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Objectives: The population pharmacokinetic (popPK) characteristics of total
mycophenolic acid (tMPA) have been investigated in various ethnic populations.
However, investigations of popPK of unbound MPA (uMPA) are few. Thus, a popPK
analysis was performed to: (1) characterize the PK of uMPA and tMPA and its 7-O-
mycophenolic acid glucuronide (MPAG) metabolite in kidney transplant patients cotreated
with cyclosporine (CsA), and (2) identify the clinically significant covariates that explain
variability in the dose–exposure relationship.

Methods: A total of 740 uMPA, 741 tMPA, and 734 total MPAG (tMPAG) concentration–
time data from 58 Chinese kidney transplant patients receiving MPA in combination with
CsA were analyzed using NONMEM® software with the stochastic approximation
expectation maximization (SAEM) followed by the important sampling (IMP) method.
The influence of covariates was tested using a stepwise procedure.

Results: The PK of uMPA and unbound MPAG (uMPAG) were characterized by a two-
and one-compartment model with first-order elimination, respectively. A linear protein
binding model was used to link uMPA and tMPA. Apparent clearance (CL/F) and central
volume of distribution (VC/F) of uMPA (CLuMPA/F and VCuMPA/F, respectively) and protein
binding rate constant (kB) were estimated to be 851 L/h [relative standard error (RSE),
7.1%], 718 L (18.5%) and 53.4/h (2.3%), respectively. For uMPAG, the population values
(RSE) of CL/F (CLuMPAG) and VC/F (VCuMPAG/F) were 5.71 L/h (4.4%) and 29.9 L (7.7%),
respectively. Between-subject variability (BSVs) on CLuMPA/F, VCuMPA/F, CLuMPAG/F, and
VCuMPAG/F were 51.0, 80.0, 31.8 and 48.4%, respectively, whereas residual unexplained
variability (RUVs) for uMPA, tMPA, and uMPAG were 47.0, 45.9, and 22.0%, respectively.
Significant relationships were found between kB and serum albumin (ALB) and between
CLuMPAG/F and glomerular filtration rate (GFR). Additionally, model-based simulation
showed that changes in ALB concentrations substantially affected tMPA but not
uMPA exposure.
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Conclusions: The established model adequately described the popPK characteristics of
the uMPA, tMPA, and MPAG. The estimated CLuMPA/F and unbound fraction of MPA
(FUMPA) in Chinese kidney transplant recipients cotreated with CsA were comparable to
those published previously in Caucasians. We recommend monitoring uMPA instead of
tMPA to optimize mycophenolate mofetil (MMF) dosing for patients with lower ALB levels.
Keywords: population pharmacokinetics, nonlinear mixed-effect modeling, unbound mycophenolic acid, linear
protein binding, adult kidney transplant recipients
INTRODUCTION

Mycophenolate mofetil (MMF), a prodrug of mycophenolic acid
(MPA), is the predominant antimetabolite immunosuppressant
used as a cotherapy with tacrolimus (TAC) or cyclosporine
(CsA) to prevent graft re ject ion after sol id organ
transplantation (Hart et al., 2018; Hart et al., 2019). MMF is
extensively absorbed and rapidly hydrolyzed to the active
component MPA after oral administration. The majority of
MPA is metabolized to the pharmacologically inactive 7-O-
mycophenolic acid glucuronide (MPAG), whereas a lower
fraction is metabolized to the active acyl-glucuronide
mycophenolic acid (AcMPAG) (Bullingham et al., 1998; Kiang
and Ensom, 2016). MPA and MPAG are reported to be 97 and
82% bound to serum albumin (ALB), respectively at clinically
relevant concentrations (Bullingham et al., 1998). MPAG also
undergoes enterohepatic circulation (EHC) through biliary
excretion, followed by intestinal deglucuronidation and
reabsorption as MPA in the colon. This process contributes to
approximately 40% (range: 10–60%) of the area under the
concentration–time curve (AUC) of MPA and causes multiple
peaks in the concentration–time profile (Staatz and Tett, 2007).
Most absorbed MMF is eliminated through the kidney as MPAG
(Staatz and Tett, 2007).

MPA has a narrow therapeutic window and it is
recommended to maintain a 12-h dosing interval exposure
(AUC0–12h) between 30 and 60 mg·h/L during the early
posttransplantation period (Shaw et al., 2001; van Gelder et al.,
2006; Kuypers et al., 2010; Le Meur et al., 2011). Under-exposure
is associated with an increased risk for acute rejection, whereas a
higher AUC0–12h may lead to over-immunosuppression. Large
between-subject variability (BSV) and time-dependent variation
within-subjects are characteristics of MPA pharmacokinetics
(PK) (Shaw et al., 2003; Le Meur et al., 2007; van Hest et al.,
2007). A 10-fold variation of MPA exposure was observed even
in subjects administered the same dose during the first 2 weeks
following kidney transplantation. Moreover, the MPA exposure
in the early phase posttransplantation was 30–50% lower than
that in the stable period when administered the same MMF dose
(Shaw et al., 2003).

The narrow therapeutic window and large PK variability make it
necessary to individualize MMF therapy based on therapeutic drug
monitoring. Currently, the maximum a posterior Bayesian method
using population PK (popPK) in combination with Bayesian
estimation is recommended for facilitating the optimal
pharmacotherapy (Tobler and Muhlebach, 2013; Wright and
in.org 2
Duffull, 2013; Zhao et al., 2016; Mao et al., 2018). This approach is
based on a comprehensive understanding of prior information, i.e.,
the popPK characteristics.

The popPK characteristics of total MPA (tMPA) in kidney
transplant recipients have been extensively investigated in
various ethnic populations. Regarding unbound MPA (uMPA),
the pharmacologically active component, only a few
investigations have used the population approach (de Winter
et al., 2009; van Hest et al., 2009; Colom et al., 2018; Okour et al.,
2018) because of the technical complexity of measurements.
Furthermore, the information in Chinese kidney transplant
recipients is limited. Therefore, the objectives of this study
were to develop a popPK model to: (1) characterize the PK of
uMPA, tMPA, and the main metabolite MPAG in Chinese
kidney transplant patients cotreated with CsA, and (2) identify
the clinically significant covariates that explain the variability in
the dose–exposure relationship.
METHODS

Study Design and Patients
The data were obtained from two clinical studies (Jiao et al., 2007;
Geng et al., 2012). The inclusion criteria were as follows: patients 1)
receiving first-time kidney transplantation; 2) administered triple
immunosuppressive therapy comprising MMF (CellCept®, Roche
Pharma Ltd., Shanghai, China), CsA, and corticosteroids; 3) and
aged over 18 years. The exclusion criteria were: 1) pregnant or
lactatingwomen; patients 2)with severe gastrointestinal disorders; 3)
cotreated with cholestyramine; 4) and receiving combined
organ transplantation.

