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Abstract

Application of soil amendments has been wildly used to increase soil pH and control bacterial wilt. However, little is known
about causal shifts in the rhizosphere microbial community of crops, especially when the field naturally harbors the disease of
bacterial wilt to tobacco for many years due to long-term continuous cropping and soil acidification. In this study, biochar (CP),
lime (LM), oyster shell powder (OS) and no soil amendment additions (Control; CK) were assessed for their abilities to improve
the soil acidification, change the composition of thizosphere soil bacterial communities and thus control tobacco bacterial wilt.
The results showed that oyster shell powder significantly increased soil pH by 0.77 and reduced the incidence of tobacco bacterial
wilt by 36.67% compared to the control. The Illumina sequencing -based community analysis showed that soil amendment
applications affected the composition of rhizosphere bacterial community and increased the richness and diversity. In
contrast, the richness and diversity correlated negatively to disease incidence. Using LEfSe analyses, 11 taxa were found to
be closely related with disease suppression, in which Saccharibacteria, Aeromicrobium, and Pseudoxanthomonas could be
potential indicators of disease suppression. Our results suggested that the suppression of bacterial wilt after the application
of soil amendments (especially oyster shell powder) was attributed to the improved soil pH and increased bacterial

richness and diversity.
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Introduction

Soil amendments are widely used in agriculture to increase
soil pH and are considered to have positive effects on soil
health and plant growth. Moreover, the use of soil amend-
ments as an alternative for bacterial wilt control has been
studied. Earlier studies reported that a soil amendment com-
posed of urea and calcium oxide (CaO) is effective for con-
trolling bacterial wilt in tomato by affecting the pH and nitrite
accumulation in the field (Michel et al. 1997; Michel and
Mew 1998). Li and Dong (2013) demonstrated that rock dust
additions under greenhouse conditions can effectively control
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tomato bacterial wilt by raising the soil pH and Ca content. A
recent study showed that rice straw biochar application could
reduce the incidence and severity of tobacco bacterial wilt
disease (Zhang et al. 2017). However, little work has been
done in acidic tobacco-growing soils where soil amendments
are used to control tobacco bacterial wilt.

Tobacco bacterial wilt, which is caused by Ralstonia
solanacearum, is a widespread and destructive soil-borne dis-
ease (Genin 2010). As is typical of soil-borne diseases, the
occurrence and prevalence of bacterial wilt are closely related
to soil quality. Long-term continuous cropping and excessive
use of chemical fertilizers have led to the degradation of soil
quality, which is reflected by soil acidification, pollutant ac-
cumulation, and biodiversity deterioration. Moreover, soil
acidification is closely related to bacterial wilt. The average
soil pH in fields infected by bacterial wilt disease was much
lower than that in non-disease fields, and the proportion of
infected soils with pH lower than 5.5 was much higher than
that of non-infected soils in south China (Li et al. 2017).
However, soil micro-ecology balance and microbial diversity
are necessary to suppress plant soil-borne diseases
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(Raaijmakers et al. 2009). Therefore, there is a close relation-
ship between soil microorganisms and occurrence of tobacco
bacterial wilt.

Soil microbial communities play an important role in plant
establishment and growth (Epelde et al. 2010). On the one
hand, plants can alter soil microbes through the secretion of
root exudates, and on the other hand, soil microbes have the
ability to influence the productivity, diversity, and health of
plants (Chaparro et al. 2012). Some studies found that the
changes in soil microbial community structure were related
to the occurrence of soil-borne wilt (Bernard et al. 2012; Niu
et al. 2016; Wu et al. 2016).With manipulation of the rhizo-
sphere microbial community, suppression of soil-borne dis-
eases can be enhanced (Mazzola 2007; Qiu et al. 2012; Shen
et al. 2015; Yao and Wu 2010). Furthermore, soil pH was the
strongest factor that determines microbial community compo-
sition, and bacterial relative abundance and diversity is posi-
tively affected by soil pH and soil acidification amendments
can regulate soil pH (Hartman et al. 2008; Lauber et al. 2009;
Zhalnina et al. 2015). However, only a few studies have fo-
cused on the relationships between soil microbial community
structure and the suppression of bacterial wilt from soil
amendment applications.

