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Abstract
Mendelian randomization (MR) has been increasingly used to strengthen causal infer-

ence in observational epidemiology. Methodological developments in the field allow

detecting and/or adjusting for different potential sources of bias, mainly bias due to

horizontal pleiotropy (or “off-target” genetic effects). Another potential source of bias

is nonrandom matching between spouses (i.e., assortative mating). In this study, we

performed simulations to investigate the bias caused in MR by assortative mating. We

found that bias can arise due to either cross-trait assortative mating (i.e., assortment

on two phenotypes, such as highly educated women selecting taller men) or single-

trait assortative mating (i.e., assortment on a single phenotype), even if the exposure

and outcome phenotypes are not the phenotypes under assortment. The simulations

also indicate that bias due to assortative mating accumulates over generations and that

MR methods robust to horizontal pleiotropy are also affected by this bias. Finally, we

show that genetic data from mother–father–offspring trios can be used to detect and

correct for this bias.
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1 INTRODUCTION

Genetic associations have been increasingly used in epidemi-

ology to strengthen causal inferences regarding the asso-

ciation between a modifiable exposure and a given health

outcome—a design termed Mendelian randomization (MR;

Davey Smith & Ebrahim, 2003; Davey Smith & Hemani,

2014). Although MR studies are observational in nature, they

are robust to several biases that can plague traditional obser-

vational studies. This is because the instruments (i.e., predic-

tors of the exposure variable, such as a disease risk factor)

are germline genetic variants, which are determined at con-

ception and do not change throughout life. This eliminates

reverse causation, where the (potentially preclinical) symp-

toms of disease affect the exposure. Moreover, given Mendel's

first and second laws, germline genetic variants are unlikely

to be associated with “classical” confounders (e.g., socio-
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economic and lifestyle factors; Davey Smith et al., 2007) or

with one another (except for variants in linkage disequilib-

rium; Davey Smith, 2011).

Valid causal inference using MR requires that the instru-

mental variable assumptions hold. This means that the genetic

instrument must be associated with the exposure variable, and

the association (if any) of the genetic instrument(s) with the

outcome must be entirely mediated by the exposure (Davey

Smith & Hemani, 2014). Although the first assumption is

empirically verifiable, bias due to “off-target” genetic effects

(or, more formally, horizontal pleiotropy; Davey Smith &

Hemani, 2014; Paaby & Rockman, 2013) can never be ruled

out. Recently developed methods allow relaxation of this

assumption in different ways (Bowden, Davey Smith, &

Burgess, 2015; Bowden, Davey Smith, Haycock, & Burgess,

2016; Hartwig, Davey Smith, & Bowden, 2017), and are

useful sensitivity analyses that may strengthen or weaken
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causal inference (Burgess, Bowden, Fall, Ingelsson, &

Thompson, 2017). Other important sources of bias in MR

include presence of population structure (such as ancestry-

related population stratification, family structure, and cryptic

relatedness; Price, Zaitlen, Reich, & Patterson, 2010), linkage

disequilibrium with one or more variants involved in other

biological processes that influences the outcome (Davey

Smith, & Ebrahim, 2003; Davey Smith, & Hemani, 2014),

and selection bias, if genetic instruments influence the

likelihood of participating in a study or of being followed-up

(Anderson et al., 2011; Munafo, Tilling, Taylor, Evans, &

Davey Smith, 2018).

Although the biases above are widely recognized and have

been the focus of methodological developments aimed at

minimizing their influence, there are other potential sources

of bias that could threaten causal inference. In this paper,

we focus on assortative (nonrandom) mating, which occurs

when people do not choose their partners at random, but

rather based on particular characteristics (Jiang, Bolnick, &

Kirkpatrick, 2013; Pearson, 1903). Assortative mating can be

classified into single- or cross-trait assortative mating. Single-

trait assortative mating occurs when individuals match on a

particular trait, for example, tall women are more likely to

select tall men (Tenesa, Rawlik, Navarro, & Canela-Xandri,

2016). Cross-trait assortative mating occurs when individu-

als of one trait are more likely to select individuals of another

trait, for example, women with high intelligence test scores

selecting taller men (Keller et al., 2013).

Our aim was to perform a simulation study to help clarify

when assortative mating leads to bias in MR studies. We focu-

sed on genetically driven bias—that is, when assortment leads

to a genetic correlation between parents (as explained in detail

in the Methods). We also evaluate how methods robust to hor-

izontal pleiotropy perform in the presence of assortative mat-

ing, and present approaches to detect and correct for this bias.

2 METHODS

2.1 Graphical representation
of assortative mating
Figure 1 illustrates why assortative mating may lead to bias

in MR using causal diagrams. 𝐺𝑋 and 𝐺𝑌 denote the genetic

influences on the exposure (𝑋) and outcome (𝑌 ) phenotypes.

F I G U R E 1 Causal diagrams depicting causal structures corresponding to mother–father–offspring trios and assortative mating

Note. Top left panel: no assortment. Top right panel: representation of single-trait assortment on 𝑋 using a nondirected thick line. Bottom left panel:

representation of cross-trait assortment on 𝑋 and Y using two nondirected thick lines. Bottom right panel: unsatisfactory representation of single-trait

assortment on 𝑋 using a dotted bidirected arrow (which typically denote latent common causes).

𝑋: exposure phenotype; 𝑌 : outcome phenotype; 𝑈 : unmeasured common cause of 𝑋 and 𝑌 ; 𝐺𝑋 : collection of genetic variants with direct effects on

𝑋; 𝐺𝑌 : collection of genetic variants with direct effects on 𝑌
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It is assumed that there is no horizontal pleiotropy between

𝑋 and 𝑌 , so that all genetic variants that belong to 𝐺𝑋 are

valid genetic instruments of𝑋. This will facilitate detection of

assortative mating bias using d-separation rules. The collec-

tive effect of unmeasured common causes of𝑋 and 𝑌 is repre-

sented by 𝑈 . We will interpret the causal diagrams assuming

faithfulness, according to which d-connection (i.e., presence

of at least one open path from one variable to another) implies

statistical association.