The first study was an evaluation of the PK of MPA and MPAG
during the early posttransplantation period conducted at Huashan
Hospital, Fudan University (Jiao et al., 2007). MMF was initiated at
1,500 mg/day from the day of surgery. The second study was an
open-label, multicenter, two-phase, sequential, bioequivalence study
conducted in stable kidney transplantation patients (Geng et al.,
2012). MMF dose was 1,000 or 1,500 mg/day in most patients. All
protocols were approved by the independent Clinical Research
Ethics Committee of Huashan Hospital, Fudan University, and all
participants provided written informed consent before enrolment.

After the morning dose, whole blood samples were collected
at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, and 12 h in study 1 and 0, 0.5, 1,
1.5, 2, 2.5, 3, 4, 6, 9, 10, and 12 h in study 2. Low-fat meals were
provided after the scheduled 4 and 10 h samplings in study 1 and
March 2020 | Volume 11 | Article 340
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the 3 and 9 h samplings in study 2. The relevant data were
collected to explore the relationships between demographic
characteristics, biochemical measurements, and PK parameters.

All samples were analyzed at Huashan Hospital using a
validated high-performance liquid chromatography method
(Jiao et al., 2005; Jiao et al., 2007). The calibration ranges were
0.002–1.0, 0.1–40, and 10–200 mg/L for uMPA, tMPA, and total
MPAG (tMPAG), respectively. The relative bias at lower limit of
quantification (LLOQ) were within ±17% for uMPA, within
±8.3% for tMPA, and tMPAG. The relative bias of other
quality control concentrations for uMPA, tMPA, and tMPAG
was within ±6.1%. The intra- and interday precision, as
coefficient of variation values, were <14% for uMPA, < 9.2%
for tMPA, and <9.8% for tMPAG.

PopPK Analyses
Software and Model Selection Criteria
Nonlinear mixed-effect modeling was performed using
NONMEM® software (version 7.4; ICON Development
Solutions, Ellicott City, MD, USA) compiled with gfortran
4.6.0. Perl-speaks-NONMEM (PsN, version 4.7.0; http://
uupharmacometrics.github.io/PsN) and Pirana (version 2.9.7;
http://www.certara.com/pirana) were used to link NONMEM,
model development, and model evaluation. The stochastic
approximation expectation maximization (SAEM), followed by
important sampling (IMP) method (Bauer, 2017) were used
throughout the model development. Graphical diagnostics
were performed using R software (version 3.4.4, http://www.r-
project.org).

MMF doses and uMPA, tMPA, and tMPAG concentrations
were transformed into molar equivalents by dividing them with the
molecular weight (MMF, MPA, and MPAG: 433.498, 320.339, and
496.462 g/mol, respectively; http://chem.nlm.nih.gov/chemidplus/)
and then reconverted tomilligram per liter in the figures and results.
Model selection was based on goodness-of-fit (GOF) plots (Ette and
Ludden, 1995) in addition to the three commonly used criteria of
statistical significance, plausibility, and stability. The difference in
objective function values (OFV) between two nested models was
used for statistical comparison. Akaike information criteria (AIC)
(Vaida and Blanchard, 2005) and Bayesian information criteria
(BIC) (Delattre et al., 2012) were used to discriminate nonnested
models.Additionally, relative standard errors (RSEs) of parameter
estimates, shrinkages, and changes of BSV and residual unexplained
variability (RUV) estimates were considered. During the model
developing process, the condition numbers were calculated and no
more than 1,000 were kept to avoid overparameterization (Owen
and Fiedler-Kelly, 2014).

Model Development
PopPK modeling of MPA and MPAG was conducted using a
sequential approach and eventually led to simultaneous
modeling of both the parent compound and metabolite. One-
or two-compartments models with first-order elimination were
tested for uMPA and unbound MPAG (uMPAG). We further
investigated whether MPA absorption was best described by a
first- or zero-order process, with or without a lagged absorption
Frontiers in Pharmacology | www.frontiersin.org 3
time (Tlag). The concentrations of uMPAG were not determined
in our study but were estimated from tMPAG by multiplying the
unbound fraction of MPAG (FUMPAG), which was fixed at 18%
according to the U.S. Food and Drug Administration (FDA)
package insert for CellCept® (FDA, 2019).

The tMPA data was first modeled by adding a linear protein
binding compartment as equation 1:

CtMPA = CuMPA + kB � CuMPA (1)

where CtMPA and CuMPA represent total and unbound MPA
concentrations, respectively, and kB is the protein binding rate
constant. In this case, the unbound fraction of MPA (FUMPA)
could be expressed as equation 2:

FUMPA =
CuMPA

CtMPA
=

1
1 + kB

(2)

The nonlinear saturable protein binding model published
previously (Picard-Hagen et al., 2001; Colom et al., 2018) was
also evaluated using equation 3:

CbMPA =
Bmax � CuMPA

kD + CuMPA
(3)

where CbMPA represents the bound MPA concentration, Bmax is
the maximal number of protein binding sites, and kD is the
dissociation constant representing the uMPA concentration
corresponding to half-saturation of protein binding. To
describe the physiological EHC process, the previously
published intermittent EHC model (Jiao et al., 2008; Ling
et al., 2015) was used with some modifications, in which a
gallbladder compartment was introduced to connect MPAG
and gut compartments. The percentage of MPAG recycled into
the systemic circulation (%EHC) was described using equation 4:

% EHC =
kGG

kGG + ke0
� 100 (4)

where, kGG is the transfer rate constant from the MPAG central
compartment to the gallbladder and ke0 is the elimination rate
constant of MPAG.

