
Frontiers in Pharmacology | www.frontiers

Edited by:
Tod Edward Kippin,

University of California,
Santa Barbara, United States

Reviewed by:
Jared Robert Bagley,

Binghamton University,
United States

Therese M. Jay,
Institut National de la Santé et de la

Recherche Médicale (INSERM),
France

*Correspondence:
Yafei Shi

shiyafei@gzucm.edu.cn
Rong Zhang

zhangrong@gzucm.edu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 27 September 2019
Accepted: 28 January 2020

Published: 26 February 2020

Citation:
Cui Y, Cao K, Lin H, Cui S, Shen C,

Wen W, Mo H, Dong Z, Bai S, Yang L,
Shi Y and Zhang R (2020) Early-Life

Stress Induces Depression-Like
Behavior and Synaptic-Plasticity

Changes in a Maternal Separation Rat
Model: Gender Difference and

Metabolomics Study.
Front. Pharmacol. 11:102.

doi: 10.3389/fphar.2020.00102

ORIGINAL RESEARCH
published: 26 February 2020

doi: 10.3389/fphar.2020.00102
Early-Life Stress Induces
Depression-Like Behavior
and Synaptic-Plasticity Changes
in a Maternal Separation Rat
Model: Gender Difference
and Metabolomics Study
Yongfei Cui1†, Kerun Cao2†, Huiyuan Lin1, Sainan Cui1, Chongkun Shen2, Wenhao Wen1,
Haixin Mo2, Zhaoyang Dong3, Shasha Bai1, Lei Yang1, Yafei Shi2* and Rong Zhang1*

1 School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China, 2 School of
Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China, 3 School of Nursing,
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More than 300 million people suffer from depressive disorders globally. People under early-life
stress (ELS) are reportedly vulnerable to depression in their adulthood, and synaptic plasticity
can be the molecular mechanism underlying such depression. Herein, we simulated ELS by
using a maternal separation (MS) model and evaluated the behavior of Sprague–Dawley (SD)
rats in adulthood through behavioral examination, including sucrose preference, forced
swimming, and open-field tests. The behavior tests showed that SD rats in the MS group
were more susceptible to depression- and anxiety-like behaviors than did the non-MS (NMS)
group. Nissl staining analysis indicated a significant reduction in the number of neurons at the
prefrontal cortex andhippocampus, including theCA1,CA2,CA3, andDGregionsofSD rats in
theMS group. Immunohistochemistry results showed that the percentages of synaptophysin-
positive area in the prefrontal cortex and hippocampus (including the CA1, CA2, CA3, and DG
regions) slice of theMS group significantly decreased comparedwith those of the NMSgroup.
Western blot analysis was used to assess synaptic-plasticity protein markers, including
postsynaptic density 95, synaptophysin, and growth-associated binding protein 43 protein
expression in the cortex and hippocampus. Results showed that the expression levels of these
threeproteins in theMSgroupweresignificantly lower thanthose in theNMSgroup.LC–MS/MS
analysis revealed no significant differences in the peak areas of sex hormones and their
metabolites, including estradiol, testosterone, androstenedione, estrone, estriol, and 5b-
dihydrotestosterone. Through the application of nontargeted metabolomics to the overall
analysis of differential metabolites, pathway-enrichment results showed the importance of
arginineandprolinemetabolism;pantothenateandCoAbiosyntheses;glutathionemetabolism;
and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways. In summary, the MS
model caused adult SD rats to be susceptible to depression, which may regulate synaptic
in.org February 2020 | Volume 11 | Article 1021
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plasticity through arginine and proline metabolism; pantothenate and CoA biosyntheses;
glutathione metabolism; and phenylalanine, tyrosine, and tryptophan biosyntheses.
Keywords: early-life stress, maternal separation, synaptic plasticity, depression, metabolomics
HIGHLIGHTS

1. A maternal separation model was used to study the effects of
early-life stress on adult depression-like behavior.

2. The model induced depression-like behavior in adult Sprague–
Dawley rats, but no statistical significance differencewas found in
gender.