In the current study, biochar, lime, and oyster shell powder
were chosen as soil amendments for an acidic tobacco-
growing soil, whereas the treatment without soil amendments
was used as a control. We hypothesized that application of
different soil amendments could improve the soil pH and
change the composition of bacterial communities in the rhizo-
sphere soil, with an increase in some beneficial bacteria,
which would lead to a decrease in tobacco bacterial wilt inci-
dence. Therefore, the effects of different soil amendments on
the soil pH, incidence of tobacco bacterial wilt, and soil bac-
terial communities were investigated, and the latter was mea-
sured using the Illumina-based sequencing approach. This
study aims to provide references for the selection of soil
amendment types for acidic tobacco-growing soil and to serve
as a theoretical basis for maintaining the sustainability of ag-
ricultural systems.

Materials and methods
Site description and experimental design

The field experiment was performed from March to
July 2015 at a tobacco field in Pengshui Town, Chongqing
city of China (38° 39’ N, 104° 04’ E). Tobacco has been
cultivated for many years at this site. In previous years, soil
acidification and tobacco bacterial wilt outbreaks were serious
problems in the experimental field. The variety of tobacco was
Yunyan 87, and seedlings were transplanted on May 16, 2015.
Fertilizer was applied at a rate of 750 kg hm > (m(N):m(P
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»05):m(K,0) =8:10:22), according to local tobacco produc-
tion technology. All fertilizers were applied once, as base ma-
nure, before transplanting the tobacco. Randomized block de-
sign and triplicated plot were used in the experiment. Each
plot with an area of 66.7m? was planted with 110 plants,
consisting of five 15 m-long rows, spaced 1.1 m apart. The
distance between adjacent plots was 1 m. The four treatments
were as follows: (1) CK, control without soil amendment; (2)
CP, application of biochar; (3) LM, application of lime; and
(4) OS, application of oyster shell powder. The physiochem-
ical characteristics of the biochar were as follows: pH 9.2,
organic carbon 372.38 g/kg, total nitrogen 7.03 g/kg, total
phosphorus (P,0s5) 2.23 g/kg, and total potassium (K,O)
45.03 g/kg. The main component of the lime was CaO with
pH 10.4. Oyster shell powder was purchased from
Haixinghaizhiyuan Feedstuff Co., Ltd., Bohai New Area,
Hebei, China. The physiochemical characteristics of the oyster
shell powder were as follows: pH 9.5, 98.9% calcium, 0.5%
protein, 0.1% crude fat, 81.0 mg/kg manganese, 2.9 mg/kg
zinc and 285.0 mg/kg iron, 214.0 mg/kg potassium,
2040.0 mg/kg magnesium, and 48.0 mg/kg phosphorous.
One thousand two hundred kilograms per square hectometer
of each soil amendment was applied with the base manure.

Soil sampling

Rhizosphere soil samples were collected on July 15, 2015 (at
the topping stage of tobacco). At this time, tobacco bacterial
wilt was at its peak. Five-point sampling method (three plants
per point) was used to collect each soil sample from 15 plants
per plot. After removing 0-5 cm topsoil, the soil around the
root system was gently shaken off. Then, the soil attached to
the root surface was evaluated as rhizosphere soil. The soil
samples collected in the field were sealed in a new plastic bag
and placed in an ice box. The frozen soil samples were taken
back to the laboratory and were quickly sifted through a 2-mm
sieve to remove debris and stones. Some soil samples were
kept in a — 80 °C freezer until the determination of soil bacte-
ria community structure. The other soil samples were air-dried
and ground (< 2 mm) to determine soil pH. The pH of the soils
was measured using a 1:2.5 (w: v) soil: water ratio. At the
same time as the soil sampling, the incidence of disease was
recorded based on observations of typical wilt symptoms, in-
cluding leaves wilting, vascular bundle browning, and roots
turn black and rot. Disease incidence (DI) was expressed as
the percentage of diseased plants per total number of plants
(Yuan et al. 2014).