The top left panel depicts a situation with no assortative

mating. It can be seen that 𝐺𝑋 is only related to 𝑌 via the

path𝐺𝑋 → 𝑋 → 𝑌 . Therefore,𝐺𝑋 will associate with 𝑌 only

if the path 𝑋 → 𝑌 exists (i.e., if 𝑋 has a causal effect on 𝑌 ),

and therefore is a valid instrument to assess the causal effect

of 𝑋 on 𝑌 .

The top right panel depicts a situation with single-trait

assortative mating (indicated by the thick line) on 𝑋. We

used nondirected lines rather than arrows to denote assorta-

tive mating. Single-trait assortative mating induces an associ-

ation between mother's 𝐺𝑋 and father's 𝐺𝑋 . This is because if

people with high values of 𝑋 tend to select partners with high

values of 𝑋 (i.e., positive assortment on 𝑋), then, by conse-

quence of assortment at the phenotypic level, mother–father

pairs will also be positively genetically correlated for𝑋. How-

ever, the association of mother's 𝑋 and father's 𝑋 does not

open any backdoor paths between 𝐺𝑋 and 𝑌 , so 𝐺𝑋 is a valid

genetic instrument even in the presence of single-trait assor-

tative mating on 𝑋. The same reasoning applies to single-trait

assortative mating on 𝑌 . However, in some situations single-

trait assortative mating can render 𝐺𝑋 and 𝑌 associated in the

absence of a causal effect of 𝑋 on 𝑌 , as we show next using

simulations.

The bottom-left panel illustrates cross-trait assortative mat-

ing on 𝑋 and 𝑌 by two thick lines: from mother's 𝑋 to father's

𝑌 , and from mother's 𝑌 to father's 𝑋. In this situation, if

𝑋 does not cause 𝑌 , the mother's 𝐺𝑋 and father's 𝐺𝑌 , and

mother's 𝐺𝑌 and father's 𝐺𝑋 will be associated. If 𝑋 does

cause 𝑌 , then all parental genetic variables will associate.

Therefore, cross-trait assortative mating can induce associa-

tions between 𝐺𝑋 and 𝑌 even in the absence of a causal effect

of 𝑋 on 𝑌 . This invalidates the MR assumptions.

The bottom right panel provides a justification for rep-

resenting assortment using nondirected lines rather than

bidirected arrows (which typically represent latent common

causes). The path mother's 𝐺𝑋 → mother's 𝑋 ↔ father's 𝑋 ←
father's 𝐺𝑋 is not open, because both mother's 𝑋 and father's

𝑋 are colliders (i.e., each has two arrows pointing at it) on the

path. Therefore, mother's 𝐺𝑋 and father's 𝐺𝑋 are not associ-

ated in this graph. Therefore, attempting to graphically rep-

resent assortment using bidirected arrows between parents’

phenotypes would imply in saying that assortment at the phe-

notypic level does not result in a genetic correlation between

spouses, which is implausible.

2.2 Using parent's genetic data to control
for assortative mating bias
The bottom left panel in Figure 1 shows that cross-trait assor-

tative mating on 𝑋 and 𝑌 induces associations between 𝐺𝑋

and 𝑌 . This means 𝐺𝑋 is an invalid instrument to assess the

causal effect of 𝑋 on 𝑌 , leading to bias in MR analyses. How-

ever, this bias can be counteracted by conditioning on mea-

sured variables that block such bias sources (without creating

new ones).

Figure 1 (bottom left panel) suggests that conditioning

on 𝐺𝑌 would control for bias due to assortative mating,

since all open backdoor paths from 𝐺𝑋 to 𝑌 are mediated by

𝐺𝑌 , and conditioning on 𝐺𝑌 does not create any new open

backdoor path. However, it is important to remember that 𝐺𝑌

represents all genetic influences on 𝐺𝑌 , not all of which will

be known. This can be seen more clearly in Supporting Infor-

mation Figure 1, which shows two nonoverlapping sets of

genetic influences on each phenotype: 𝐺𝑀
𝑋

and 𝐺𝑈
𝑋

represent

measured and unmeasured genetic influences on 𝑋, respec-

tively, such that 𝐺𝑋 = {𝐺𝑀
𝑋
,𝐺𝑈

𝑋
} ; 𝐺𝑀

𝑌
and 𝐺𝑈

𝑌
are defined

analogously, with respect to 𝑌 . Conditioning on the measured

genotypes (𝐺𝑀
𝑌

) does not control for unmeasured genetic dif-

ferences (𝐺𝑈
𝑌

). Therefore, unless all genetic influences on 𝑌

are known, measured and properly modelled, adjustment for

genetic influences on 𝑌 may mitigate, but it is unlikely to elim-

inate, assortative mating bias.

An alternative way to overcome this bias is to adjust for

parental genotype. Figure 1 (bottom left panel) illustrates

that conditioning on mother's and father's 𝐺𝑋 block the open

backdoor paths between 𝐺𝑋 and 𝑌 without creating new

ones. Supporting Information Figure 1 shows that this also

holds even if only a subset of all genetic influences on 𝑋 are

measured—that is, conditioning on mother's and father's 𝐺𝑀
𝑋

blocks all backdoor paths (due to assortative mating) between

𝐺𝑀
𝑋

and 𝑌 . Given that genetic instruments of𝑋 are a subset of

𝐺𝑋 , this approach can be used to control for assortative mat-

ing bias without measuring all genetic influences on 𝑋, and

requires measuring the genetic instruments in individuals (to

assess the causal effect of 𝑋 on 𝑌 ) and their parents (to adjust

for bias).

