blot was reprobed with b-Actin Ab as a loading control (the FLAG bands are still visible). (C) Expression of RSV proteins were
detected in WCEs using anti-pan RSV Ab (upper). b-Actin staining is used as a loading control (lower). (D) IKKc2/2-deficient MEFs were transfected with
expression vectors encoding EGFP, IKKg-WT-EGFP, or IKKgD-EGFP as indicated. Cells were then mock or RSV infected (M.O.I. = 1) for 24 h. Cells were
fixed, stained with DRAQ5 (2 mM, Biostatus UK) and imaged by fluorescence microscopy in an LSM510 confocal microscope (magnification of 63X).
Representative multinucleated cells contained within a single plasma membrane are indicated by white arrows. (E) IKKc2/2-deficient MEFs reconstituted
with empty vector (IKKc2/2), IKKc-WT or IKKcD were Sendai virus infected (MOI = 1) for 0, 12, 24 h. Protein expression was detected in WCEs using anti-
Sendai Virus Ab (upper). b-Actin staining is used as a loading control (lower).
doi:10.1371/journal.pone.0008079.g001
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adjacent graph (Figure 1E, right). Together these data suggested

that IKKcD reconstituted MEFs were defective in restricting viral

expression relative to those expressing the IKKc-WT isoform.

IKKcD Transfectants Are Defective in Type I IFN
Production

To understand the mechanism for the enhanced viral

replication rate in IKKcD-reconstituted MEFs, viral induced

expression of type I IFN (IFN-b, -a1 and -a4), were quantified by

QRT-PCR. In IKKc2/2 MEFs, RSV infection did not induce a

detectable change in expression of any type I IFN. Conversely, in

cells reconstituted with IKKc-WT, RSV induced a 150-fold

increase in IFN-b, a 10-fold increase in IFN-a1 and a 350-fold

increase in IFN-a4 (Figure 2A). Strikingly, in IKKcD-reconstituted

cells, the expression of all three type I IFNs was significantly less,

and for IFNa1, indistinguishable from that of IKKc2/2 MEFs

(Figure 2A).

A major mechanism for IFN induced antiviral activity involves

the expression of downstream IFN-stimulated genes (ISGs). To

confirm that the attenuated type I IFN production in IKKcD
expressing cells was biologically relevant, we next measured ISG

expression. In RSV infected cells reconstituted with IKKc-WT,

robust 1,200-fold induction of the IFN response factor-7 (IRF7), a

550-fold induction of IFN inducible gene -10 (IP10), and a 350-fold

induction of RANTES were observed (Figure 2B). Conversely, in

both IKKc2/2 MEFs and those reconstituted with IKKcD, ISG

expression was significantly reduced (Figure 2B).

To exclude the possibility that IKKc reconstitution by transient

transfection affects cellular signaling in response to ssRNA virus

infection, the response of IKKc2/2-deficient cells stably expressing

Figure 2. IKKcD does not mediate IFN or ISG gene expression in response to RNA virus infection. (A) IKKc2/2 MEFs were reconstituted
by empty vector, IKKc-WT or IKKcD as indicated, and RSV infected for 16 h. Total RNA was extracted and QRT-PCR was conducted using probes for
IFN-b, -a1, -a4. (B) Experiment as in (A) where QRT-PCR was was performed with probes for IRF7, IP10 and RANTES. (C) Experiment as in (A) where
WCEs were extracted 0, 12 or 24 h after RSV infection and Western blot performed for phospho-Tyr701 STAT1 (pSTAT1, top panel) and total STAT1
(middle panel). b2actin was loading control (bottom panel). (D) Experiment as in (C) except cells were SeV infected for 0, 12 and 24 h.
doi:10.1371/journal.pone.0008079.g002

IRF3-NF-kB Pathway Utilization
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IKKc-WT and IKKcD, were investigated [18]. These cells have

been previously shown to have intact NF-kB signaling in response

to TNFa stimulation and IKKa/b expression [18]. In response to

RSV infection, we found that these cells also had defective type I

IFN expression (Supplementary Figure S2A online). Similar

findings were produced in stable transfectants in response to SeV

infection, both in terms of defective type I IFN production as well

as impaired ISG expression (Supplementary Figures S2B, S2C

online).

A biological action of epithelial type I IFN production is to

induce paracrine activation of the Jak-STAT pathway in

neighboring cells to produce a mucosal anti-viral state [27]. In

this process, STAT1 is tyrosine phosphorylated and its expression

upregulated via a positive feedback loop [28]. We therefore

analyzed RSV-induced inducible STAT1 tyrosine phosphoryla-

tion and expression in IKKc2/2 MEFs transfected with either

empty-, IKKc-WT and IKKcD expression vectors. The induction

of phospho-Tyr701 STAT1 and upregulation of STAT1 protein

were only observed in IKKc-WT reconstituted cells (Figure 2C).

Similar results were observed in response to SeV infection

(Figure 2D). Collectively, these data suggest that, in contrast to

IKKc-WT, IKKcD does not effectively differently couple to type I

IFN induction resulting in a deficient ISG response after ssRNA

virus infection.

IKKcD Is Deficient in Viral Induced IRF3 Activation
Previous studies have demonstrated that IKKc is an essential

adapter for IRF3 activation downstream of RIG-I?MAVS [15].