DNA extraction, PCR amplification, and sequencing
Soil total DNA was extracted from 0.4 g of soil using an

Omega Biotek Soil DNA Kit (Omega Biotek, Norcross, GA,
USA), according to the standard protocol. The extracted DNA
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was checked on 1% (w/v) agarose gels, and the purity and
quality of the DNA were determined using a ThermoFisher
SCIENTIFIC, Waltham, MA, USA. Primers 338 forward (5'-
ACTCCTACGGGAGGCAGCAG-3’) and 806 reverse (5'-
GGACTACHVGGGTWTCTAAT-3") were used to amplify
the V3—V4 region of the 16S rRNA gene (Xu et al. 2016).
The PCR reaction procedure was as follows: an initial dena-
turation at 95 °C for 3 min; followed by 28 cycles of denatur-
ation at 95 °C for 30 s, annealing at 55 °C for 30 s, and
elongation at 72 °C for 45 s; and a final extension at 72 °C
for 10 min. PCR products were evaluated using a 2% agarose
gel electrophoresis for detection. Amplicons were pooled in
equidensity ratios, purified using an AxyPrep DNA Gel
Recovery Kit (AXYGEN, Waltham, MA, USA), and submit-
ted to the next-generation sequencing laboratory at Majorbio
Biopharm Technology Co., Ltd.(Shanghai, China) for
[llumina paired-end library preparation, cluster generation,
and 250-bp paired-end sequencing. Sequences are available
in the NCBI short-reads archive database under Accession
Number SRP135724.

Bioinformatics and statistical analysis

After removing the adaptors and primer sequences, the raw
sequences were quality filtered and assembled by each sample
based on their unique barcode using QIIME v1.7.0 (Caporaso
et al. 2010). Split sequences for each sample were merged
using FLASH v1.2.7 (Mago and Salzberg 2011). The se-
quences retained for each sample were analyzed following
the Uparse software v7.0.100 (Edgar et al. 2011). Briefly,
sequences with a collective abundance of over 20 reads were
retained and singletons were discarded, and then the remain-
ing sequences were assigned to operational taxonomic units
(OTUs) with 97% similarity, followed by chimeras, which
were filtered using the UCHIME (Edgar et al. 2011). Finally,
the RDP database was used to assign the representative OTUs
to the microbial taxa (Wang et al. 2007).

We calculated the Chao, ACE, Shannon, and Simpson in-
dices at an OTU distance of 0.03, using the algorithm of
Mothur package (www.mothur.org).To compare bacterial
community structures across all samples, the similarity
among different treatments was assessed with ANOSIM on
a Bray-Curtis distance matrix (Schloss et al. 2009). PCoA
(Principal Coordinate Analysis) was performed on Bray-
Curtis distance matrices, and the coordinates were used to
draw 3D graphical outputs. A comparison of overall microbial
distribution in all samples was conducted on the relative abun-
dances of phyla and families using OTUs based on taxonomy.

The linear discriminant analysis (LDA) effect size (LEfSe)
method was performed to identify bacterial taxa with signifi-
cantly different abundances between groups. The Kruskal-
Wallis (KW) sum-rank test (cv=0.05) was used in the LEfSe
analysis to detect features with significantly different

abundances between the specified categories, and this was
followed by an LDA to estimate the effect size of each differ-
entially abundant feature (logarithmic LDA score >2.0)
(Segata et al. 2011). Taxonomic cladograms illustrated the
differences between sample classes on the website http://
huttenhower.sph.harvard.edu/galaxy. Furthermore, the
taxonomic levels were limited from domain to genus to
prevent the interference of redundant data.

Analysis of disease incidence, soil pH, richness, and diver-
sity indices, and the taxa (phyla and families) in amended and
non-amended soils were compared using Tukey’s HSD mul-
tiple range test (P < 0.05). Linear regression analysis (Pearson
correlation) was used to evaluate the relationships between
bacterial communities and tobacco bacterial wilt incidence.
All analyses were performed in SPSS v16.0 (SPSS Inc.,
Chicago, IL, USA).

Results
Bacterial wilt and soil pH

The disease incidence of tobacco bacterial wilt in the different
treatments is shown in Fig. la. In general, soil amendments
(apart from biochar) reduced the incidence of tobacco bacte-
rial wilt. Compared with the control, the disease incidence in
lime and oyster shell powder treatments decreased by 18.89
and 36.67%, respectively, but there were no significant differ-
ences between the biochar and control treatments. In addition,
soil amendments (apart from biochar) improved the soil pH
(Fig. 1b). Oyster shell powder had the highest pH value and
increased the soil pH by 0.77 compared to the control; oyster
shell powder was followed by lime, which increased the soil
pH by 0.32. Linear regression analysis results showed that
disease incidence was remarkably negatively correlated with
soil pH (r=0.96, P<0.01).