2.3 Simulation study
We performed a series of simulations to evaluate bias due

to assortative mating in MR. The main goals of the simu-

lation study were to (a) demonstrate that cross-trait assor-

tative mating on 𝑋 and 𝑌 leads to bias in MR and (b)

assess the strategy of using parent's 𝐺𝑀
𝑋

to control for assor-

tative mating bias. Additional simulations (described in the

Supporting Information Methods and illustrated in Support-

ing Information Figure 2) were performed to explore addi-

tional scenarios of cross-trait mating, and to demonstrate that
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in some situations, single-trait assortative mating may also

bias MR.

A detailed description of the simulation model is pro-

vided in the Supporting Information Methods. We simulated

mother–father–offspring trios as depicted in Figure 1. Results

were averaged across 5,000 simulated datasets. All simu-

lated genetic variants were single nucleotide polymorphisms

(SNPs). In each scenario, 40,000 trios, 50 SNPs with direct

effects on 𝑋 (corresponding to 𝐺𝑋 in Figure 1), and 50 SNPs

(unless stated otherwise) with direct effects on 𝑌 (correspond-

ing to 𝐺𝑌 in Figure 1) were simulated. If 𝐺𝑋𝑘 denotes the

𝑘th genetic variant with a direct effect on 𝑋, then 𝐺𝑋 =
{𝐺𝑋𝑘}50𝑘=1; the set of all genetic variants with direct effects on

𝑌 can be analogously defined as𝐺𝑌 = {𝐺𝑌 𝑘}50𝑘=1. All variants

in the 𝐺𝑋 set have linear and additive effects on 𝑋; since 𝐺𝑋

corresponds to the entire genetic component of 𝑋, the amount

of variance in 𝑋 explained by 𝐺𝑋 is the narrow-sense heri-

tability of 𝑋 (ℎ2
𝑋

), which equals the broad-sense heritabil-

ity of 𝑋 (due to the absence of nonadditive components of

genetic variance) in our simulations. In scenarios where 𝑋

has no causal effect on 𝑌 , the same interpretation holds for

ℎ2
𝑌

with respect to 𝑌 .

All genetic variants in 𝐺𝑋 were combined into an addi-

tive allele score 𝑍𝑋 , and the direct effect of 𝑍𝑋 on 𝑋 was

controlled by the 𝛿𝑋 parameter; 𝑍𝑌 and 𝛿𝑌 are defined anal-

ogously with respect to 𝑌 (see the Supporting Information

Methods for details). Therefore, ℎ2
𝑋
= (𝛿2

𝑋
var(𝑍𝑋))∕var(𝑋)

and (again assuming no causal effect of 𝑋 on 𝑌 ) ℎ2
𝑌
=

(𝛿2
𝑌
var(𝑍𝑌 ))∕var(𝑌 ). Given that in our model assortative

mating model leads to changes in genetic and phenotypic vari-

ances while 𝛿𝑋 and 𝛿𝑌 are structural parameters, the actual

values of ℎ2
𝑋

and ℎ2
𝑌

were higher in simulations with posi-

tive assortment than in simulations without assortment when

keeping 𝛿𝑋 and 𝛿𝑌 constant. However, in our simulations such

differences were very small, so for simplicity we will ignore

that ℎ2
𝑋

and ℎ2
𝑌

are affected by assortative mating when pre-

senting and discussing the results.

Positive assortment, which leads to a positive correlation

between parents, was simulated using proxies of the pheno-

types of interest, so as to allow control over the strength of

the assortment. Cross-trait assortative mating on𝑋 and 𝑌 was

induced by pairing women and men according to 𝑋𝑃 and 𝑌 𝑃

(therefore, the correlation between spouses for 𝑋𝑃 and 𝑌 𝑃 is

1). These variables were equal to 𝑋 and 𝑌 , respectively, plus

random error terms, such that cor(𝑋,𝑋𝑃 ) = cor(𝑌 ,𝑌 𝑃 ) =
𝑃 ∈ [0, 1]. Small values of 𝑃 imply that people weakly assort

on𝑋 and 𝑌 , whereas high values of 𝑃 imply that they strongly

assort on 𝑋 and 𝑌 . All other factors influencing partnering

preferences are embedded in the error terms.

To mimic a bidirectional process, we initially paired

women and men at random (so as to not induce assortment),

and randomly divided the resulting women–men pairs into

two sets. In one set of women–men pairs, men were sorted

in ascending order of 𝑌 𝑃, and women were sorted in ascend-

ing order of 𝑋𝑃 ; in the other set of women–men pairs, men

were sorted in ascending order of𝑋𝑃 , and women were sorted

in ascending order of 𝑌 𝑃 . The two sorted sets of women–

men pairs were then combined together, preserving the order

resulting from the sorting steps above, generating the full

dataset of mother–father pairs.

We also simulated scenarios with no assortative mating and

a nonzero causal effect of 𝑋 on 𝑌 . This scenario was used to

evaluate the performance of selected MR methods to detect a

causal effect.

2.4 Statistical analyses
We investigated the bias and the coverage of different MR esti-

mators across these scenarios. The causal effect of𝑋 on 𝑌 was

estimated using two-stage least squares regression (TSLS).

Unless stated otherwise, all 50 genetic variants in 𝐺𝑋 were

combined in an weighted additive allele score, which was

used as the instrumental variable (IV) for 𝑋. The weights

(𝜔 = {𝜔𝑘}50𝑘=1) were obtained by regressing𝑋 on each genetic

variant in 𝐺𝑋 in one random half of the simulated dataset.

To avoid overfitting, those weights were used to construct

the IV in the other half of the data.

Three versions of the TSLS method were performed:

• TSLS (1): estimating the causal effect of the exposure on

the outcome with no covariates. The causal effect estimate

was obtained by fitting the following two linear regression

models:

�̂�𝑖 = 𝛽0 + 𝛽1 × 𝑆𝑖,

where �̂� is the value of 𝑋 predicted by the model (this is

because the error term is omitted), 𝛽0 is the intercept estimate,

and 𝛽1 is the estimate of the change in𝑋 associated with a unit

increment in 𝑆 (which is the individual's allele score—i.e.,

the IV).