Because IRF3 is a major regulator of type I IFN production, we

therefore tested whether IKKc and IKKcD differentially affected

viral induced IRF3 or NF-kB transcription. Myc epitope-tagged

IKKc and IKKcD were co-transfected in the absence or presence of

MAVS along with NF-kB-selective (IFNb PRDII domain) or IRF3-

selective (PRDIII) luciferase reporter genes into IKKc2/2 MEFs.

MAVS expression was determined by anti-Flag Ab in Western

Immunoblot (Figure 3A, left, top panel) and that of IKKc and

IKKcD by anti-Myc Ab in in Western immunoblot (Figure 3A, left,

middle panel). We noted that IKKc isoform expression did not

affect MAVS expression.

As expected, MAVS was unable to activate NF-kB-driven

luciferase reporter activity in IKKc2/2 MEFs, and mediated a

4-fold increase in IKKc-WT transfectants (Figure 3B). Important-

ly, MAVS activated NF-kB-driven luciferase reporter activity to a

slightly greater degree (5-fold) in cells expressing IKKc2D
(Figure 3B, left, top panel). Conversely, although MAVS induced

3.5-fold increase in IRF3-driven luciferase reporter activity in cells

expressing IKKc-WT, no detectable induction of IRF3-driven

luciferase activity was seen in cells expressing IKKcD (Figure 3B,

right, top panel).

Figure 3. IKKcD is defective in mediating IRF3 signaling. (A) Expression vectors encoding Myc-tagged IKKc or IKKcD were co-transfected into
IKKc2/2MEFs, in the presence of MAVS or NH2 terminal RIG-I (RIG-N). 48 h later, the expression of Flag-MAVS (top left panel), Flag-RIG-N (top right
panel), Myc-IKKc and Myc-IKKcD (middle panel) were detected by Western immunoblot. (B) IFN-b PRDII or PRDIII driven luciferase reporter genes
were co-transfected with MAVS or RIG-N in the absence or presence of IKKc and IKKcD as in (A). 36 h later, reporter activity was measured. Shown is
normalized luciferase activity. (C) Nuclear extracts were prepared using sucrose-cushion from SeV infected IKKc-WT and IKKcD stably transfected
MEFs. The nuclei were denatured in 1% SDS PAGE loading buffer and IRF3 abundance measured by Western immunoblot. b-actin was used as
loading control. (D) EMSA using an ISRE probe was conducted using nuclear extracts from a similar experiment as described in (C). (E,F) IKKc2/2,
IKKc reconstituted and IKKcD reconstituted MEFs were infected by SeV (E) or RSV (F) for times indicated. 50 mg WCEs were native gel-fractionated
and Western immunoblot conducted using anti-IRF3 Ab. The location of monomer and dimers are indicated.
doi:10.1371/journal.pone.0008079.g003
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A similar experiment was performed with activated form of

RIG-I, encoding the NH2 terminal CARD domain (RIG-N).

Expression of RIG-N was determined by Western immunoblot

(Figure 3A, top right), and that of co-transfected IKKc isoforms

(Figure 3A, middle right). Consistently with the findings of MAVS,

RIG-N was unable to activate NF-kB-dependent reporter activity in

IKKc2/2 MEFs (Figure 3B, left, bottom panel) but did so in cells

expressing either IKKc-WT or IKKcD isoforms, where a 3-fold

induction of PRDII was observed. Strikingly, and in a manner

consistent with the expression of MAVS, RIG-N activated IRF3-

dependent transcription only in the presence of IKKc-WT, but was

unable to activate IRF3 in IKKcD expressing cells (Figure 3B, right,

bottom panel). Together these data indicated that IKKc-WT

mediates both NF-kB and IRF3 pathways, whereas IKKcD is

unable to support IRF3 signaling.

To further define this mechanism, we examined whether IRF3

was induced to translocate into the nucleus in SeV-infected

IKKc2/2 deficient MEFs stably expressing IKKc-WT or IKKcD.

Sucrose cushion-purified nuclear extracts, free of cytoplasmic

markers (tubulin [29]), were assayed by Western immunoblot using

an anti-IRF3 Ab. In cells expressing IKKc-WT, nuclear IRF3

was undetectable at 0- and 6 h, but appeared in the nuclear

compartment after 12- and 24 h of SeV infection (Figure 3C). By

contrast, in IKKcD expressing cells, no IRF3 was detected in the

nucleus (Figure 3C), despite effective viral replication (Figure 1E).

Next, nuclear extracts from SeV-infected MEFs were assayed for

IRF3 DNA binding activity in EMSA using a radiolabeled ISRE

site (taken from the ISG15 promoter). SeV induced a specific DNA

binding activity 12- and 24 h after infection only in IKKc-WT

expressing cells; no DNA binding activity was seen in IKKcD
expressing cells (Figure 3D; this band was previously shown to be

DNA sequence specific and contain IRF3 [1]). To further confirm

defective IRF3 activation, IRF3 dimer formation was quantified by

Western immunoblot of native gel-fractionated whole cell extracts

prepared from IKKc2/2, IKKc-WT-reconstituted and IKKcD-

reconstituted MEFs infected for various times by either SeV or

RSV. IRF3 dimer formation was detected only in IKKc-WT-

expressing cells in response to either type of viral infection

(Figures 3E,F). We conclude that, in contrast to IKKc-WT, IKKcD
is unable to mediate IRF3 nuclear translocation, DNA binding,

dimerization or transcriptional activation.