Bacterial community diversity

In this study, 12 samples were sequenced and compared, and
we obtained 674,378 valid sequences, including 295,637,897
base pairs. The average length of each fragment was
438.42 bp. The rarefaction curves were shown in
Supplemental Fig. S1. As the curves reached the plateau, it
suggested that the sequencing capability was sufficient
enough to capture the complete diversity of the bacterial com-
munities. In order to perform downstream analysis at the same
sequencing depth, we standardized each sample to 21,595
reads and clustered them into 19,438 OTUs with 97% se-
quence similarity, with 1454—1854 OTUs per sample. The
control treatment had the lowest number of total OTUs
(1492 OTUs), and the total number of OTUs in oyster shell
powder (1727 OTUs) was the largest. The differences in
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Fig. 1 Disease incidence of
tobacco bacterial wilt (a) and soil
pH (b) in each treatment. Letters
above the bars indicate a
significant difference according to
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microbial communities in soil samples were revealed by com-
paring the richness and diversity indices (Table 1). Richness
indices in oyster shell powder treatments were highest and
were significantly higher than the control. Soil amendments
improved the diversity indices in soil microbial communities,
but the difference was not significant.

In order to assess the effect of each soil amendment, we
used PCoA based on beta-diversity metrics from the Bray-
Curtis metric to compare microbial communities in each treat-
ment (Fig. 2). PCI1 explained the majority of the variance in
the data, representing 30.43% of the variance. The other two
principal coordinates explained 16.93% (PC2) and 15.37%
(PC3) of the variance. For the PCoA based on the Bray-
Curtis distance matrix, control and lime treatments were dis-
tributed on the bottom part of the PCoA graph, biochar was
located in the upper part, and oyster shell powder was located
in the left part. In addition, the microbial community dissim-
ilarity test (Bray-Curtis analysis of similarity, ANOSIM R =
0.6111, P=0.001) showed that the differences between
groups were greater than those within groups, so the microbial
community structure between different groups was distinct.

Bacterial community composition

Based on the Illumina platform analysis, there were 11 phyla
in all soils whose average relative abundances were more than
1% (Fig. 3). Proteobacteria, Bacteroidetes, Acidobacteria,
Chloroflexi, and Actinobacteria were the dominant bacteria

a
L
CK CP

in all treatments, accounting for 80.44—85.23% of the total
OTUs. At the phylum level, the composition of the four treat-
ments was similar, but the relative abundance of each phylum
did differ in all samples. Bacteroidetes and Saccharibacteria
were relatively more abundant in amended soil. Specifically,
the relative abundance of Saccharibacteria showed the fol-
lowing trend: biochar > oyster shell powder > lime > control.
In addition, oyster shell powder had the highest relative abun-
dance of Gemmatimonadetes and Parcubacteria.

The lower family taxonomic analysis demonstrated that
Xanthomonadaceae (16.58-25.61%), Chitinophagaceae
(6.27-7.91%), Sphingomonadaceae (5.78-5.96%), and
Gemmatimonadaceae (4.03—6.85%) were the dominant fam-
ilies in all treatments (Fig. 4). Except for the unidentified
family, the relative abundances of Chitinophagaceae,
Nitrosomonadaceae, and Cytophagaceae in amended soil
were higher than in the control. Furthermore, the relative
abundance of Gemmatimonadaceae and Cytophagaceae in
oyster-shell-powder-treated soil increased by 1.62% and
1.74%, respectively, compared to the control. The relative
abundance of Alcaligenaceae in biochar- and lime-treated
soils was higher.

We performed LEfSe analyses to examine which taxa dif-
fered most between the treatment (biochar, lime, and oyster
shell powder) and control groups (Fig. 5a—c). At the genus
level, the biochar, lime, and oyster shell powder screened
out 94, 43, and 62 major taxa (Supplemental Table S1), re-
spectively. In order to explore the potential taxon indicators

Table 1 Number of observed OTUs, coverage, richness, and diversity (mean + standard deviation) of soil microbes in each treatment

Variable CK CP LM oS

OTUs 1492 + (23)* 1624 +(28)* 1636+ (112)* 1727 + (20)*

Coverage 0.977 + (0.000)*® 0.976 + (0.000)™® 0.977 +(0.001) 0.975 +(0.001)°

Richness Chao 1909.90 £ (29.80)* 1975.40 + (33.69)%° 1989.90 + (87.04)%° 2140.20 + (3.96)°
ACE 1903.20 £ (23.36)* 2005.00 + (20.82)° 2008.70 + (76.78)% 2134.20+(12.18)°