𝑌𝑖 = �̂�0 + �̂�1 × �̂�𝑖,

where 𝑌 is the value of 𝑌 predicted by the model (this is

because the error term is omitted), �̂�0 is the intercept estimate,

and �̂�1 is the estimate of the change in 𝑌 associated with a unit

increment in �̂�—that is, the estimate of the causal effect of the

exposure 𝑋 on the outcome 𝑌 .

• TSLS (2): estimating the causal effect of the exposure on

the outcome adjusting for parental allele scores. The causal

effect estimate was obtained by fitting the following two lin-

ear regression models:

�̂�∗
𝑖
= 𝛽∗0 + 𝛽∗1 × 𝑆𝑖 + 𝛽∗2 × 𝑆𝑚

𝑖
+ 𝛽∗3 × 𝑆

𝑓

𝑖
,
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where 𝑆𝑚 and 𝑆𝑓 denote mother's and father's respective

allele scores.

𝑌 ∗
𝑖
= �̂�∗0 + �̂�∗1 × �̂�∗

𝑖
+ �̂�∗2 × 𝑆𝑚

𝑖
+ �̂�∗3 × 𝑆

𝑓

𝑖
,

where �̂�∗1 is the estimate of the causal effect of the exposure

𝑋∗ on the outcome 𝑌 ∗.

For the next method, we constructed allele scores using

nontransmitted alleles (Lawlor et al., 2017; Zhang et al.,

2015)—that is, the parents’ alleles that were not transmitted

to the offspring. For example, consider that the mother's geno-

type for a given genetic variant is AT, and that the offspring's

genotype for the same genetic variant is AA. By comparing

mother's and offspring's genotypes, it can be seen that the

mother transmitted the A, and not the T allele, to the offspring.

The same applies for parent's nontransmitted alleles. In our

application, mother's and father's nontransmitted allele scores

were determined for all genetic variants used to compute

the IV, and were used to compute nontransmitted weighted

(using the same weights described above) allele scores by

the same procedure used to compute regular weighted allele

scores.

• TSLS (3): jointly estimating the causal effect of the expo-

sure on the outcome, and the direct effects of parent's

exposure phenotypes on (offspring's) outcome using pater-

nal nontransmitted allele scores as instruments of parent's

exposure phenotype; therefore, this analysis has three expo-

sure variables: offspring's, mother's, and father's exposure

phenotypes, three IVs: offspring's allele score, mother's

nontransmitted allele score, and father's nontransmitted

allele score, respectively, and one outcome variable: off-

spring's outcome phenotype. The causal effect estimate

was obtained by fitting the following four linear regression

models:

�̂�′
𝑖
= 𝛽′0 + 𝛽′1 × 𝑆𝑖 + 𝛽′2 ×𝑊𝑖

𝑚 + 𝛽′3 ×𝑊𝑖
𝑓 ,

�̂�𝑚′
𝑖

= 𝛽𝑚
′

0 + 𝛽𝑚
′

1 × 𝑆𝑖 + 𝛽𝑚
′

2 ×𝑊𝑖
𝑚 + 𝛽𝑚

′

3 ×𝑊𝑖
𝑓 ,

�̂�
𝑓 ′

𝑖
= 𝛽

𝑓 ′

0 + 𝛽
𝑓 ′

1 × 𝑆𝑖 + 𝛽
𝑓 ′

2 ×𝑊𝑖
𝑓 + 𝛽

𝑓 ′

3 ×𝑊𝑖
𝑓 ,

where 𝑊 𝑚 and 𝑊 𝑓 denote mother's and father's, respec-

tively, nontransmitted allele scores, and �̂�𝑚′
and �̂�𝑓 ′

denote

mother's and father's, respectively, predicted exposure pheno-

type.

𝑌 ′
𝑖
= �̂� ′0 + �̂� ′1 × �̂�′

𝑖
+ �̂� ′2 × �̂�𝑚′

𝑖
+ �̂� ′3 × �̂�

𝑓 ′

𝑖
,

where �̂� ′1 is the estimate of the causal effect of the individual's

exposure 𝑋′ on the individual's outcome 𝑌 ′, �̂� ′2 is an estimate

of the direct effect of mother's exposure 𝑋𝑚′
on the individ-

ual's outcome 𝑌 ′, and �̂� ′3 is an estimate of the direct effect of

father's exposure 𝑋𝑓 ′ on the individual's outcome 𝑌 ′.

TSLS (2) and TSLS (3) aim at providing both a causal

effect estimate that is robust to assortative mating and a test

of whether or not assortative mating bias is present. Of note,

the equations above are for explanation only, since the esti-

mates were based on TSLS (as mentioned above), which takes

account of the estimation error in the first-stage (i.e., in the

prediction of the exposure phenotype).

For each of those methods, the causal effect estimate and

false rejection rate of the 95% confidence intervals were calcu-

lated. Additional analyses (described in the Supporting Infor-

mation Methods) were performed to evaluate the performance

of summary data MR methods robust to horizontal pleiotropy,

and of tests commonly used to detect horizontal pleiotropy in

the summary data setting.

2.5 Empirical example: Height and education
using Avon Longitudinal Study of Parents
and Children
Previous studies have used MR in samples of unrelated indi-

viduals to investigate the causal effect of height on educational

attainment (Tyrrell et al., 2016). If parents assort on height and

education or if there are dynastic effects of parental height or

education on their offsprings’ outcomes, then MR may suffer

from bias. We evaluated this using data from the Avon Longi-

tudinal Study of Parents and Children (ALSPAC). ALSPAC

sampled 14,541 pregnant women between April 1, 1991 and

December 31, 1992. Full details of the study have been pub-

lished elsewhere (Boyd et al., 2013; Fraser et al., 2013).