Several assumptions were made to ensure the model was
structurally identifiable (Jiao et al., 2008): (1) MMF is quickly
absorbed and completely hydrolyzed to MPA, (2) the conversion
ratio from MPA to MPAG is fixed at 87% (FDA, 2019), (3)
MPAG secreted from the gallbladder to the intestines is
completely deconjugated to MPA and reabsorbed, (4) the rate
constants associated with each compartment are all first-order
and unaffected by the recycling, and (5) gallbladder emptying is
triggered by meals. Additionally, the gallbladder emptying rate
constant (kGB) was fixed at 3.708/h based on previous study
(Guiastrennec et al., 2016). The duration (DGB) of gallbladder
release was fixed at 0.5 h to ensure that over 90% gallbladder
contents would be released after each trigger.

An exponential model was used to describe BSVs for each PK
parameter while exponential, additive, and combined models
were compared to describe RUVs. Furthermore, the covariance
of BSVs was estimated using OMEGA BLOCK statement in
March 2020 | Volume 11 | Article 340
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NONMEM. Because uMPA, tMPA, and tMPAG concentrations
were derived from the same sample for each subject, their RUVs
were likely correlated. An L2 data item was introduced and the
covariance of RUVs was also evaluated using SIGMA BLOCK
statement (Bauer, 2017).

After the base model was established, the following
physiologically meaningful covariates were investigated: sex,
age, body weight (BW), postoperative time (POT),
hemoglobin, ALB, alanine aminotransferase, aspartate
aminotransferase, serum creatinine (SCr), glomerular filtration
rate (GFR), CsA daily dose, and coadministration of antacids.
GFR was estimated from SCr using the Chronic Kidney Disease
Epidemiology Collaboration formula (Levey et al., 2009).

First, relationships between individual PK parameters and
covariates were examined by graphical inspection to identify the
potential covariates. Then, the identified covariates were tested
using a stepwise procedure. During the forward inclusion and
backward elimination steps, significance levels were set at a
decrease in OFV > 3.84 (c2, df = 1, p < 0.05) and an increase in
OFV > 10.83 (c2, df = 1, p < 0.001), respectively. The continuous
covariates were assessed using a linear and non-linear model, and
categorical covariates were modeled proportionally. To
demonstrate clinical significance, covariates were only retained if
the effect on the corresponding parameter was >15% for a
categorical covariate, or >15% at the highest or lowest observed
covariate value for a continuous covariate (Mo et al., 2018). In
addition, the included covariates were expected to have
interpretations of physiological or pharmacological mechanisms.
Model Evaluation
The established model was evaluated by graphical diagnosis.
GOF plots included scatterplots of population predictions
(PRED) and individual predictions (IPRED) versus observed
concentrations (OBS), as well as conditional weighted residuals
(CWRES) versus PRED and time after previous dose (TAD).
Observations over ±4 CWRES based on final model were
excluded from the original dataset, and the sensitivity analysis
was performed to verify the model. Additionally, 500 bootstraps
(Ette et al., 2003) were applied to assess the reliability and
stability of the final model. The medians and 2.5–97.5%
intervals from the bootstrap replicates were compared with
estimates of the final model.

The final model was further examined using a prediction-
corrected visual predictive check (pc-VPC) (Bergstrand et al.,
2011) and posterior predictive check (PPC) (Yano et al., 2001).
Furthermore, 2,000 datasets were simulated using the final model
from the original dataset. For pc-VPC, the observed and
simulated concentrations were dose-normalized to 750 mg
MMF every 12 h. The median, 5th and 95th percentiles of
simulated concentrations and corresponding 95% confidence
intervals (CIs) were calculated and graphically compared with
the observations. PPC was further performed to assess if the
model appropriately predicted the AUC0–12h of uMPA, tMPA,
and tMPAG. Simulated and observed AUC0–12h were calculated
using the linear trapezoidal rule. Distributions of the simulated
and observed AUC0–12h were then graphically compared.
Frontiers in Pharmacology | www.frontiersin.org 4
Simulation Analyses of Effects of
Significant Covariates
The established final model was used to investigate the effect of
the identified covariates on the PK of MPA and MPAG.
Specifically, 2,000 stochastic simulations were performed for
virtual subjects administered 750 mg MMF every 12 h with
different covariate levels. The AUC0–12h values of uMPA, tMPA,
and tMPAG were estimated using the linear trapezoidal rule, and
changes in AUC0–12h and FUMPA were assessed.
RESULTS

Patient Characteristics and Data
Descriptions
A total of 27 full concentration–time profiles containing uMPA,
tMPA, and tMPAG data were obtained from 20 patients in study
1, including 23 profi les collected within 3 months
posttransplantation. Sixteen patients had one profile, one had
two profiles, and the other three each had three profiles. In study
2, we obtained 38 full concentration–time profiles from 38
pat ients , including 37 col lected beyond 3 months
posttransplantation. The patient characteristics are shown in
Table 1. Of these subjects, male patients accounted for
approximately 78%. The concomitant antacids in study 1 were
proton pump inhibitors, whereas sodium hydrogen carbonate
and compound aluminum hydroxide were coadministered in
study 2. Significant differences in BW, POT, hemoglobin, and
ALB as well as doses of MMF, CsA, and corticosteroids were
observed between the two studies.

Of the 2,229 samples, < 1% (3 uMPA, 1 tMPA, and 10
tMPAG) were below the LLOQ and were discarded. In total,
740 uMPA, 741 tMPA, and 734 tMPAG concentration
measurements were used for the popPK analysis. Multiple
uMPA and tMPA peaks attributed to EHC were observed at
4–6 and 8–12 h postdosing in some subjects, whereas no obvious
multiple peaks were observed for tMPAG. After being
normalized to MMF 1,500 mg/day, the median AUC0–12h of
uMPA in study 2 was significantly higher than that in study 1
(38.60 vs. 27.21 mg·h/L). No significant differences in the AUC0–

12h of tMPA and tMPAG were found between the two studies.