Diversity Simpson 0.018 +£(0.005)* 0.015+(0.001)* 0.009 £ (0.002)* 0.007 £(0.001)*
Shannon 5.69+(0.14)* 5.82+(0.05)* 6.06+(0.23)* 6.14+(0.08)*

OTUs operational taxonomic units (97% similarity)

Values followed by different superscript letters are significantly different (P < 0.05) according to Tukey’s multiple comparison test
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Fig. 2 PCoA plot based on Bray-
Curtis distances of microbial
communities sampled from each
treatment

0S-2 08-1
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for disease suppression from amended and non-amended
soils, we take the intersection to find common taxa screened
from the biochar, lime, and oyster shell powder groups (Fig.
5d). The results revealed 11 taxa screened from the three
groups at the genus level (Table 2). Furthermore, these taxa
belong to four phyla (Bacteroidetes, Proteobacteria,
Actinobacteria, and Acidobacteria) and seven families
(Holophagaceae, Nocardioidaceae, Cytophagaceae,
Flavobacteriaceae, Xanthomonadaceae, Methylophilaceae,
and Pseudonocardiaceae).

Correlation of tobacco bacterial wilt incidence
with soil bacterial community composition

Linear regression analysis was used to explore whether the
soil bacterial community was associated with tobacco bacte-
rial wilt incidence. The relationship between tobacco disease
incidence and alpha-diversity was explored (Fig. 6), and the
results showed that the Chao, ACE, and Shannon indices were
strongly negatively related to disease incidence, but the
Simpson index was positively related to disease incidence.
Furthermore, a Pearson analysis was also performed on the
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relationships between the 11 taxa that were previously
screened and the tobacco bacterial wilt incidence. We found
that the abundance of five genera was significantly negatively
correlated with bacterial wilt incidence (Table 3). There are
two identified genera of Aeromicrobium and
Pseudoxanthomonas; two genera belonging to
Holophagaceae and Cytophagaceae; and one genus belong-
ing to Cytophagales.

Discussion

Soil amendments improved soil pH and reduced
the occurrence of bacterial wilt

High soil pH is especially important for controlling tobacco
bacterial wilt (Zhang et al. 2016). In this study, we found that
lime and oyster shell powder significantly reduced the inci-
dence of tobacco bacterial wilt by improving soil pH (Fig. 1).
This is consistent with a recent study demonstrating that soil
pH improvement after lime and wood ash application reduces
the occurrence of bacterial wilt (Li et al. 2017). It has been
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Fig. 4 Bacterial community
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Fig. 5 Cladogram indicating the phylogenetic distribution of bacterial
lineages under each treatment: a biochar (CP), b lime LM, ¢ oyster
shell powder (OS), and control groups (CK); lineages with LDA values

@ Springer

cp

,
™ oS [ Xanthomonadaceae

CP LM

oS
higher than 2.0 are displayed. d Venn diagram for biochar (94), lime (43),
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the genus level, and the shared 11 taxa are shown in Table 2
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Table 2 Indicators of rhizobacterial communities for disease suppression

Taxon of indicators LDA score (log10)
Phylum Class Order Family Genus CP LM OS
Bacteroidetes Flavobacteria Flavobacteriales NS9 marine_group - 4.82 5.07 4.57
Acidobacteria. Acidobacteria Holophagales Holophagaceae - 5.84 5.82 5.64
Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Aeromicrobium 5.21 523 5.35
Bacteroidetes Cytophagia Cytophagales - - 6.11 591 6.23
Bacteroidetes Cytophagia Cytophagales Cytophagaceae - 6.06 6.23 5.75
Bacteroidetes Cytophagia - - - 6.13 6.25 5.88
Proteobacteria Deltaproteobacteria Myxococcales Blrii41 - 5.07 4.67 4.70
Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae Pricia 5.42 5.98 5.51
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 4.81 4.74 4.63
Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae Methylobacillus 4.73 5.19 4.69
Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae Lechevalieria 4.66 4.66 452

indicated that soil pH directly influences plant disease infec-
tion by affecting the survival of soil-borne pathogens and soil
microbes (Ghorbani et al. 2008). Growth and reproduction of
plant pathogens is inhibited at higher soil pH by affecting iron
absorption (Elmer and Pignatello 2011). Acidic soil pH (pH
4.5-5.5) inhibits the growth and antagonistic activity of