The study participants have been followed up for almost

30 years, and the mothers, partners, and offspring have com-

pleted questionnaires and the offspring have had their educa-

tional records linked from the National Pupil Database. Eth-

ical approval for the study was obtained from the ALSPAC

Ethics and Law Committee and the Local Research Ethics

Committees. Please note that the study website contains

details of all the data that are available through a fully search-

able data dictionary. The mothers, fathers, and offspring have

also provided biological samples for genotyping. We extracted

the 691 of the 697 genetic variants known to associate with

height, respectively, at P < 5 × 10−8 (Wood et al., 2014).

We defined offspring educational attainment using average

points scored in GCSE examinations taken at age 16. Off-

spring height was measured during their clinic visit at age

17.5. We estimated the correlations between mother, father,

and offspring phenotypes and genotypes. We estimated the

effect of height on educational attainment using the height

allele score as an IV using the offspring data alone (i.e., TSLS

(1)), and additionally adjusting for parental allele scores (i.e.,

TSLS (2)).

Scripts used to perform the simulations and to analyze

ALSPAC data are available at: https://github.com/Fernando

Hartwig/AssortativeMating_Scripts.
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F I G U R E 2 Bias and false-rejection rates of two-stage least squares (TSLS) regression methods in the presence of cross-trait assortative mating

on 𝑋 and 𝑌 under no causal effect of 𝑋 on 𝑌 for different levels of assortment (𝑃 ) and narrow-sense heritability of 𝑋 (ℎ2
𝑋

) and 𝑌 (ℎ2
𝑌

)

Note. TSLS (1): no covariates; TSLS (2): adjusting for parental allele scores; TSLS (3): joint estimation of parental and individual's effects, using

parental nontransmitted allele scores as instruments of parental phenotype

3 RESULTS

3.1 Simulation study
Figure 2 shows that TSLS is positively biased when there is

positive cross-trait assortative mating on 𝑋 and 𝑌 . The bias

increased proportionally with increasing the degree of assort-

ment. However, both TSLS (2) (i.e., adjusting for parent's

allele scores) and TSLS (3) (i.e., jointly modelling individ-

ual's and parental effects, using nontransmitted allele scores as

instruments of parental phenotype) were unbiased with false

discovery rates close to 5%. Figure 2 also indicates that the

bias was much stronger when the outcome 𝑌 was highly her-

itable, while changing the heritability of 𝑋 had virtually no

effect on bias (although it influences power because it affects

instrument strength, and therefore influences weak instrument

bias—although the latter was purposely negligible in our sim-

ulations to isolate bias due to assortment as much as possible).

The bias was also invariant to whether all or subset of variants

in 𝐺𝑋 are used to construct the IV and to the total number

of variants in 𝐺𝑌 , thus corroborating the notion that the bias

depends mainly on the degree of assortment and heritability

of 𝑌 (Table 1). Moreover, TSLS (2) and TSLS (3) were unbi-

ased regardless of whether all or a subset of variants in 𝐺𝑋

are used to construct the IV, as long as parental allele scores

include the same variants with the same weights as the IV,

thus corroborating the notion that our approach requires only

that the genetic instruments (rather than all variants in 𝐺𝑋)

are measured in study individuals and their parents.

Figure 3 shows that bias due to cross-trait assortative mat-

ing on 𝑋 and 𝑌 accumulates over generations, with the incre-

ment in bias from one generation to the next getting smaller

for larger numbers of generations. Again, the TSLS (2) and

TSLS (3) were unbiased, regardless of the number of gener-

ations (Supporting Information Table 1). However, the TSLS

(2) and TSLS (3) methods have considerably lower power than

the conventional TSLS (1) (Table 2).

Additional assortative mating patterns were also explored

(see the Supporting Information Methods for a full descrip-

tion). Supporting Information Table 2 shows that cross-trait
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T A B L E 1 Bias and standard error (SE) of the conventional two-

stage least squares (TSLS(1)) regression in the presence of cross-trait

assortative mating on 𝑋 and 𝑌 under no causal effect of 𝑋 on 𝑌 and

high narrow-sense heritability of 𝑋 ( ℎ2
𝑋
= 0.5), for different values of

assortment strength (𝑃 ), narrow-sense heritability of 𝑌 (ℎ2
𝑌

), number

of genetic variants in 𝐺𝑋 used to calculate the genetic instrument (GI)

of 𝑋, and for number of genetic variants in 𝐺𝑌

Number of variants in the GI of 𝑿
10a 50

𝑷 𝒉
𝟐
𝒀

(%)

Number of
variants
in 𝑮

𝒀
Bias SE Bias SE

0.2 10 10 0.002 0.023 0.002 0.010

50 0.002 0.023 0.002 0.010

50 10 0.005 0.023 0.006 0.010

50 0.005 0.023 0.006 0.010

0.6 10 10 0.010 0.023 0.010 0.010

50 0.010 0.023 0.010 0.010

50 10 0.046 0.022 0.046 0.010

50 0.046 0.022 0.046 0.010

1.0 10 10 0.026 0.022 0.026 0.010

50 0.026 0.022 0.026 0.010

50 10 0.125 0.021 0.125 0.010

50 0.126 0.021 0.126 0.010

aRandomly sampled from the entire set𝐺𝑋 of 50 genetic variants with direct effects

on 𝑋.

𝐺𝑌 : set of all genetic variants with direct effects on 𝑌 .

assortative mating on variables other than 𝑋 or 𝑌 can also

lead to bias, as long the variables under assortment are

genetically correlated (either through vertical or horizontal

pleiotropy) with 𝑋 and 𝑌 . Supporting Information Table 3

displays that some patterns of single-trait assortative mat-

ing lead to bias in MR estimates. For this to happen, the

variable under assortment must be genetically correlated with

both 𝑋 and 𝑌 , either through horizontal or through vertical

pleiotropy. If 𝑋 and 𝑌 are not genetically correlated, then

single-trait assortative mating does not bias MR (Supporting

Information Table 4).