PopPK Model
Model Development
As shown in Figure 1, a five-compartment model with first-order
absorption and elimination adequately described the uMPA, tMPA,
and uMPAG data. The two-compartment (2CMT) structural model
was superior to the one-compartment (1CMT) (AIC, −2904.957 vs.
−2585.189; BIC, −2785.184 vs. −2506.876) for uMPA.Moreover, the
1CMT structural model showed a better fit for uMPAG than the
2CMT did (AIC, −81.269 vs. −59.793; BIC, 188.813 vs. 379.753).
Incorporation of Tlag further led to a significant reduction of
383.714 units in the OFV. Simultaneous estimation of both Bmax

and kD was not feasible; therefore, Bmax was fixed at the reported
value of 35,100 mmol (de Winter et al., 2009). The nonlinear
saturable binding from the central compartment did not improve
March 2020 | Volume 11 | Article 340
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the fit (AIC, 1531.731 vs. 1530.953; BIC, 2010.784 vs. 2010.006)
more than the linear protein binding model did. Furthermore,
incorporation of the EHC process decreased the AIC and BIC by
129.985 and 21.628 units, respectively.

The PK parameters estimated were absorption rate constant (ka),
Tlag, apparent clearance (CL/F) of uMPA and uMPAG (CLuMPA/F
and CLuMPAG/F, respectively), apparent intercompartmental
clearance of uMPA (QuMPA/F), apparent central volume of
distribution (VC/F) of uMPA and uMPAG (VCuMPA/F and
VCuMPAG/F, respectively), kB, and %EHC. Apparent peripheral
volume of distribution of uMPA (VPuMPA/F) could not be
estimated appropriately and was fixed at the reported literature
value of 34,300 L (de Winter et al., 2009).

Considering that the expectation maximization (EM) algorithm
is much more robust and adept at handling the large full OMEGA
block (Bauer, 2017), we initially attempted to assign BSVs to all PK
parameters. However, our data did not support the estimation of
BSV on kB. To maximally enhance the EM efficiency, the BSV was
assigned to kB, and its variance was fixed at 0.01 (Bauer, 2017).
Various RUV models were tested to describe the residual errors.
Incorporation of the additive residual error resulted in boundary
issues and therefore, an exponential RUV model was used.

Based on the visual inspections and clinical plausibility, the effects
of BW and sex on CLuMPA/F, QuMPA/F, VCuMPA/F, CLuMPAG/F, and
VCuMPAG/F; GFR on kB, CLuMPA/F, QuMPA/F, and CLuMPAG/F; ALB
on kB, VCuMPA/F, and VCuMPAG/F; coadministration of antacids on
CLuMPA/F and ka; and tMPAG concentrations on kB were further
Frontiers in Pharmacology | www.frontiersin.org 5
tested using the stepwise method. Of these, the effects of ALB on kB,
GFR on CLuMPAG/F, and BW and sex on QuMPA/F were included in
the forward procedure, whereas the effect of sex onQuMPA/F showed
no significance in the backward step and, thus, was not retained in
the final model. The forward inclusion and backward elimination
steps are summarized in Supplementary Table 1. Because the
estimated value of the exponent for the effect of ALB on kB was
quite close to 1, it was fixed at 1 to simplify the model and maintain
the model stability.

Although introduction of full variance–covariance matrices for
BSVs and RUVs substantially decreased the OFV by 262.265 units,
the high condition number (7.5 × 1010) indicated that the model
might be ill-conditioned because of overparameterization. Finally,
the covariance between BSVs for VCuMPAG/F and CLuMPAG/F and
between RUVs for uMPA and tMPA was included. This further
decreased the OFV by 163.434 units with an acceptable condition
number (< 150). The parameter estimates of the final model are
provided in Table 2. No significant covariate was detected to
influence CLuMPA/F, whereas significant relationships were found
between kB and ALB and between CLuMPAG/F and GFR. RSEs of the
parameter estimates were <30 and 45% for fixed and random effects
except for %EHC, respectively. Shrinkage values of BSVs and RUVs
were <30% except for %EHC.

Model Evaluation
The basic GOF plots of the final model are shown in Figure 2where
PRED and IPRED did not show obvious bias when plotted against
TABLE 1 | Patient characteristics and clinical covariates.

Characteristics Study 1 Study 2 P valuea

median (range) mean ± SD median (range) mean ± SD

Patients, n 20 / 38 / /
Sex
Male, n (%) 11 (55) / 34 (89) / < 0.01
Female, n (%) 9 (45) / 4 (11) / < 0.01

Age, years 36 (19–61) 37 ± 12 38 (18–62) 38 ± 12 > 0.05
Body weight, kg 55 (40–71) 54.3 ± 9.8 65 (42–82.5) 65.2 ± 10.2 < 0.001
Postoperative time, days 10 (3–148) 31 ± 41 298 (70–3084) 620 ± 780 < 0.001
Mycophenolate mofetil daily dose, mg/day 1,500 (750–2,000) 1,444 ± 313 1,000 (1,000–2,000) 1230 ± 269 < 0.01
Hemoglobin, g/L 86 (72–134) 93.6 ± 18.6 139 (103–181) 142.6 ± 22.4 < 0.001
Albumin, g/L 31 (20–43) 32 ± 6.6 44.9 (32.3–50) 44.2 ± 3.9 < 0.001
Alanine aminotransferase, U/L 24 (10–390) 49.48 ± 78.51 18 (7–64) 21.88 ± 12.65 > 0.05
Aspartate aminotransferase, U/L 20 (7–139) 33.78 ± 29.32 24 (8.6–86) 28.94 ± 19.88 > 0.05
Serum creatinine, mmol/L 96 (50–443) 114.41 ± 73.97 104.5 (76–152.9) 108.82 ± 17.27 > 0.05
Glomerular filtration rateb, mL/min 76.12 (11.17–123.8) 75.58 ± 25.09 74.42 (45.14–102.3) 74.79 ± 14.16 > 0.05
Concomitant medication
Cyclosporine daily dose, mg/day 300 (0–400) 282 ± 102 220 (100–400) 231 ± 65 < 0.01
Corticosteroid daily dose, mg/day 20 (5–675) 49.1 ± 126.1 10 (3–20) 10.8 ± 4.1 < 0.001
Antacidsc, n (%) 6 (22) / 5 (13) / > 0.05
Aspirin, n (%) 0 (0) / 6 (16) / < 0.05
Nifedipine, n (%) 4 (15) / 5 (13) / > 0.05
Diltiazem, n (%) 0 (0) / 7 (18) / < 0.05
March 2020 | Volume 11 | A
/, not applicable; SD, standard deviation.
aDifferences between groups are determined using the Mann–Whitney U test for continuous variables and Fisher’s exact test for categorical data with IBM SPSS Statistics for Windows
(Version 20, IBM Corp., Armonk, NY).
bGlomerular filtration rate (GFR) is calculated from serum creatinine using the Chronic Kidney Disease Epidemiology Collaboration formula (Levey et al., 2009): GFR = 141 × min(SCr/k, 1)a