a 6.6
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antagonistic bacteria such as Pseudomonas fluorescens and
Bacillus cereus (Li et al. 2017). In addition, soil acidification
affects plant growth and nutrient availability (Rout et al. 2001;
Wang et al. 2000). For example, the soluble Al content has a
toxic effect on plant growth at lower pH values (Bian et al.
2013; Ryan et al. 2010), and most essential nutrients cannot be

b 0.030

*
0.025 - y = 0.0003x-0.0080
r=0.650, p = 0.022
0.020
e
)
=
£
= ooish
2
£
£ oo}
0.005 -
0.000 : . . y '
40 50 60 70 80 90 100

2150 * .

y = 2423.11-5.56x

2100 - r=-0.777, p = 0.003

2050 -

2000 -

ACE index

1950 -

1900 -

1850 -

1 L 1 1 1

40 50 60 70 80 90
Tobacco bacterial wilt rate (100%)

100

Fig. 6 Linear regression analysis of the relationship between tobacco bacterial wilt rate and alpha-diversity. The alpha-diversity: a Shannon index, b

Simpson index, ¢ Chao index, and d ACE index
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Table 3  Correlation between tobacco bacterial wilt rate and abundances of selected microorganisms at the genus level

Taxon of indicators r P
Phylum Class Order Family Genus

Acidobacteria Acidobacteria Holophagales Holophagaceae - —0.667 0.018
Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Aeromicrobium -0.711 0.009
Bacteroidetes Cytophagia Cytophagales Cytophagaceae - -0.850 0.000
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas -0.614 0.034
Bacteroidetes Cytophagia Cytophagales - - —0.855 0.000

directly absorbed by plants in acidic soil (L&uchli and Grattan
2017). Taken together, increasing soil pH with soil amend-
ments can be proposed as a strategy for disease control.

Soil amendments increased the bacterial community
diversity and reduced the occurrence of bacterial wilt

In the present study, we observed that the bacterial community
diversity shifted in the amended soils (Table 1). Previous stud-
ies have shown that lime and biochar application have a sig-
nificant impact on bacterial diversity and communities
(Tender et al. 2016; Xue et al. 2010). In this study, lime and
biochar slightly increased the diversity of soil microbial com-
munities compared to the control. Furthermore, oyster shell
powder significantly increased the richness index of soil mi-
crobial communities compared to the control. The reason may
be that oyster shells contain glycosaminoglycan and aspartic
proteinases, which can stimulate growth in soil microbes
(Yong et al. 2016). Our tests for a correlation between diver-
sity and bacterial wilt rate indicated that the incidence of to-
bacco bacterial wilt increased with a reduction in soil micro-
bial diversity (Fig. 6). This is in line with previous findings
that found that long-term use of chemical fertilizer leads to
a decrease in microbial diversity in the soil and an increase
in peanut wilt (Liu et al. 2015). It has been reported that
soil microbial diversity confers protection against soil-
borne disease and hinders the establishment of soil patho-
gens (Alabouvette et al. 2004; Brussaard et al. 2007; Dey
et al. 2012). Overall, the increase in the soil bacterial rich-
ness and diversity after soil amendment application may
contribute to the suppression of bacterial wilt in acidic
tobacco-growing areas.

Soil amendments changed the composition
of bacterial communities

Broad and complex shifts in the microbial community
composition can contribute to soil disease suppression
(Kinkel et al. 2011), but it may also be related to the pres-
ence or alteration of specific microbial populations
(Bonilla et al. 2012). Our results showed that soil
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amendments increased the relative abundance of
Bacteroidetes and Saccharibacteria. Bacteroidetes are
copiotrophic soil bacteria, suitable for using labile sub-
strates and surviving in rhizosphere conditions (Goldfarb
et al. 2011). It is suggested that this increased relative
abundance may derive from soil amendments improving
the soil environment, such as increasing soil pH. The phy-
lum candidatus Saccharibacteria was formerly known as
Candidate Division TM7 (Kindaichi et al. 2016). Due to
the isolation and characterization of very few strains of
Saccharibacteria, information on their potential disease
control is limited. Notably, recent studies revealed that
Saccharibacteria was the most prominent biomarker in
bacterial wilt disease suppression (Zhang et al. 2017). We
observed that the relative abundance of Saccharibacteria
was higher in amended soil with a corresponding decrease
in tobacco bacterial wilt in the current study, suggesting
that Saccharibacteria may play a potential role in evaluat-
ing the disease suppression effects of soil amendment
applications.