We next investigated whether IKKcD was coupled to the NF-kB

pathway. First, confocal immunofluorescence experiments were

performed for RelA nuclear translocation in IKKc2/2 MEFs

complemented with either EGFP-IKKc or EGFP-IKKcD. Trans-

fectants were then either treated with TNF (30 ng/ml, 1 h) or

infected with RSV (MOI = 1, 24 h). Cells were fixed, RelA stained

using anti-RelA Ab and transfectants imaged using confocal

microscopy. Nuclei were counterstained with DAPI, and the

presence of RelA examined in EGFP-expressing cells. In untreated

controls, RelA was cytoplasmic in empty vector, IKKc-WT or

IKKcD expressing cells (Figure 4A). In response to TNF

stimulation, a strong nuclear concentration of RelA was observed

in either IKKc-WT or IKKcD expressing cells but not those

transfected with empty vector (Figure 4B). Similarly, RSV induced

RelA nuclear translocation only in either IKKc-WT and IKKcD
expressing cells (Figure 4C).

A hallmark of the activated canonical NF-kB pathway involves

cytoplasmic IkBa proteolysis via a ubiquitin proteasome-indepen-

dent pathway [10], a phenomenon that is IKKc-dependent [13].

To confirm that RSV-induced RelA nuclear translocation was

mediated by canonical NF-kB pathway activation, IkBa proteol-

ysis was measured in cytoplasmic extracts using Western

immunoblot. In IKKc-WT expressing cells, cytoplasmic IkBa

proteolysis is clearly evident 6 h after RSV infection (Figure 4D),

and is resynthesized 24 h after viral exposure via the RelA-IkBa
positive feedback loop [30]. In IKKcD expressing cells, cytoplas-

mic IkBa proteolysis is also observed, although with slower

kinetics. Conversely, in nuclear extracts, NF-kB DNA binding

increases in IKKc-WT-complemented cells 6 h after RSV

infection, at times when cytoplasmic IkBa is degraded, and

declines as IkBa is resynthesized, trapping NF-kB back in its

cytoplasmic location (Figure 4D; supershifting experiments in

RSV infected IKKc2/2 MEFs have previously demonstrated this

complex to be composed of RelA?p50 complexes[13]). Consistent

with the qualitative differences in kinetics of IkBa proteolysis,

NF-kB DNA binding increases in IKKcD-expressing cells, peaking

at later times and persisting 24 h after infection (Figure 4D).

We sought to further understand the mechanism for qualitative

difference in NF-kB activation in the IKKcD background.

Previously we showed that RIG-I is strongly induced in response

to RSV infection, and its expression is required for RSV inducible

NF-kB activation [1]. Because RIG-I is type I IFN dependent, we

examined whether RSV-induced RIG-I upregulation was attenuat-

ed in IKKcD-expressing cells by QRT-PCR. Although RIG-I

mRNA is induced by over 100-fold in IKKc-WT expressing cells, in

both IKKc2/2 and IKKcD expressing cells, viral inducible RIG-I

expression was significantly reduced, accounting, in part, for the

reduced NF-kB activation (Figure 4E). Together, these data indicate

that the primary defect in IKKcD signaling is the IRF3 pathway,

and the attenuated NF-kB activation is because of secondarily

reduced RIG-I expression ( note ectopic RIG-I or MAVS expression

can activate the canonical NF-kB pathway, seen in Figures 3A,B).

Defective IRF3 Activation in Cells Expressing Increased
IKKcD:IKKc-WT Ratios

Previous work from our lab demonstrated that IKKcD was

universally expressed in various ratios in different tissue- and cell

types with IKKc-WT [18]. To illustrate, the expression of IKKc
and IKKcD was surveyed in 7 different cell types by Western

immunoblot, where the 43 kDa IKKcD and 50 kDa IKKc-WT

isoforms could be resolved. Both bands are specific as demonstrated

by peptide competition experiments (Supplementary Figure S3

online). Both IKKc and IKKcD isoforms are expressed from

,2:1 IKKc:IKKcD ratios in HepG2 or HEK293 cells, to 1:2

IKKc:IKKcD ratios in WT MEF cells, to 1:4 ratios in HeLa S3 cells

(Figure 5A). We postulated that cells natively expressing high

amounts of IKKcD could be defective in IRF3 activation. We

therefore assayed IRF3 dimer formation in Hela S3 cells by Western

immunoblot after native gel fractionation. Despite the finding that

RSV replicated in Hela S3 better than that of Hela CCL2 cells

(Supplementary Figure S4 online), HeLa S3 cells showed no

evidence of IRF3 dimer formation. By contrast, efficient IRF3

dimer formation was observed in HeLa CCL2 cells (Figure 5B). To

confirm HeLa cells could efficiently couple to the canonical NF-kB

pathway, the response to TNF was measured. We observed that

Hela S3 cells have an intact canonical NF-kB activation pathway

indicated by rapid cytoplasmic IkBa proteolysis and appearance of

nuclear NF-kB DNA binding activity in EMSA (Figure 5C these

complexes have been extensively characterized by competition and

supershift as containing RelA?p50 heterodimers [11,31]).