× max(SCr/k, 1)−1.209 × 0.993Age × 1.018 [if female] × 1.159 [if black], where SCr is serum creatinine, k is 62 (mmol/L) for females and 80 (mmol/L) for males, a is −0.329 for females and
−0.411 for males, min indicates the minimum of SCr/k or 1, and max indicates the maximum of SCr/k or 1.
cAntacids include proton pump inhibitors, sodium hydrogen carbonate, and compound aluminum hydroxide.
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OBS. Over 99.8% (2,211/2,215) of the observations were within ±4
CWRES. Alterations of all parameter estimates were < ± 15% when
observations with CWRES of > ± 4 were excluded (Supplementary
Table 2). The GOFs and sensitivity analysis results showed that the
model adequately described the data despite the fact that a slightly
positive bias could be found in the residual plots.

Out of 500 replicates in the bootstrap analysis, all runs
converged successfully. The estimated parameters based on
original dataset were in good agreement with the median
bootstrap replicates and were within the 2.5–97.5% intervals
obtained from the bootstrap analysis (Table 2), indicating the
reliability and stability of the final model. Figure 3 shows the
results of the pc-VPC of the final model. Most observed
concentrations fell within the 90% prediction interval, and no
obvious discrepancy between observations and simulations was
found. The PPC suggested that the simulated AUC0–12h values
also showed good consistency with the observations (Figure 4).
The pc-VPC and PPC results showed that the final model was
reasonably good at predicting the observations.

Simulations Illustrating Effect of Covariates
Typical subjects administered 750 mg MMF every 12 h were
simulated with different ALB and GFR levels. ALB values were
Frontiers in Pharmacology | www.frontiersin.org 6
set from 20 to 50 g/L with a step of 5 g/L. At each ALB level, the
GFR was set at 15, 30, 60, 90, and 120 mL/min according to the
Kidney Disease Improving Global Outcomes (KIDGO) chronic
kidney disease classification (Kidney Disease: Improving Global
Outcomes CKD Work Group, 2013). Generally, ALB and GFR
showed large effects on tMPA and tMPAG, respectively, but little
effect on uMPA (Figure 5).

A substantial decrease in tMPA AUC0–12h and increase in
FUMPA were observed with decreasing ALB concentrations. For
subjects with a GFR of 90 mL/min administered 750 mg MMF
every 12 h, the median tMPA AUC0–12h decreased from 42.92 to
21.59 mg·h/L when ALB concentrations decreased from 40 to 20 g/
L, whereas the exposure of uMPA and tMPAG remained almost
unchanged (< 5%). A decrease in ALB concentrations from 40 to 20
g/L increased FUMPA from 1.86% (95% CI, 1.35–2.58%) to 3.62%
(95% CI, 2.62–5.02%) (Supplementary Figure 1).

Additionally, a substantial increase in tMPAG AUC0–12h was
observed with decreasing GFR. For subjects with an ALB
concentration of 40 g/L administered 750 mg MMF every 12 h,
a reduction in GFR from 90 to 15 mL/min led to a 3.67-fold (95%
CI, 3.13–4.30) increase in tMPAG AUC0–12h, while FUMPA and the
exposure of both uMPA and tMPA were unchanged (Figure 5 and
Supplementary Figure 1).
FIGURE 1 | Schematic representation of the final structural model characterizing the linear protein binding and intermittent EHC processes. In this model, mealtimes
are used as an index of gallbladder emptying. This process is assumed to occur at specific time points (mealtimes) with a first-order rate constant and a certain
duration. The fraction of MPA metabolized to MPAG is fixed at 87%. MMF, mycophenolate mofetil; MPA, mycophenolic acid; MPAG, 7-O-mycophenolic acid
glucuronide; tMPA, total MPA; tMPAG, total MPAG; uMPA, unbound MPA; uMPAG, unbound MPAG; ALB, serum albumin; BW, body weight; CLuMPA/F, apparent
clearance of uMPA; DGB, duration of gallbladder emptying; EHC, enterohepatic circulation; %EHC, percentage of MPAG recycled into the systemic circulation;
FUMPA, unbound fraction of MPA; FUMPAG, unbound fraction of MPAG; GFR, glomerular filtration rate; k20, elimination rate constant of uMPA; k23, transfer rate
constant from uMPA central compartment to peripheral compartment; k24, rate constant of uMPA transformed to uMPAG; k32, transfer rate constant from uMPA
peripheral compartment to central compartment; ka, absorption rate constant; kB, protein binding rate constant; ke0, elimination rate constant of uMPAG; kGB,
gallbladder emptying rate constant; kGG, transfer rate constant from uMPAG central compartment to gallbladder; Tlag, lagged absorption time; VCuMPA/F and
VCuMPAG/F, apparent central volume of distribution of uMPA and uMPAG, respectively; VPuMPA/F, apparent peripheral volume of distribution of uMPA.
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The simulations showed that neither ALB nor GFR significantly
affected uMPA exposure. For patients with lower ALB levels, dose
adjustment based on monitoring tMPA would lead to higher risk of
leucopoenia and infections, because of overexposure to uMPA.
DISCUSSION

The present study extensively investigated the popPK characteristics
of uMPA, tMPA, and MPAG in Chinese adult kidney transplant
recipients cotreated with CsA during both the early and stable
Frontiers in Pharmacology | www.frontiersin.org 7
periods posttransplantation. A two-compartment model with first-
order absorption and elimination adequately described the uMPA
data. Furthermore, the uMPA and tMPA were connected using a
linear protein binding model.

It is still controversial whether ethnic differences exist in MPA
PK. Some studies have reported higher dose-normalized AUCs
of MPA in Asian subjects than in Caucasians (Lu et al., 2005;
Zicheng et al., 2006; Yau et al., 2007; Zhou et al., 2007; Miura
et al., 2009). Li et al. (2014) reported that Asians had lower MPA
CL/F and required lower MMF doses than Caucasians did. This
could be partly explained by the significantly lower BW of
Asian subjects.
TABLE 2 | Pharmacokinetic parameter estimates for the final model and Bootstrap results.