In analyses including summary data MR methods, it was

observed that those methods were similarly biased to one

another and to the conventional TSLS method, with false

rejection rates varying according to the precision of each

method (Supporting Information Figure 3 and Supporting

Information Tables 2 and 3). Moreover, Supporting Informa-

tion Table 5 illustrates that tests commonly used to detect

horizontal pleiotropy in the two-sample setting did not detect

bias due to assortative mating in our simulations. However,

parental genetic data can be used to detect this bias: both

conventional allele scores (TSLS (2)) and nontransmitted

allele scores (TSLS (3) and (4)) can be used for this purpose.

Parental allele scores from TSLS (2) provide a test for the

presence and direction of this bias, which was more power-

ful than the approaches based on nontransmitted allele scores.

In the absence of assortative mating, all TSLS-based tests for

assortative mating had a false rejection close to 5%.

3.2 Illustrative example
We applied these methods to investigate the effect of height

on educational attainment using a sample from ALSPAC. In

total, 1,170 participants had phenotype and genotype data

for mother, father, and offspring (summary statistics shown

in Supporting Information Table 6). Mother and father's

heights and education attainment phenotypes were correlated

(Pearson correlation coefficients of 0.24 and 0.47, respec-

tively). The mother and father's allele scores for height and

education were more weakly correlated (Pearson correlation

coefficients of 0.07 and 0.04, respectively) (Table 3). Lin-

ear regression suggested each additional 1 cm of height

was associated with 0.031 (95% CI: [0.01, 0.07]) additional

years of education (Table 4). The conventional MR esti-

mates using TSLS (1) suggested that each 1 cm of height

increased educational attainment by an additional 0.16 (95%

CI: [0.07, 0.40]) years. After adjustment for parental allele

scores for height (TSLS (2)), these estimates attenuated to

0.00 (95% CI: [−0.45, 0.45]).

4 DISCUSSION

Our study characterized how assortative mating can induce

bias in MR studies. Through causal diagrams and simulations

covering a range of scenarios, we showed that this bias

can occur when there is cross-trait assortative mating on the

exposure and outcome phenotypes, or on variables genetically

correlated with them; or single-trait assortative mating on a

single phenotype genetically correlated with both the expo-

sure and the outcome phenotypes (Table 5). Our simulations

also indicated that the bias affects not only the conventional

TSLS and inverse-variance weighting (IVW) methods,

but also the MR-Egger regression (Bowden et al., 2015),

weighted median (Bowden et al., 2016), and the mode-based

estimate (MBE) (Hartwig et al., 2017). These findings reen-

force the point that those methods are not robust to all sources

of bias, but only to some forms of horizontal pleiotropy.

This study evidenced that bias due to assortative mat-

ing is of greater concern when the strength of assortment is

strong, when the outcome phenotype is highly heritable, and

when the process has been going on over many generations.

Many human phenotypes are suggested to have high heri-

tability in the populations where they were studied (Speed,

Cai, Johnson, Nejentsev, & Balding, 2017; Wang, Gaitsch,

Poon, Cox, & Rzhetsky, 2017). In our simulations, cross-trait

assortative on 𝑋 and 𝑌 mating resulted in realistic between-

parents correlations (Supporting Information Table 7).

However, we know that most of this correlation is due to
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F I G U R E 3 Bias and false-rejection rates of the conventional two-stage least squares regression (TSLS) method in the presence of cross-trait

assortative mating on 𝑋 and 𝑌 over many generations under no causal effect of 𝑋 on 𝑌 for different levels of assortment (𝑃 ) and narrow-sense

heritability of 𝑋 (ℎ2
𝑋

) and 𝑌 (ℎ2
𝑌

)

T A B L E 2 Performance of variations of the two-stage least squares

(TSLS) regression method to detect a causal effect of 𝑋 on 𝑌 of 0.05 in

absence of assortative mating

Parameters Method Estimate Power (%)
ℎ2
𝑋
= 10% TSLS (1) 0.054 69.8

ℎ2
𝑌
= 10% TSLS (2) 0.054 42.4

TSLS (3) 0.054 42.3

ℎ2
𝑋
= 10% TSLS (1) 0.055 69.8

ℎ2
𝑌
= 50% TSLS (2) 0.054 41.6

TSLS (3) 0.054 41.6

ℎ2
𝑋
= 50% TSLS (1) 0.053 91.1

ℎ2
𝑌
= 10% TSLS (2) 0.052 66.3

TSLS (3) 0.052 66.2

ℎ2
𝑋
= 50% TSLS (1) 0.053 91.3

ℎ2
𝑌
= 50% TSLS (2) 0.052 66.3

TSLS (3) 0.052 66.2

TSLS (1): no covariates; TSLS (2): adjusting for parental allele scores; TSLS (3):

adjusting for parental non-transmitted allele scores; ℎ2
𝑋

: narrow-sense heritability

of 𝑋; ℎ2
𝑌

: narrow-sense heritability of 𝑌 .

assortment, but in practice it can be challenging to differen-

tiate phenotypic correlation within spouse pairs due to ethni-

cally, geographically, and/or socially determined mating from

assortative mating (Abdellaoui, Verweij, & Zietsch, 2014;

Domingue, Fletcher, Conley, & Boardman, 2014b). Nuclear

twin family models can potentially be used to detect assor-

tative mating; for example, studies have reported evidence

of positive cross-trait assortative mating between height and

intelligence (Keller et al., 2013). Another strategy would be to

use data of genetic variant(s) known to associate with a given

phenotype and test their association with a second phenotype

between spouses. This strategy detected a positive association

between a height allele score in women and education of their

male spouses (Carslake D et al., 2015), as well as provided

evidence for assortative mating involving height, educational

attainment, and other phenotypes (Robinson et al., 2017).