To confirm that HeLa S3 cells had an otherwise intact RIG?MAVS-

IRF3 pathway, HeLa S3 were complemented with IKKc-WT. For

this experiment, HeLa S3 cells were co-transfected with emp-

ty(pcDNA), IKKc-WT, or IKKcD expression vectors and the IRF3-

driven IFNb PRDIII luciferase reporter gene. Cells were then RSV

infected, and luciferase activity measured 24 h later. RSV was unable

to activate PRDIII luciferase reporter activity in the cells transfected

IRF3-NF-kB Pathway Utilization
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with empty vector or in those reconstituted with IKKcD (Figure 5D).

However, RSV induced a 4-fold increase of IRF3-dependent reporter

gene activity in the cells transfected with IKKc-WT; by contrast empty

vector-and IKKcD transfected cells did not induce IRF3 dependent

transcription (Figure 5D). These data suggested IKKc-WT comple-

mented the IRF3 signaling defect in Hela S3 cells, cells selectively

defective in IRF3 signaling but having an otherwise have an intact

canonical NF-kB pathway.

Varying Ratios of IKKcD (Keeping IKKc Constant) Affects
Viral Induced Type I IFN Production

Our findings in HeLa S3 cells suggested that the endogenous

ratio of IKKc-WT:IKKcD is one determinant of type I IFN

production in response to ssRNA virus infection. To more fully

explore this hypothesis, we conducted an experiment varying the

ratios of IKKc-WT:IKKcD in the IKKc2/2 MEF background.

In this experiment, we fixed the total amount of IKKc to a

constant level while only changing the IKKcWT:IKKcD ratio

(Figure 6A). Type I IFN production was then quantified in

response to RSV infection using QRT-PCR. In cells expressing

only IKKc-WT, a 3,000-fold induction of IFNb transcripts were

observed in response to RSV infection, a response that was

reduced in a dose-dependent manner upon the expression of

IKKcD (Figure 6B). Under expression conditions where IKKcD
was the predominant isoform, type I IFN production was

significantly blunted (Figure 6B). Similar findings were observed

Figure 4. IKKcD couples to the canonical NF-kB activation pathway. (A–C) Confocal immunofluoresence microscopy. IKKc2/2 MEFs were
transfected with the indicated expression vectors encoding EGFP alone (EV), EGFP-IKKc-WT or EGFP-IKK–cD. Cells were untreated, TNF stimulated
(30 ng/ml, 1 h) or RSV infected (MOI 1, 24 h). Cells were fixed, stained with anti-RelA Ab and DAPI. Shown are relevant channels for EGFP, RelA and DAPI.
(D) Stably transfected IKKc-WT or IKKcD-expressing cells were RSV infected, and a time series of cytoplasmic and nuclear extracts prepared. Top Panel,
Western blot for Flag (top), IkBa in cytoplasmic extracts. Bottom panel, EMSA using radiolabeled NF-kB probe. (E), IKKc2/2 MEFs transfected with empty
vector, IKKc-WT or IKKcD were RSV infected for 16 h (MOI = 1). Total RNA was extracted and QRT-PCR was conducted using primers for RIG-I. **, P,0.01.
doi:10.1371/journal.pone.0008079.g004
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for the ,90-fold induction of IFNa1, 350-fold induction of IRF7

and 500-fold induction of IFNa4 mRNAs (Figure 6B). As expected

from the blunted RIG-I induction in cells expressing IKKcD (see

Figure 4E), the RSV inducible expression of NF-kB dependent

Grob and A20 genes were also blunted. Together we conclude

that the relative IKKc-WT:IKKcD ratio, independent of changes

in total IKKc abundance, controls cellular IRF3-IFN responsive-

ness to ssRNA virus infection.

IKKcD Overexpression Is a Dominant Negative Inhibitor
of IKKc-WT Mediated IFN Production

Earlier we showed that IKKcD is a dominant negative inhibitor

of HLTV-I Tax induced NF-kB activation, despite the ability of

both isoforms to bind HTLV-I Tax protein [18]. To explore

whether IKKcD functioned as a dominant negative inhibitor of

type I IFN production, we performed an alternative experiment

where IKKcD was expressed in increasing amounts in the

presence of a constant amount of IKKc-WT in IKKc2/2 MEFs

(Figure 7). Type I IFN production was quantified in RSV using

QRT-PCR. Co-transfection of IKKcD at 2.5 mg reduced type I

IFN expression by ,50% that was further reduced in a dose-

dependent manner up to 7.5 mg expression plasmid, where the

response was almost completely abolished.

Together we conclude that the relative IKKc-WT:IKKcD ratio

primarily mediates IRF3-IFN responsiveness in response to RNA

virus infection through its dominant negative effect.

IKKcD Is Defective in Recruiting the TBK1 Adapter, TANK
Previous work has demonstrated that an interaction between

the TBK1 adapter, TANK, and IKKc is required for coupling

RIG-I?MAVS complex to IRF3 activation [15]. Because IKKcD
fails to activate IRF3, we first tested whether IKKcD associates

with MAVS. For this purpose, Myc epitope-tagged IKKc-WT or

IKKcD expression vectors were co-transfected with Flag-tagged

MAVS and subjected to nondenaturing coimmunoprecipitation

using anti-Myc Ab. MAVS association was detected by immuno-

blot using anti-Flag Ab. We observed that both IKKc and IKKcD
effectively bound to MAVS (Figure 8A).