3. Maternal separation causes synaptic-plasticity changes.
4. Metabolomics studies indicated the importance of arginine

and proline metabolism; pantothenate and CoA biosyntheses;
glutathione metabolism; and the phenylalanine, tyrosine, and
tryptophan biosynthesis pathways.
INTRODUCTION

As a common mental disorder worldwide, depression has
affected more than 300 million people of all ages globally
(World Health Organization (WHO), 2019), causing heavy
financial burden on families and the society. The occurrence of
depression is closely related to childhood exposure to adverse
stress (Saleh et al., 2017). Children under the influence of early-
life stress (ELS), including childhood abuse and parental neglect,
have considerably high probabilities of developing emotional and
mental illnesses (Anacker et al., 2014; Menard et al., 2016),
including anxiety and depression (Targum and Nemeroff,
2019; United States Centers for Disease Control and
Prevention, 2019). In gender, the incidence of depression in
women is as twice as that in men (Kessler et al., 2003), given that
impaired neuronal functions by sex hormone fluctuations lead to
depressive symptoms (Bloch et al., 2003; Duman et al., 2016).
However, a meta-analysis by Salk RH et al. showed that gender
differences in depression incidence peak during adolescence,
whereas the gender gap narrows and stabilizes in adulthood
(Salk et al., 2017). Simultaneously, ELS may increases depressive-
like behavior, affect hippocampal neurogenesis, and cause mild
metabolic imbalance in early adulthood (Ruiz et al., 2018).
Maternal separation (MS), as an ELS event model for rodents,
indicates that pups exposed to MS environment display passive–
submissive behavior and passively cope with stressful behavior
during adulthood (Gardner et al., 2005), have long-term
disruption on neural development, and may underlie
vulnerability to depression (Hanson et al., 2012; Stuart et al.,
2019; Zheng et al., 2019).

The specific molecular mechanism of depression remains
unclear because of its complex pathogenesis. The regulation of
synaptic plasticity is closely related to the induction of depressive
disorders. Neuronal atrophy, synaptic loss, and reduction of
synaptic density have been investigated in studies on synaptic
in.org 2
dysfunction in depression (Duman and Aghajanian, 2012; Duman
et al., 2016). Brain structural plasticity, shrinkage of CA3 dendrites
and dentate gyrus neurons, and spine loss in CA1 neurons occur in
the hippocampus with induced chronic stress (McEwen, 1999).
Depression rodent models show loss of spines and dendrites,
weakened synapse function, and decreased quantity of synapse in
the prefrontal cortex (Kang et al., 2012). The number and size of
dendritic spines reflect the changes in synaptic plasticity (Colgan
and Yasuda, 2014). Postsynaptic density 95 (PSD-95) is a
membrane-associated guanylate kinase family scaffolding protein
at the postsynapse that plays a key role in synaptic plasticity (Xu,
2011; Wu et al., 2017). Synaptophysin (SYN), which is extensively
distributed in the presynaptic vesicle membrane, is a calcium-
binding glycoprotein and is closely related to synaptic plasticity
because its expression demonstrates synaptic density, distributed
area, and functional state (Zhu et al., 2019). Growth-associated
binding protein 43 (GAP-43) is a neuron-specific and membrane-
associated phosphoprotein, and its expression is relevant to
synaptic plasticity, neuronal development, and regeneration
(Goslin et al., 1988; Zhu et al., 2019). PSD-95, SYN, and GAP-43
proteins are markers of synaptic plasticity in depressive disorder
(Reines et al., 2008).

Metabolomics is extensively used to investigate depression.
Metabolomics focuses on holistic analysis by evaluating
endogenous metabolites with molecular masses lower than
1000 Da (Wang et al., 2015; Wang et al., 2016). For untargeted
metabolomics, statistically significant differential metabolites are
selected in all detected metabolites in the sample by comparing
the model and control groups, revealing the comprehensive
metabolism of a whole tissue (Zou et al., 2013). Depression is
closely related to the imbalance of amino acid metabolism, lipid
metabolism, and energy metabolism in both clinical research
(Zheng et al., 2012) and animal experiments (Liu et al., 2016;
Zhang et al., 2018). Gultyaeva et al. reported that neuronal
structure restoration is disrupted in depression by stimulating
biochemical pathways (Gultyaeva et al., 2019).

In this study, we aimed to explore the mechanism of the MS
rat model in depression-like behavior in adult rats. In summary,
we explored the relationship between synaptic plasticity and
depression and studied the underlying mechanisms of
depression by regulating synaptic plasticity on MS rat model
by using metabolomic research. Simultaneously, the effect of
gender differences on synaptic plasticity was studied.
MATERIALS AND METHODS

Animals
Male and female SD rats were purchased from the Animal
Experimental Center of Guangzhou University of Chinese
February 2020 | Volume 11 | Article 102
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Medicine. The rats were housed in standard polypropylene cages
with food and water available ad libitum. Sterilized wood
shavings were used for bedding. The cages were maintained in
a 12/12 h reversed light/dark cycle. Lights were on at 20:30, and
the cages were kept under controlled temperature (20–26 °C) and
humidity (40%–70%). This study was carried out in accordance
with the principles of the Basel Declaration and approved by the
Committee of Animal Experiment Ethics Review in Guangzhou
University of Chinese Medicine. All efforts were made to
minimize the suffering of the animals.