However, this strategy may be prone to other biases. For

example, if the height allele score has horizontal pleiotropic

effects on education, then single-strait association involving
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T A B L E 3 Phenotypic and genotypic correlations of height and education in ALSPAC mother–father offspring trios

Height Educational attainment
Mother Father Offspring Mother Father Offspring

Phenotypic

Height Mother 1

N = 1113

Father 0.24a 1

N = 977 N = 989

Offspring 0.44a 0.36a 1

N = 1113 N = 989 N = 1170

Education Mother 0.10a 0.12a 0.01 1

N = 1109 N = 988 N = 1127 N = 1127

Father 0.08a 0.07a 0.05 0.47a 1

N = 1107 N = 987 N = 1125 N = 1125 N = 1125

Offspring 0.11a 0.09a 0.04 0.38a 0.32a 1

N = 1113 N = 989 N = 1170 N = 1127 N = 1125 N = 1170

Genotypic (N = 1,170)

Height Mother 1

Father 0.07a 1

Offspring 0.53a 0.52a 1

Education Mother −0.02 0.05 −0.02 1

Father −0.01 −0.01 0.02 0.05 1

Offspring −0.06a −0.01 −0.03 0.55a 0.52a 1

ALSPAC: Avon Longitudinal Study of Parents and Children; N: sample size.
aP < 0.05.

T A B L E 4 Changes of offspring academic attainment in years per

1 cm increase in height

Confidence intervala

Method N
Mean
difference Lower Upper P-value

Linear regression 1,170 0.060 −0.022 0.141 0.150

MR using TSLS (1) 1,170 0.162 −0.073 0.398 0.177

MR using TSLS (2) 1,170 0.000 −0.449 0.450 0.998

MR: Mendelian randomization; TSLS: two-stage least squares regression; N: sam-

ple size; TSLS (1): no covariates; TSLS (2): adjusting for parental allele scores.
aCalculated using robust standard errors.

height would result in correlation between maternal height

and paternal education, and vice-versa.

Recent studies using genetic data provided further insights

into assortative mating in humans. For example, findings

from a study in the U.K. Biobank were consistent with pos-

itive assortative mating for hypertension (or traits corre-

lated with it, such as height), but the data were insufficient

to differentiate between assortative mating and other poten-

tial sources of between-spouses correlation (Munoz et al.,

2016). Another study in the U.K. Biobank estimated that a

person's own genotype (using ∼320,000 autosomal SNPs)

accounts for 4.1% of the variability in the mate height choice,

and that 89% of the genetic variation associated with a per-

T A B L E 5 Bias in Mendelian randomization due to the investi-

gated patterns of assortative mating

Trait(s) under assortment
Bias in
MR

Single-trait assortative mating
Exposure phenotype No

Outcome phenotype No

Phenotype genetically correlated with both exposure

and outcome via horizontal pleiotropy

Yes

Phenotype genetically correlated with both exposure

and outcome via vertical pleiotropy

Yes

Exposure and outcome phenotypes Yes

Cross-trait assortative mating
Exposure and outcome phenotypes Yes

Phenotype genetically correlated with exposure and

phenotype genetically correlated with outcome

(both via horizontal pleiotropy)

Yes

Phenotype genetically correlated with exposure and

phenotype genetically correlated with outcome

(both via vertical pleiotropy)

Yes

son's own height and mate height choice is shared. The

same study also estimated that ∼5% of the height heritabil-

ity is a result of assortative mating (Tenesa et al., 2016). In

non-Hispanic white participants in the Health and Retirement
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Study, spouses were genetically correlated, but such correla-

tion was substantially weaker than the between-spouse cor-

relation regarding educational attainment. Moreover, genetic

similarities between spouses explained only up to 10% of the

correlation regarding education (Domingue, Fletcher, Conley,

& Boardman, 2014a), suggesting that the environmental com-

ponent of assortative mating on education is stronger than

the genetic component, which would be expected given that

such between-spouse genetic correlations are a consequence

of assortative mating at the phenotypic level.

Our simulations indicated that adjusting for parental allele

scores is a simple and effective way to test and control for

this bias. Nontransmitted allele scores can also be used, but

they seemed to offer no advantage over the simple allele scores

when the goal is to estimate the causal effect of the individual's

exposure on the individual's outcome, which is the situation

covered in our simulations. Nontransmitted allele scores have

been proposed as genetic instrumental variables of maternal

exposures on child's outcomes because they avoid the issue of

horizontal pleiotropy due to effects of offspring's exposure on

offspring's outcome (Lawlor et al., 2017; Zhang et al., 2015).

Our findings indicate that nontransmitted allele scores also

detect assortative mating bias; therefore, causal effect esti-

mates of maternal exposures based on nontransmitted allele

scores can be biased if the maternal exposure phenotype is

under assortment, as previously noted by others (Lawlor et al.,

2017; Zhang et al., 2015).

The MR with the direction of causation (MR-DOC) twin

model, which has been recently developed with the goal of

testing for horizontal pleiotropy, could in principle be used to

test and correct for assortative mating bias (Minica, Dolan,

Boomsma, Geus, & Neale, 2018). Structural approaches to

model, and thus correct for, bias sources in MR have been

recently proposed. For example, structural equation modeling

(SEM) can be used to estimate the causal effect of maternal

exposures (Warrington, Freathy, Neale, & Evans, 2018), and

should in principle be flexible enough to model assortative

mating effects. In the case of MR-DOC, a major disadvan-

tage is the necessity of having twin data and that, in practice,

some parameters of the model may have to be constrained.

Our method is very simple, but requires trio data and is less

flexible. It may also be possible to use methods that require

less data.

Another possibility to mitigate bias due to assortative mat-

ing is to use outcome allele scores as covariates. However, our

analyses using causal diagrams suggested that this approach

is prone to residual bias unless all genetic variants that

influence the outcome are measured and properly modelled.

Nevertheless, it may be feasible to exploit genetic data on the

outcome in other forms. For example, if SNPs in the exposure

allele score are not in linkage disequilibrium with SNPs in

the outcome allele score, then a nonzero correlation between

exposure and outcome allele scores would be indicative of

cross-trait assortative mating (or some other phenomenon,

such as population substructure). This could be exploited

to detect and possibly correct for assortative mating bias,

but further methodological work is required on this topic.