We next asked whether IKKcD was able to bind TANK. In this

experiment, Myc epitope tagged IKKc-WT or IKKcD expression

vectors were co-transfected with V5-epitope tagged TANK. A

nondenaturing co-immunoprecipitation assay experiment was

then performed using anti-Myc Ab as the primary immunopre-

cipitating Ab, followed by Western immunoblot of the immuno-

precipitates using anti-V5 Ab. V5-TANK was only observed in

immunoprecipitates in cells expressing IKKc-WT, but not IKKcD
(Figure 8B, top panel). Equivalent amounts of IKKc-WT and

IKKcD were seen in the immunoprecipitates (Figure 8B, bottom

panel).

TANK is an external adaptor that mediates the recruitment of

the atypical IKK, IKKe, to IKKc. Because IKKcD is unable to

bind TANK, we investigated whether IKKcD was defective in

IKKe recruitment. For this purpose, either Flag epitope tagged

Figure 5. Defective IRF3 activation in cells expressing high endogenous levels of IKKcD. (A) 100 mg whole cell extracts (WCE) from HepG2,
HEK293, Hela CCL3, Hela S3, A549, IKKc2/2 MEFs and wild type MEFs were fractionated by SDS-PAGE and Western immunoblot was conducted using
anti-IKKc Ab. Location of IKKc isoform is indicated. (B) Hela S3 cells were infected with RSV for 0, 12 or 24 h. WCEs were assayed for IRF3 dimerization
using native gel electrophoresis. Shown is Western blot probed with anti-IRF3 Ab. Hela CCL2 cells were used as control. (C). Time course of TNF
stimulation. Hela S3 cells were stimulated with TNF (30 ng/ml) for indicated times prior to cytoplasmic and nuclear protein extraction. Top, Western
immunoblot using anti-IkBa Ab. b-actin staining is loading control. Bottom, NE were used in EMSA. Shown is a region of the autoradiogram with the
specific NF-kB binding complex. (D) HelaS3 cells were co-transfected with the IRF3-dependent PRDIII luciferase reporter gene along with an empty
vector, IKKc-WT or IKKcD. 24 h after transfection, cells were infected with RSV for another 24 h. WCEs were collected and the luciferase assay was
conducted. Shown is normalized luciferase reporter activity in triplicate independent plates. Data was reproduced in two independent experiments.
n.s., not significant.
doi:10.1371/journal.pone.0008079.g005
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IKK-a, -b or -e was co-transfected with Myc tagged IKKc-WT or

IKKcD and subjected to nondenaturing coimmunoprecipitation.

To demonstrate the essential role of TANK for recruiting IKKe,
V5-labeled TANK was also co-transfected with IKKe. After IKKc
isoforms were precipitated using anti-Myc Ab, the association of

respective IKK was detected by anti-Flag Ab. Consistent with our

previous work, IKKc-WT associates with IKK-a and IKK-b [18].

IKKe did not bind to IKKc-WT in the absence of TANK, but in

cells cotransfected with TANK, IKKe could bind (Figure 8C, left

panel). Conversely, although IKKcD bound IKKa and IKKb, it

did not recruit IKKe, even in the presence of TANK (Figure 8C,

right panel). Based on these data, we conclude that IKKcD is

Figure 6. The IKKcD:IKKc-WT ratio affects viral inducible type I IFN expression. (A) IKKc2/2 MEFs were transfected with mixtures of
eukaryotic expression vectors encoding IKKc-WT, or IKKcD keeping the total IKKc expression plasmid constant as indicated. Shown is quantitation of
the Western immunoblot for the b-actin normalized expression for each isoform. (B) Effect on IFN expression. Transfectants were RSV infected for 0 or
16 h. Total cellular RNA was assayed by Q-RT-PCR for the expression of IFNb, IFNa1, IRF7 or IFNa4 as indicated. Shown is X6SD of the fold mRNA
induction relative to uninfected IKKc-WT transfected cells. (C) Effect on NF-kB dependent gene expression. RNA was assayed by QRT-PCR for Grob
and A20 expression as indicated. Results were repeated three times with similar results.
doi:10.1371/journal.pone.0008079.g006
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unable to recruit TANK-IKKi to the activated RIG-I?MAVS

complex.

The Dominant Negative Effect of IKKcD Is Mediated by
Displacement of IKKc-WT from MAVS

To determine the mechanism for the inhibitory effect of IKKcD
(Figure 7), we sought to determine whether IKKcD could displace

the IRF3 signaling-competent IKKc-WT isoform from the

activated MAVS complex. For this experiment, Myc epitope

tagged IKKc-WT was co-transfected with FLAG-tagged MAVS

in the absence or presence of IKKcD. Lysates were then subjected

to nondenaturing coimmunoprecipitation using anti-FLAG, and

IKKc isoform association was determined by Western blot using

anti-Myc Ab. In the absence of IKKcD, IKKc-WT was associated

with MAVS, however, the expression of IKKcD completely

displaced IKKc-WT from the MAVS complex (Figure 9).

Discussion

IKKc was identified as an essential regulatory subunit of the

canonical IKK complex because IKKc deficient cells were unable

to activate NF-kB in response to most known stimuli [19,32].