Parameters Estimates %RSEa Shrinkage(%) Bootstrap

Median 2.5th–97.5th percentileb

Pharmacokinetic parameters for uMPA and uMPAG
CLuMPA/F, L/h 851 7.1 / 855 723–1,012
QuMPA/F

c, L/h 857 11.0 / 843 710–1,018
Exponent for the effect of BW on QuMPA/F 2.11 24.2 / 2.06 1.02–3.10

VCuMPA/F, L 718 18.5 / 710 492–937
ka,/h 1.35 11.1 / 1.34 1.11–1.61
Tlag, h 0.447 16.8 / 0.449 0.297–0.602
kB

d,/h 53.4 2.3 / 53.5 45.3–61.6
CLuMPAG/F

e, L/h 5.71 4.4 / 5.72 5.18–6.51
Exponent for the effect of GFR on CLuMPAG/F 0.865 11.6 / 0.849 0.320–1.580

VCuMPAG/F, L 29.9 7.7 / 30.0 26.0–35.0
%EHC 5.53 26.2 / 5.87 3.49–8.83

Pharmacokinetic parameters for tMPA and tMPAG f

CLtMPA/F, L/h 15.66 / / / /
QtMPA/F, L/h 15.77 / / / /
VCtMPA/F, L 13.21 / / / /
VPtMPA/F, L 631.12 / / / /
CLtMPAG/F, L/h 1.03 / / / /
VCtMPAG/F, L 5.38 / / / /

Between-subject variability, %CV
CLuMPA/F 51.0 11.0 3.6 49.8 39.5–59.5
QuMPA/F 45.5 16.2 17.8 42.3 27.0–56.3
VCuMPA/F 80.0 25.2 26.1 81.5 53.3–109.5
ka 46.5 20.4 27.6 44.1 32.1–59.3
Tlag 107.7 15.8 8.4 109.5 83.6–151.7
kB 10.0 FIXED / / / /
CLuMPAG/F 31.8 13.3 2.0 32.3 24.7–43.2
Correlation between CLuMPAG/F and VCuMPAG/F 57.4 28.7 / 57.5 30.0–79.7
VCuMPAG/F 48.4 25.0 15.5 46.7 27.2–65.2
%EHC 61.6 55.9 57.7 55.1 15.5–98.8

Residual unexplained variability, %CV
uMPA 47.0 3.5 5.1 46.7 41.3–52.2
Correlation between uMPA and tMPA 51.2 7.2 / 51.1 38.2–62.2
tMPA 45.9 3.7 5.2 45.4 41.0–50.0
uMPAG 22.0 3.1 4.7 21.2 18.1–24.0
March 2020
MPA, mycophenolic acid; MPAG, 7-O-mycophenolic acid glucuronide; tMPA, total MPA; tMPAG, total MPAG; uMPA, unbound MPA; uMPAG, unbound MPAG; /, not applicable; %CV,
percentage coefficient of variation; %EHC, percentage of MPAG recycled into the systemic circulation; %RSE, percentage relative standard error; ALB, serum albumin; BW, body weight;
CLtMPA/F, CLtMPAG/F, CLuMPA/F and CLuMPAG/F, apparent clearance of tMPA, tMPAG, uMPA and uMPAG, respectively; GFR, glomerular filtration rate; ka, absorption rate constant; kB,
protein binding rate constant; QtMPA/F and QuMPA/F, apparent intercompartmental clearance of tMPA and uMPA, respectively; Tlag, lagged absorption time; VCtMPA/F, VCtMPAG/F, VCuMPA/
F and VCuMPAG/F, apparent central volume of distribution of tMPA, tMPAG, uMPA and uMPAG, respectively; VPtMPA/F, apparent peripheral volume of distribution of tMPA.
a%RSE is estimated as the standard error of the estimate divided by the population estimate multiplied by 100.
bBased on 500 successful bootstrap runs.
cThe effect of BW on QuMPA/F is expressed as: QuMPA=F = 857� ½BW (kg)

70 �2:11 (L=h):
dThe effect of ALB on kB is expressed as: kB = 53:4� ½ALB (g=L)40 � (=h):
eThe effect of GFR on CLuMPAG/F is expressed as: CLuMPAG=F = 5:71� ½GFR (mL=min )

80 �0:865 (L=h):
fThe disposition parameter estimates for tMPA and tMPAG concentrations are generated by multiplying the unbound concentration based parameters in the original model by the typical
unbound fraction at serum albumin concentration of 40 g/L.
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After correcting for BW, the average tMPA CL/F (CLtMPA/F)
of Asians and Caucasians was close (POT ≤ 6 months: 0.35 vs.
0.36 L/h/kg; POT > 6 months: 0.22 vs. 0.25 L/h/kg) following
coadministration of CsA (Li et al., 2014). In contrast, several
studies showed that MPA PK in Asians was similar to that in
Frontiers in Pharmacology | www.frontiersin.org 8
Caucasians (Funaki, 1999; Cho et al., 2004; Jiao et al., 2007; Ling
et al., 2015). In addition, our previous study suggested that the
lower dose required in Chinese patients than in Caucasians could
result in comparable inhibitory rates of inosine-5′-
monophosphate dehydrogenase (24–42%) (Liu et al., 2018).
A

B

C

D

FIGURE 2 | Goodness-of-fit plots of final model for uMPA, tMPA and tMPAG. (A) Population predictions versus observations; (B) individual predictions versus
observations; (C) population predictions versus conditional weighted residuals; (D) time after previous dose versus conditional weighted residuals. Red dashed lines
and gray-shaded areas represent the locally weighted regression line and 95% confidence interval, respectively. In plots A and B, black solid lines represent the line
of unity. In plots C and D, black solid and dashed lines represent the y = 0 and y = ± 1.96 reference lines, respectively. tMPA, total mycophenolic acid (MPA);
tMPAG, total 7-O-mycophenolic acid glucuronide; uMPA, unbound MPA.
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The difference in dose requirement might not be attributable to
PK but to pharmacodynamics.