MS
Male and female rats were mated to produce a litter of 8–12 pups,
and the day of birth was defined as postnatal day (PND) 0. All
litters of each dam were divided into F-NMS, F-MS, M-NMS, and
M-MS groups, which include a total of 15 pups per group. From
PND1 to PND21, the pups of the MS groups were separated from
their dams daily (from 08:00 to 11:00 and from 14:00 to 17:00).
Each of the pups was transferred to a box filled with bedding
obtained from dam's cage, placed on cotton maintained at 30°C–
33°C, and returned to the cage together with their dams. At the
same time, the NMS groups were left undisturbed as the control
group. Pups were weaned after PND21, and male and female rats
were randomly redistributed to eight pups per cage. The body
weight of rats was measured and recorded once a week from
PND28 to PND63. Behavioral tests were conducted from PND56
to PND63, and animals were sacrificed at PND63. Per group, 6
rats were subjected to WB, 3 rats for Nissl staining and
immunohistochemistry, and 6 rats for untargeted metabolomic
analysis. All of these rats were selected randomly.

Behavioral Examination
Sucrose Preference Test
As a core component of depression, anhedonia is assessed through
sucrose preference test. First, the rats were individually placed in
cages and acclimated to two bottles of 1% sucrose solution. They
were presented with 1% sucrose solution after 24 h, the drinking
water was replaced, and their positions were exchanged after 12 h.
Subsequently, the rats were deprived of food and water for 24 h
before the test day, and free access was provided to two identical
bottles, including 1% sucrose and normal drinking water from
08:00 to 10:00. Finally, the consumption of sucrose solution and
drinking water and sucrose preference (%) were measured on the
basis of the percentage of sucrose consumption relative to the sum
of sucrose and water consumption.

Open-Field Test
Anxiety is assessed through open-field test. In this procedure, the
rats were individually placed at the center of an open-field
apparatus for 3 min. The time spent in the center, distance
traveled in the center, and activity were analyzed using a
computer linked to the camera above the open-field apparatus
as an indicator of anxiety.

Forced Swimming Test
The forced swimming test is applied to assess depression
behavior. On the day before the test, the rats were forced to
Frontiers in Pharmacology | www.frontiersin.org 3
swim for 15 min separately in cylinders under a water
temperature of 21–25°C and a depth of 23 cm. In the second
session, the duration time of immobility was recorded during 5
min of the test.

Nissl Staining and Immunohistochemistry
When all of the behavioral tests were completed, rats' brain were
taken out, placed on ice, and then transcardially perfused with
saline followed by 4% paraformaldehyde. The whole brain was
embedded in wax and cut into 5 mm-thick coronal sections. For
Nissl staining, the sections were dewaxed with xylene (3 times for
30 min), graded alcohol solutions (100%, 90%, 70%, once for 5, 2,
and 2 min, respectively), and distilled water (once for 5 min).
Subsequently, tissue slices were stained by toluidine blue
(Beyotime Biotechnology, Shanghai, China) for 1 h at a 50°C
environment. The slides were rinsed with distilled water (twice for
10 s), 95% alcohol (twice for 4 min, secondary time reagent was
cleaned), and xylene (twice for 10min, secondary time reagent was
cleaned). The total number of cells in the prefrontal cortex area
and CA1, CA2, CA3, and DG area in the hippocampus was
observed and counted using a 400× field optical microscope.
ImageJ (version 1.45) was used to count the number of nerve cells.

For immunohistochemistry, the sections were incubated with
3% H2O2 for 10 min and 10% goat serum for 15 min after
deparaffinization with xylene and graded alcohol (100%, 95%,
90%, 80%, 70%). The antigen was retrieved and incubated with
primary antibody (SYN, 1:200, Affinity, USA) overnight at 4°C.
Subsequently, secondary antibody goat-anti-mice IgG was
conjugated for 15 min at room temperature. The color of the
sections was developed with DAB and counterstained with
hematoxylin. The percentage of positive area of SYN protein
was statistically measured on ImageJ (version 1.45).

WB Analysis
First, the regions of dissectionwere identified using theColor Atlas of
Comparative Histology of Laboratory Animals. Rats were dissected
on ice as follows. The skull was opened, the first incision is made at
the end of the hemisphere. The second incision was made into the
lateral ventricle in front of the first incision. Both incisions reached
the ventral of the brain. The cerebral cortex covering the
hippocampus was then taken out. After exposing the
hippocampus, the other side of the brain was processed. Both
sides of the cortex covering the hippocampus along the ventricle
was pulled up, and the rest of the hippocampus from the cortex
covering it along the surface of the hippocampus towards the ventral
part of the hippocampuswas separated. The hippocampuswas taken
off, and the hippocampus and cortex were stored individually in
liquid nitrogen. The tissues were used for WB analysis.