IKKc plays multiple adapter roles in IKK activation through its

ability to organize the assembly of IKKs into the activated high

molecular weight complex [33,34], bind ubiquitylated upstream

signaling adapters [32,35,35–37], and recruit the IkBa inhibitor

into the activated IKK complex [33]. Through these activities,

IKKc forms a molecular bridge between IKK, its upstream

activators, and its substrate. In the innate immune response

pathway, IKKc recruits IKK2a and -b catalytic complexes to

RIG-I?MAVS, resulting in IkBa proteolysis and canonical NF-kB

activation. Similarly IKKc is a binding target for TANK, an

adapter that links TBK1 and IKKe, two key kinases controlling

IRF3 activation [16,38]. In this manner, IKKc is the final

common shared signaling adapter upstream of the divergent IRF3

and the canonical NF-kB pathways. Both IRF3 and NF-kB

signaling play important, yet distinct, roles in anti-viral and

inflammatory signaling in response to ssRNA viral infection. For

example, IRF3 is a major mediator of type I IFN production,

important in mucosal anti-viral response; in IKKc2/2 cells, the

replication of RNA viruses is significantly increased due to the

inability to produce type I IFNs [15]. Similarly, NF-kB signaling is

important in initiating mucosal inflammation and the adaptive

immune response. The coordination and timing of these two arms

of innate immune signaling response may affect the resolution of

viral infection, yet the mechanisms for selection of these two

pathways are not yet fully elucidated.

In this study, we have extended our previous work describing

the signaling properties of a ubiquitously expressed IKKc
alternative splice product. Previously we reported that IKKcD is

defective in mediating HTLV-Tax recruitment, but more

efficiently mediates NF-kB activation by IKKa/b and MAP3Ks,

NIK and TAK/TAB [18]. These earlier studies showed that

IKKcD efficiently binds to IKKa/b isoforms in coimmunopreci-

pitation experiments, and induces IKK kinase activity to a greater

degree than does IKKc-WT. Here we find that IKKcD is

primarily defective in IRF3 signaling, reducing type I IFN

production and ISG signaling by displacing IKKc-WT from

Figure 7. IKKcD is a dominant negative inhibitor of type I IFN expression. IKKc2/2 MEFs were transfected with increasing amounts of IKKcD
eukaryotic expression vectors in the presence of a constant amount of IKKc-WT as indicated. 24 h later, transfectants were RSV infected for 16 h. Total
cellular RNA was assayed by QRT-PCR for the expression of IFNb, IFNa1, IRF7 or IFNa4 as indicated. Shown is X6SD of the fold mRNA induction
relative to uninfected IKKc-WT transfected cells. Results were repeated three times with similar results.
doi:10.1371/journal.pone.0008079.g007

IRF3-NF-kB Pathway Utilization

PLoS ONE | www.plosone.org 11 November 2009 | Volume 4 | Issue 11 | e8079



MAVS complex with an isoform deficient in recruiting TANK-

IKKe. Moreover, in cells naturally expressing high levels of

endogenous IKKcD to IKKc-WT ratios are defective in viral

inducible IRF3 activation but respond via cytokine induced NF-

kB activators. Strikingly, IKKc-WT mRNA expression is highly

inducible by ssRNA infection relative to IKKcD, suggesting that

the cellular ratios of the two isoforms are dynamic. The

mechanisms for this induction, and consequences in signaling will

require further exploration. Together these findings indicate that

relative endogenous expression of IKKcD isoforms may produce

IKK complexes that differentially couple to distinct upstream

signals, affording heterogeneity in cellular responses to otherwise

similar activating stimuli (Figure 10).

IKKc is encoded by a 10-exon-containing gene located at

chromosome Xq28 [39]. Mutations in the IKKc gene including

different truncations of the IKKc protein have been linked to the

human syndromes of incontinentia pigmenti and anhidrotic

ectodermal dysplasia associated with immunodeficiency [40].

Although human IKKc transcripts containing an alternatively

spliced first (noncoding) exon have been deposited in GenBank

(AI24572, AF091453), these alternatively spliced transcripts

encode wild type IKKc [39]. IKKcD is the only alternative splice

form known that affects the IKKc coding region, and is caused by

occlusion of exon 5. Using both 2D gel electrophoresis and a

reverse transcription-PCR assay that distinguished the two

isoforms, we found that IKKcD is widely expressed in normal

human tissues in various relative ratios with fully spliced IKKc-

WT [18]. For example in normal breast and cervical tissue,

IKKcD is the predominant isoform detected, whereas in normal

liver and lung IKKc-WT is predominant (HeLa S3, derived from

a human cervical tumor maintains this IKKcD predominance).

The findings that IKKcD expression reduces IRF3 signaling and

type I IFN response in response to ssRNA virus infection may yield

new insight for tissue-selective differences in anti-viral responses

and tissue tropism in RNA virus infections [41].