Key taxa characterized the bacterial wilt suppression

Using LEfSe and Venn diagram analyses, 11 taxa were found
to be indicative of tobacco health (Fig. 5, Table 2).
Additionally, correlation analysis showed that the abundance
of 5 genera was significantly negatively correlated with the
bacterial wilt rate (Table 3). Aeromicrobium is a member of
the actinobacteria family. As a group of bacteria with high
concentrations in soils, actinobacteria play an important role
in plant disease suppression and growth promotion
(Palaniyandi et al. 2013). Meanwhile, antibiotics produced
by actinobacteria have been proven to suppress various plant
diseases (Agbessi et al. 2003; Kim et al. 2007; Lee et al.
2012). Miller et al. (1991) first described the genus
Aeromicrobium with a single species, Aeromicrobium
erythreum, that produced the macrolide antibiotic erythromy-
cin. Based on these results, it has been speculated that
Aeromicrobium plays an important role in disease suppres-
sion. Earlier studies demonstrated that Xanthomonadaceae
may play an important role in the control of tobacco bacterial
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wilt caused by Ralstonia solanacearum (Wu et al. 2014).
Moreover, Pseudoxanthomonas are Gram-negative bacteria
belonging to the Xanthomonadaceae family, which is benefi-
cial for the suppression of soil-borne diseases and provides a
healthy soil environment for the growth of the root system
(Wang et al. 2017). The other three genera that are significant-
ly related to the incidence of tobacco bacterial wilt have not
been identified as of yet; therefore, their role in disease sup-
pression is unclear.

Altogether, soil pH and rhizosphere bacterial communities
which are important for suppression of bacterial wilt disease
were affected by soil acidification amendments to varying
degrees. The suppressive effect of these soil amendments on
tobacco bacterial wilt varied as influenced by the difference of
physico-chemical properties of the soil amendments. Notably,
oyster shell powder can significantly suppress the occurrence
of bacterial wilt attributed to higher soil pH, bacterial commu-
nity diversity, and beneficial bacteria. The higher level of bac-
terial wilt suppression observed in oyster shell powder was
associated with its source and composition. The main compo-
nent of oyster shell powder derived from crustaceans is chitin,
and the breakdown of chitin present in the oyster shell powder
releases ammonia, which probably accounts for the remark-
able rise in pH (Bai et al. 2016; Hampson and Coombes
1995). Moreover, oyster shell powder can be used as a carbon
source of soil microorganisms for microbial metabolism,
thereby increasing soil microbial diversity (Cohen-Kupiec
and Chet 1998). Soil amended with chitin can increase some
beneficial bacteria that are likely to play an important role as
pathogen antagonists (Mitchell and Alexander 1961; Veliz
et al. 2017). Similarly, we found that Saccharibacteria,
Aeromicrobium, and Pseudoxanthomonas were potential indi-
cators of disease suppression after application of soil amend-
ments in this study.

This paper concentrated only on the short-term responses of
soil pH and soil microbial communities after application of soil
amendments at the topping stage of tobacco. However, wheth-
er soil amendments had a persistent effect on soil pH and soil
microbial communities or what the likely duration of that effect
would be was not investigated. Although this is a limitation,
this study can clearly elucidate the increase in soil pH and
shifts in the soil bacterial communities induced by different
soil amendments and provide information on proper applica-
tion of disease control in an acidic tobacco-growing soil.

Our results demonstrated that oyster shell powder applica-
tion was more effective at reducing the incidence of tobacco
bacterial wilt and improving the soil pH than lime and biochar.
Besides, soil amendments increased the diversity and species
richness of the bacterial community. The abundances of
Saccharibacteria, Aeromicrobium, and Pseudoxanthomonas
were potential indicators of increased disease suppression in
amended soil. Furthermore, the temporal changes in soils that
occur after soil amendment additions and the long-term

influences of soil amendments on soil status should be con-
sidered when selecting the types of soil amendments to be
used. Taken together, we recommend soil amendments (espe-
cially oyster shell powder) in order to improve soil pH and
increase the bacterial richness and diversity of acidic tobacco-
growing soils and thus contribute to the suppression of tobac-
co bacterial wilt.
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