The current study showed no obvious ethnic difference in
exposure of uMPA. As shown in Table 3, the population estimate
of BW corrected-CLuMPA/F (13.95 L/h/kg) was comparable to most
of previously reported values in Caucasians (9.21–12.93 L/h/kg)
(de Winter et al., 2009; van Hest et al., 2009; Colom et al., 2018).
Moreover, the typical value of BWcorrected-CLtMPA/F (0.26 L/h/kg)
was also similar to most of previously reported values in Asians
(0.21–0.32 L/h/kg) (Yau et al., 2009; Yu et al., 2017; Chen et al., 2019)
and Caucasians (0.18–0.32 L/h/kg) (Le Guellec et al., 2004; Cremers
et al., 2005; Staatz et al., 2005; van Hest et al., 2007; de Winter et al.,
2008; Musuamba et al., 2009; Guillet et al., 2010; de Winter et al.,
Frontiers in Pharmacology | www.frontiersin.org 9
2012; Colom et al., 2014). Furthermore, the population estimate of
FUMPA in our study (1.84%) was also similar to previously reported
values (van Hest et al., 2009; Colom et al., 2018).

The stepwise covariate analyses suggested that ALB had
significant effects on kB and FUMPA. MPA is extensively bound
to human ALB, which has more than one binding site on each
molecule with equivalent binding characteristics (Nowak and
Shaw, 1995). A reduction in ALB decreases the binding sites,
which increases the FUMPA. The simulations showed that
changes in ALB concentrations substantially affected FUMPA

and tMPA exposure, but had little effect on uMPA exposure,
which was consistent with previous findings (de Winter et al.,
2009; van Hest et al., 2009). This could be attributed to the low
FIGURE 3 | Prediction-corrected visual predictive check plots of final model for uMPA, tMPA and tMPAG. Blue dots represent the observed concentrations. Red
solid lines represent the median of observations, and the semitransparent red fields represent the simulation-based 95% CIs for the median. The observed 5th and
95th percentiles are presented with red dashed lines, and the simulation-based 95% CIs for corresponding percentiles are shown as semitransparent blue fields. In
general, the median, and 5th and 95th percentile lines of observations fall inside the area of the corresponding 95% CIs. Additionally, the majority of observed
concentrations fall within the 90% prediction interval, which demonstrates that the predicted variability does not exceed the observed variability. CIs, confidence
intervals; tMPA, total mycophenolic acid (MPA); tMPAG, total 7-O-mycophenolic acid glucuronide; uMPA, unbound MPA.
FIGURE 4 | Posterior predictive check graphics of final model for uMPA, tMPA, and tMPAG. The histograms represent the distribution of simulations. Black and
blue solid lines represent the medians of observations and simulations, respectively. The observed 5th and 95th percentiles are presented by black dashed lines, and
the simulated 5th and 95th percentiles are presented by blue dashed lines. The simulated AUC0–12h values present good consistency with observations. In particular,
the 5th percentiles of simulations and observations for uMPA, as well as the medians of simulations and observations for tMPAG, are completely overlapped in the
graphics. AUC0–12h, area under the concentration–time curve within 12-h dose-interval; tMPA, total mycophenolic acid (MPA); tMPAG, total 7-O-mycophenolic acid
glucuronide; uMPA, unbound MPA.
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FIGURE 5 | Model-predicted covariate effects on AUC0–12h of uMPA, tMPA, and tMPAG. Black squares represent median values and error bars represent 95%
confidence intervals of the normalized exposure ratios relative to the typical reference subject (ALB 40 g/L, GFR 90 mL/min) across 2,000 simulation replicates. The
vertical red dashed lines show an exposure ratio of 1 relative to the reference subject. ALB, serum albumin; AUC0–12h, area under the concentration–time curve
within 12-h dose-interval; GFR, glomerular filtration rate; tMPA, total mycophenolic acid (MPA); tMPAG, total 7-O-mycophenolic acid glucuronide; uMPA, unbound
MPA.
TABLE 3 | Previously published population pharmacokinetic analysis of unbound and total mycophenolic acid.

References Present study Okour et al., 2018 Colom et al., 2018 van Hest et al., 2009 de Winter et al., 2009

Number of patients 58 92 56 88 75
Ethnicity Chinese

(100%)
Caucasian
(93%)

Caucasian (majority) Caucasian
(95%)

Caucasian
(majority)

Body weight, kg 61 (40.5–82.5) 82.3 (/) 71 (35–100) 67 (40–99) 67 (42–99)
Concomitant CNI CsA CsA/TAC CsA/TAC CsA CsA/TAC
Postoperative time 3-3084 days / 7 days–1 year 7–148 days 4–155 days
Structure model MPA: 2 CMT

MPAG: 1 CMT
MPA: 1 CMT
MPAG: 1 CMT

MPA: 2 CMT MPA: 2 CMT
MPAG: 2 CMT

MPA: 2 CMT
MPAG: 1 CMT

pharmacokinetic parametera

FUMPA, % 1.84 (2.3%)b 2.4 (5.2%) 1.93 (3.13%)b 2.03 (3%)b /
CLuMPA/F, L/h 851 (7.1%) 1,832 (6.5%) 654 (3%) 866 (6%) 747 (/)
VCuMPA/F, L 718 (18.5%) 5,630 (7.9%) 18.3 (19.18%) 2,990 (27%) 189 (/)
QuMPA/F, L/h 857 (11.0%) / 749 (3.14%) 1,210 (13%) 2,010 (/)
VPuMPA/F, L 34,300 FIXED (/) / 29,100 (8.59%) 6,240 (26%) 34,300 (/)

Between-subject variability, %CV
CLuMPA/F 51.0 (11.0%) 30.1 (25.4%) 26.81 (69.82%) 25 (32%) 97 (/)
VCuMPA/F 80.0 (25.2%) 35.5 (33.6%) 99.45 (36.91%) 91 (30%) 116 (/)

Between-occasion variability, %CV
CLuMPA/F / / 40.9 (52.1%) / /
VCuMPA/F / / 137.6 (22%) / /