We note that viral replication in IKKcD-expressing MEFs is

enhanced relative to those cells expressing IKKc-WT, but not to the

degree seen in IKKc2/2 MEFs (Figure 1C). In these experiments,

viral inducible expression of the major type I IFNs, IFN-b, -a4 and

-a1, is nearly absent and indistinguishable from that in IKKc2/2

cells. That this degree of inhibition is biologically significant is

demonstrated by the lack of detectable phospho-STAT formation

or STAT autoregulation (Figure 2). It is surprising, then, that virus

does not replicate in IKKcD2expressing cells to a similar degree as

that seen in IKKc2/2 cells. One interpretation of these findings is

that IKKcD expressing cells, residual NF-kB activity may play a

Figure 8. IKKcD does not interact with TANK?IKKe. (A) Myc
epitope-tagged IKKc or IKKcD was co-transfected with Flag-MAVS into
HEK293 cells. 48 h later, 500 mg WCEs were collected and incubated
with a control mouse IgG or anti-Myc Ab as indicated. Nondenaturing
co-immunoprecipitation (IP) was performed using anti-Myc Ab; MAVS
association was detected by Western immunoblot (IB) with anti-Flag Ab
(top panel). Presence of Myc-IKKc and Myc-IKKcD in the immunopre-
cipitates were detected by IB using anti-Myc Ab. Specific bands
indicated by asterisks. ns, nonspecific band. (B) Myc epitope-tagged
IKKc or IKKcD was transfected into HEK293 cells with V5 labeled TANK.
48 h later, WCEs were immunoprecipitated with control (C) or anti-Myc
Ab (Myc). TANK association was determined by IB using anti-V5 Ab.
TANK is indicated by the black arrowhead. Bottom, the presence of
Myc-IKKc or IKKcD in immunoprecipitates were confirmed using anti-
Myc Ab. Specific bands indicated by asterisks. (C) Flag epitoped-tagged
IKKa, IKKb or IKKe was co-transfected with Myc-IKKc or Myc-IKKcD. IKKe
was transfected in the absence or presence of TANK. 48 h later, WCEs
were collected and subjected to nondenaturing co-immunoprecipita-
tion using anti-Myc Ab. IKKa, IKKb or IKKe association was detected by
anti-Flag antibody (top panel). The presence of Myc-IKKc, Myc-IKKcD
and V5-TANK was demonstrated in the immune complexes by Western
immunoblot. Expression of respective proteins was also confirmed in
whole cell lysates using Western immunoblot (Lysate, bottom three
panels). Location of specific bands are indicated at right.
doi:10.1371/journal.pone.0008079.g008

Figure 9. IKKcD competes with IKKc-WT for MAVS binding.
IKKc2/2 MEFs were cotransfected with eukaryotic expression vectors
encoding Myc-IKKc-WT and FLAG-MAVS in the absence or presence of
Myc-IKKcD. 36 h later, nondenaturing coimmunoprecipation experi-
ments were conducted using anti-FLAG. Association of IKKc isoforms
were detected in the Western immunoblot using anti-Myc Ab.
doi:10.1371/journal.pone.0008079.g009
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role in anti-viral response. In this regard, we note that others have

suggested that NF-kB signaling mediates anti-viral activity [42].

Inhibition of NF-kB signaling in response to hPIV or RSV infection

resulted in enhanced viral replication in an IFN-independent

manner. The selective deficiency in IRF3 signaling in IKKcD
expressing cells may allow the isolated study or identification of this

potential anti-viral pathway.

The data in this study and that of our previous work have

indicated that IKKcD is competent to mediate signals through the

canonical NF-kB pathway. This conclusion is supported by

multiple lines of evidence: 1. the ability of ectopic RIG-I or

MAVS to activate NF-kB dependent gene expression in IKKcD
expressing MEFs (Figure 3); 2. the ability of RSV infection to

induce IkBa proteolysis in IKKcD expressing MEFs (Figure 3); 3.

the ability of TNF to induce IkBa proteolysis in Hela S3 cells

predominately expressing the IKKcD isoform (Figure 4); and 4.

the ability of catalytic IKKa/b isoforms to bind IKKcD in

nondenaturing coimmunoprecipitation assays (Figure 8). Previous

protein interaction mapping studies that show the IKKa/b
interaction motif lies in a 119 aa region in the far NH2 terminus

of IKKc [37,43,44], upstream of residues encoded by exon 5.

Despite the ability to mediate productive IKKa/b binding and

interaction, we note the qualitative difference in the kinetics of

IkBa proteolysis in IKKcD expressing MEFs induced by RSV

infection (Figure 4). Our data suggest that the slower kinetic

response of NF-kB activation in IKKcD expressing cells is due to

reduction in IRF3-IFN-RIG-I cross talk pathway.

Viral activation of RIG-I?MAVS signaling is thought to occur in

two sequential phases. The first phase is mediated by low ambient

concentrations of RIG-I early in the course of viral infection,

where viral RNA is in low abundance [45]. Here, initial activation

of IRF3 is mediated by the TRIM25 or Riplet/RNF135 ubiquitin

ligases, inducing RIG-I ubiquitylation vis Lys 63- linked ubiquitin

polymers, a modification that promotes its association with

MAVS, initiating downstream IFN production [46]. The subse-

quent potent upregulation of RIG-I expression induced by this

first wave of IFN [46] produces amplification of the signaling

pathway. We observed that RSV-induced RIG-I upregulation is

attenuated in IKKcD expressing cells, nearly to that seen in

IKKc2/2 MEFS (Figure 3). Taken in context with our earlier

work showing that IFN-induced RIG-I upregulation is required

for RSV-induced NF-kB activation [47], these data may suggest a

mechanism for cross-talk between the IRF3 and NF-kB pathway

in viral induced inflammation. In the absence of IRF3-IFN

signaling, seen in IKKcD expressing cells, reduced RIG-I

upregulation may result in delayed and or attenuated NF-kB

activation.