Although comparing methods to detect and adjust for assor-

tative mating will be useful, it is likely that the methods are

complementary to each other, and choosing one over the

other will depend on study-specific factors such as the data

available and the research question.

Although the notion that assortative mating can bias MR

is widespread, this is the first study to thoroughly examine

this issue in simulations, providing a quantitative assessment

of the bias. For cross-trait assortative mating, assuming that

a plausible range of the correlation between mother's 𝑋 and

father's 𝑌 (and vice-verse) is from 0.1 to 0.3, then (based

on Supporting Information Table 7) plausible values of the

assortment strength parameter 𝑃 range, approximately, from

0.4 to 0.7. It is also plausible to assume that in general assort-

ment has been occurring over many generations. Setting the

number of generations to 9 (as in Figure 3), the bias ranged

from 0.008 (for𝑃 = 0.4) to 0.022 (for𝑃 = 0.7) when setting

the heritability of 𝑌 (ℎ2
𝑌
) to 10%; when setting ℎ2

𝑌
= 50%, the

bias ranged from 0.036 (for 𝑃 = 0.4) to 0.110 (for 𝑃 = 0.7).

Given that var(𝑋) ≈ 1 and var(𝑌 ) ≈ 1 in our simulations (as

shown in Supporting Information Table 8), these bias esti-

mates can be interpreted (approximately) as Pearson correla-

tion coefficients. Importantly, those bias estimates are heavily

dependent on our assumed data-generating model. Therefore,

extrapolating them to a practical situation requires parametric

assumptions about the mechanism that generated the observed

data.

One of the main strengths of our study was that we explored

a variety of causal structures and assortment patterns, which

allowed us to clarify when assortative mating is and is not

likely to bias MR. In particular, we showed that even single-

trait assortative mating and assortment that is not directly

on the exposure and outcome variable themselves can bias

MR. We also showed that MR methods robust to horizontal

pleiotropy are affected by this bias. Those conclusions were

drawn using a data-generating model that, while simple,

presented characteristics expected under classical assortative

mating models, such as increases in genetic and phenotypic

variances (Supporting Information Table 8), as well as in the

correlation between genetic variants (Supporting Information

Table 9; Hedrick, 2017; Jorjani, Engström, Strandberg, &

Liljedahl, 1997). However, it is important to note that

this may not be a feature of all assortative mating models

(Hedrick, 2017).

Any simulation model is a simplification of a likely much

more complex reality. Our simulations were far from being

an exhaustive list of all possible scenarios, implying that they

do not illustrate some aspects of assortative mating bias. For

example, when horizontal pleiotropic effects were simulated
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(in Scenarios 2 and 4), they were assigned to all genetic

variants under consideration. This simplified the simulation

model while allowing the main conclusions to be drawn.

However, doing so prevented us from exploring more refined

issues. For example, if some, but not all, of the genetic

variants influence the variable(s) under assortment through

horizontal pleiotropy, there will be between-instrument

heterogeneity, unlike in our simulations. This suggests that

some of the robust MR methods, such as the median and

the MBE, may be robust to assortative mating bias in those

particular cases (provided that their assumptions hold).

Therefore, it is possible that heterogeneity tests detect and

some MR methods correct for assortative mating bias in

some circumstances, but more firm conclusions require

further methodological work. Therefore, our findings should

be interpreted only as general indications on how assortative

mating can influence MR, and extrapolating our conclusions

to scenarios not covered in our simulations should be avoided.

We focused on how assortment on heritable phenotypes

may lead to bias in MR by inducing a correlation between

𝐺𝑋 and 𝐺𝑌 . However, there are other forms that assortment

can bias MR findings. For the sake of illustration, assume that

intelligence is not heritable. Nevertheless, if more intelligent

women tend to partner with taller men (and vice-versa), a MR

analysis assessing the causal effect of height on family earn-

ings would be biased because partner's intelligence is likely to

have a causal effect on family earnings. Further methodologi-

cal development on how to detect and control for bias in cases

such as this is required.

We demonstrated that there was little evidence of an

effect of height on educational attainment after adjustment

for parental genotype. This suggests that effects of height

on educational attainment may be due to assortative mat-

ing or dynastic effects. In this sample, the biggest impact

came from adjusting for father's allele score. However, our

empirical results are imprecise and are provided for illustra-

tion. Future work should combine larger samples of related

individuals to precisely estimate the effect of height on

educational outcomes while controlling for assortative mat-

ing and dynastic effects.

It is possible in principle to combine the simple assortative

mating bias adjustment approach presented here (i.e., include

parental allele scores as covariates in the model) with meth-

ods that offer robustness to other biases, such as horizontal

pleiotropy. For example, assortative mating bias adjustment

could be combined with horizontal pleiotropy robust meth-

ods that require individual-level data, such as Linear Slichter

Regression (Spiller, Slichter, Bowden, & Davey Smith, 2017).

It may even be possible to apply summary data methods (such

as the ones we evaluated) to summary association results

(i.e., instrument-exposure and instrument-outcome estimates

and standard errors) for each genetic instrument, generated

adjusting for assortative mating bias (e.g., using multivariable

regression). Future methodological development is required

to evaluate the theoretical and practical feasibility of those

combinations, and to develop the best ways to do so. Com-

bining methods robust to different bias sources in a single

approach would be useful to obtain causal effect estimates

robust to a range of biasing sources, which will strengthen

causal inference using MR.

Our study reenforces assortative mating as a potential bias

source in MR, and the utility of trio data to detect and adjust

for this bias. Whenever possible, and especially when the

phenotypes under consideration are likely to be under assort-

ment, we recommend researchers to perform sensitivity anal-

ysis using trio data to test if assortative mating is present

and, if so, to obtain causal effect estimates more robust to

this bias.
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