Residual unexplained variability, %CV
uMPA 47.0 (3.5%) 40.5 (9%) 58.3 (47.35%) 44 (6%) 99.3 (/)
tMPA 45.9 (3.7%) 35.8 (10.9%) 46.9 (4.18%) 42 (6%) 52 (/)
Frontiers in Pharmacology |
 www.frontiersin.org
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MPA, mycophenolic acid; MPAG, 7-O-mycophenolic acid glucuronide; tMPA, total MPA; uMPA, unbound MPA; /, not applicable or not available; %CV, percentage coefficient of variation;
CLuMPA/F, apparent clearance of uMPA; CMT, compartment; CNI, calcineurin inhibitor; CsA, cyclosporine; FUMPA, unbound fraction of MPA; QuMPA/F, apparent intercompartmental
clearance of uMPA; TAC, tacrolimus; VCuMPA/F, apparent central volume of distribution of uMPA; VPuMPA/F, apparent peripheral volume of distribution of uMPA.
aRepresented as typical values (relative standard error, RSE) for reference subjects: 1) body weight 70 kg, 2) serum albumin concentration 40 g/L, 3) glomerular filtration rate 90 mL/min,
4) cotreated with CsA 300 mg per day, 5) total MPAG concentration 0.1 mmol/L.
bCalculated based on the protein binding rate constant.
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hepatic extraction ratio of MPA. FUMPA tended to increase with
decreasing ALB (Supplementary Figure 1) and the increase in
FUMPA caused relatively more uMPA to be metabolized and
eliminated from the body, thereby decreasing tMPA exposure. In
contrast, MPA is characterized by a low hepatic extraction ratio
of 0.2 (Bowalgaha and Miners, 2001), and the unbound exposure
of drugs with low extraction ratio is unaffected by changes in the
unbound fraction (Benet and Hoener, 2002).

These results suggested that dose adjustment based on tMPA
exposure might not be appropriate under lower ALB conditions.
A reduction in median tMPA AUC0–12h from approximately
42.9 to 21.6 mg·h/L was observed when ALB concentration
decreased from 40 to 20 g/L for patients administered 750 mg
MMF every 12 h. However, this observation does not indicate an
MMF dose increment is necessary because of the unchanged
uMPA exposure. Although a relationship between uMPA
exposure and acute rejection risk has not been fully identified,
uMPA has been recognized as the pharmacologically active
component. Moreover, uMPA exposure has been demonstrated
to be associated with the risk of leucopoenia and infections
(Kaplan et al., 1998; Weber et al., 2002; Mudge et al., 2004;
Atcheson et al., 2005). An increased MMF dose would also
increase uMPA exposure, placing patients at a higher risk of
overimmunosuppression with manifestations such as
leucopoenia and infections. In such situations, monitoring
uMPA exposure might be preferable to monitoring tMPA for
adjusting the MMF dose.

Moreover, it has been reported that tMPA exposure in the
early phase post-transplantation was 30–50% lower than that in
the stable period when the same MMF dose was administered
(Shaw et al., 2003). This time-dependent clearance could be
largely attributed to changes in protein binding, resulted by
increasing GFR, ALB, and hemoglobin levels with extension of
time after transplantation (van Hest et al., 2007). In the present
study, the influence of POT was reflected in corresponding
changes in ALB concentrations, which significantly impacted
FUMPA. Alterations of protein binding had little effect on uMPA
PK because of the low extraction ratio (Bowalgaha and Miners,
2001; Benet and Hoener, 2002). In addition, the significant
positive association between QuMPA/F and BW was observed in
the present study. This relationship is consistent with the known
physiological properties.

Additionally, a gallbladder compartment was introduced to
characterize the intermittent EHC process in the current popPK
analysis. Generally, the intermittent gallbladder emptying
process is considered to be triggered by ingestion of food
(Ghibellini et al., 2006). The EHC process is mediated by
multidrug resistance-associated protein 2, which is inhibited by
CsA (Hesselink et al., 2005). All subjects in our study were
cotreated with CsA. Meal time was set at 10 (study 1) and 9
(study 2) h postdosing, and the samplings before and after food
intake were considered in the study protocol. The EHC triggered
by food intake was applied during modeling. Nevertheless, the
secondary peaks were not pronounced due to the inhibitory
Frontiers in Pharmacology | www.frontiersin.org 11
effect of CsA. Therefore, inhibition of EHC by CsA might likely
explain why the final model estimated an extremely low %EHC
with a high shrinkage (> 50%).

Regarding the metabolite MPAG, a statistically significant
relationship was found between CLuMPAG/F and kidney function,
which was consistent with findings of previous studies (de
Winter et al., 2009; Musuamba et al., 2009; van Hest et al.,
2009; Colom et al., 2014). A reduction in GFR from 90 to 15 mL/
min led to a 3.67-fold increase in MPAG exposure. This could be
because MPAG is primarily eliminated by the kidney through
passive glomerular filtration and active tubular secretion
(Bullingham et al., 1998).

Nevertheless, the previously reported competitive protein
binding relationship between MPA and MPAG (de Winter
et al., 2009; van Hest et al., 2009) was not observed, which
might be associated with the relatively lower MPAG
concentrations (median, 49.79 mg/L). Only 7.6% (56/734) of
the tMPAG concentrations were >100 mg/L with a maximum of
177.9 mg/L in our study. At high concentrations, MPAG could
displace MPA from its protein binding sites. It has been reported
in vitro that FUMPA increased threefold as the MPAG
concentration increased from 0 to 800 mg/L (Nowak and
Shaw, 1995).

There are some limitations in the present study. Firstly,
uMPAG concentrations were not determined and FUMPAG was
fixed at 18%. The effect of ALB alteration on MPAG binding
could not be investigated. MPAG is pharmacologically inactive
and did not show significant influence on MPA PK in our
analysis because of the relatively lower MPAG concentrations.
Secondly, only one dose level of MMF was administered to most
patients, which prevented us from investigating the reported
nonlinear relationship between MMF dose and MPA exposure
(de Winter et al., 2011). Lastly, all patients in our study were
coadministered MMF and CsA, whereas TAC and CsA are well
known to influence the EHC process differently. Therefore, our
results might only be applicable to patients cotreated with CsA.
CONCLUSIONS

In summary, the established model adequately described the
popPK characteristics of uMPA, tMPA, and MPAG. Large BSVs
and RUVs were still observed, suggesting therapeutic drug
monitoring would be necessary for optimization of MMF
therapy. The estimated CLuMPA/F and FUMPA in Chinese
kidney transplant recipients were comparable to those
published previously in Caucasians. In addition, tMPA
exposure reduced with decreasing ALB, which had little effect
on uMPA exposure. Therefore, under lower ALB conditions,
dose adjustment based on tMPA exposure might place patients at
higher risk of overimmunosuppression. We recommend
monitoring uMPA instead of tMPA to optimize MMF dosing
for patients with lower ALB concentrations.
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