Secondary structure predictions of IKKcD reveals that the

occlusion of exon 5 affects the COOH terminus of an extended

NH2 terminal coiled-coil motif at aa 174–224, a motif important

in protein-protein interaction [18]. This alternative splice variant

exhibits differential signaling by binding distinct signaling

molecules. In this regard, IKKc is essential for TNF signaling

via its ability to recruit IKK to activated TNF receptors, mediate

interaction with upstream MAP3Ks, and directly and/or recruit

IkBa into the activated IKK for stimulus-induced phosphoryla-

tion. Recent work has shown that this scaffolding function of

IKKc may be due to its inducible post-translational modification

via a unique chemistry of head-to-tail ubiquitin polymers catalyzed

by the LUBAC ubiquitin ligase complex. These inducible

ubiquitin polymers enhance the binding of upstream MAP3Ks,

that phosphorylate associated catalytic IKKa/b subunits, resulting

in their activation [36]. Interestingly, the LUBAC-mediated

ubiquitin polymerization is involved in TNF inducible NF-kB

signaling, but not by the related cytokine, IL-1. The role of post-

translational modifications of IKKc in response to ssRNA viral

infection is not known. We note from co-immunoprecipitation

experiments, that IKKcD associates with MAVS in the absence of

ssRNA infection (Figure 8A), suggesting to us, that IKKc-MAVS

complex may be a stable, pre-formed complex whose activity is

initiated by binding activated RIG-I.

Our findings that IKKcD displaces IKKc-WT from the MAVS

complex explains the dominant negative effect of IKKcD to

reduce IRF3 activation. IKKcD is defective in TANK binding and

consequently recruiting downstream TBK1?IKKi, a kinase

complex essential in IRF3 phosphorylation. Like IKKc, TANK

is itself a scaffolding protein responsible for recruiting IKKe and

TBK1 into an activated complex [38]. Structure-function studies

of TANK have revealed a C2H2-type zinc finger in the TANK

COOH terminus essential for IKKc association [48]. Conversely,

sequential mutagenesis and mapping studies on IKKc have

identified aa 150–250 aa as the TANK binding domain [15,38].

Our study is consistent with these findings where IKKcD, lacking

exon5-encoded 174–224 aa, is unable to bind TANK. In the

absence of TANK binding, in IKKcD expressing cells, RIG?I

MAVS is unable to signal to the IRF3 pathway, induce type I IFN

expression or activate ISG signaling.

In summary, our findings reveal ubiquitously expressed IKKc
splice variant differentially couples IKK signaling to the IRF3

Figure 10. IKKc-WT-IKKcD affects IRF3-NF-kB pathway utiliza-
tion in ssRNA viral infection. Schematic diagram of two distinct
signaling complexes produced by IKKc splice variants. RIG-I recognition
of ssRNA intermediates induces the activated RIG-IMAVS signaling
complex. Depending on the relative abundance of IKKc-WT and IKKcD
isoforms, distinct signaling pathways are activated downstream. Mito,
mitochondrion.
doi:10.1371/journal.pone.0008079.g010
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pathway and the induction of type I IFNs. Our studies further

indicate that the relative level of expression of IKKc splice forms

affects IFN-mediated antiviral signaling in the host cell and may

affect viral tissue tropism. Manipulation of the expression of these

two isoforms may provide a mechanism to modulate the two arms

of the innate immune pathway where preferential expression of

NF-kB inflammatory signaling or IRF3 induced anti-viral

signaling would be desired.

Supporting Information

Table S1 Primers used for QRT-PCR

Found at: doi:10.1371/journal.pone.0008079.s001 (5.05 MB TIF)

Figure S1 Enhanced cytopathic effect in IKKc expressing cells.

Wild type, empty vector, IKKc-WT and IKKcD reconstituted

IKKc2/2-deficient MEFs were infected by RSV (M.O.I. = 1) for

24 h. Cells were also 4% paraformaldehyde fixed, stained with

SYTOX (Molecular Probes) and imaged by fluorescence micros-

copy (magnification of 10X). Representative multinucleated cells

are indicated by white arrows. In IKKc2/2 or IKKcD,expressing

cells, 13 and 15 multinucleated cells/high power field were

detected respectively, while in wild type- and IKKc-WT-

reconstituted MEFs, only 1 and 2 fusion cells were observed.

Found at: doi:10.1371/journal.pone.0008079.s002 (4.49 MB TIF)

Figure S2 Defective IFN response in cells stably transfected with

IKKcD response to RNA virus infection. (a) WT MEFs, or

IKKc2/2 MEFs stably reconstituted with IKKc-WT or IKKcD
were RSV infected for 16 h (MOI = 1). Total RNA was extracted

and QRT-PCR was conducted using probes for IFN-b, -a1, -a4.

(b) WT MEFs, or IKKc2/2 MEFs stably reconstituted with

IKKc-WT or IKKcD were Sendai virus infected for 16 h. Total

RNA was extracted and QRT-PCR was conducted using probes

for IFN-b, and -a4. (c) Same experiment as in (b) where QRT-

PCR was performed with probes for IRF7, IP10 and RANTES.

Found at: doi:10.1371/journal.pone.0008079.s003 (5.61 MB TIF)

Figure S3 Antibody specificity. The staining specificity of anti-

IKKc Ab was evaluated using peptide preadsorption. Anti-IKKc
Ab was preadsorbed with nothing or 10-fold molar excess of

recombinant purified GST-IKKcD-WT, and used as primary Ab

in Western immunoblot. Both bands are reduced by 50%.

Found at: doi:10.1371/journal.pone.0008079.s004 (0.19 MB TIF)

Figure S4 Effective RSV replication in HeLa S3 cells. Western

immunoblot of HeLa S3 cells infected with RSV for indicated

times.

Found at: doi:10.1371/journal.pone.0008079.s005 (0.50 MB TIF)
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