The lysate of hippocampal and cortical tissues was centrifuged at
12,000 rpm for 20 min at 4°C. The supernatant was quantified with
BCA Protein Assay Kit (KeyGEN BioTECH). Approximately 30 mg
of total protein was separated with 12% SDS-polyacrylamide gel
electrophoresis and transferred to polyvinylidene fluoride
membranes. The membranes were blocked with 5% skim milk
powder for 2 h and incubated with primary antibody overnight at
4°C. Subsequently, the membranes were incubated with the
corresponding secondary antibody for 1 h at room temperature.
February 2020 | Volume 11 | Article 102
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The boundproteinswere detected using a BIO-RAD imaging system
(BIO-RAD, Hercules, CA, USA). The grayscale values of each band
relative to tubulin from the same sample were analyzed on Image
Lab (Millipore, USA). The primary antibodies for immunoblotting
were as follows: PSD-95 (1:1000, Affinity, USA), GAP-43 (1:1000,
Affinity, USA), SYN (1:1000, Affinity, USA), and tubulin (1:5000,
Affinity, USA).

The three synaptic-plasticity proteins SYN, PSD-95, and
GAP-43 detected in this study have similar molecular weights
and cannot be detected simultaneously. For the small amount of
hippocampal tissue, the hippocampal tissue of each rat is
insufficient to complete the detection of all proteins. Therefore,
we randomly selected three tissues for SYN, PSD95, and tubulin
detection, and the 3 remaining tissues were used for GAP43 and
tubulin detection. The corresponding cortex of the rats was
selected for the detection of the same protein to maintain the
parallelism of the experiment.

Untargeted Metabolomics Analysis
Brain Tissue Sample Preparation
Approximately 500 mL of 70% precooled methanol was added
into 50 mg of brain tissue. Centrifugation (12 000 rpm, 10 min)
was performed at 4°C after vortex and sonication to obtain the
supernatants. Furthermore, 500 mL of ethyl acetate/methanol (v,
1:3) was added into the precipitate, and the previous steps were
repeated. Two aliquots of the above supernatants were mixed
and concentrated. Subsequently, 100 ml of 70% methanol was
added to the powder, sonicated for 3 min, and centrifuged (12
000 rpm, 3 min) at 4°C.

UPLC-QTOF-MS Analysis
Approximately 60 mL of sample supernatant was injected into
Waters T3 C18 (2.1 mm × 100 mm, 1.8 mm) and maintained at
25°C by using an Agilent 1290 Infinity LC UPLC system coupled
to an Aglient-QTOF/MS-6545 mass spectrometer. Mobile phase
A comprised 0.01% formic acid/water. Mobile phase B was
composed of acetonitrile.

Data Preprocessing and Multivariate Analysis
The raw data files obtained by LC–MS/MS analysis were first
extracted on the Profinder software (Agilent) to obtain
Frontiers in Pharmacology | www.frontiersin.org 4
information, such as mass-to-charge ratio, retention time, and
peak area of the characteristic peaks. Pareto-scaled data were
imported into the Metaboanalyst (http://www.metaboanalyst.ca)
and SIMCA-P software (version 14.1. Umetrics, Umea, Sweden).
Partial least squares discriminant analysis (PLS-DA) and
orthogonal PLS-DA analysis (OPLS-DA) were performed in the
NMS andMS groups. The OPLS-DAmodel was validated through
200-iteration permutation tests. The criterion for identifying
significant differential metabolites was variable importance in the
projection (VIP) > 1 and p < 0.05 in the OPLS-DAmodel. Selected
differential metabolites were used for pathway enrichment, and the
selection criteria were FDR < 0.05 and impact > 0.

Statistical Analysis
All experimental data were presented as mean ± standard error
of the mean. The main effects of two levels of treatment (NMS or
MS), two levels of sex (male and female), and treatment × sex
interaction were analyzed by two-way ANOVA. Student's t-test
was performed when main effects were found. Differences were
considered statistically significant at P < 0.05. Statistical analyses
were performed on SPSS version 22.0 (Chicago, IL, USA) and
GraphPad Prism (La Jolla, CA, USA).
RESULTS

MS Reduced the Body Weight of SD Rats
As shown in Figure 1A, the trend of body weight change from
PND28 to PND63 was observed. For weight gain from PND28
to PND63, significant main effects of treatment (F(1,56) =
10.567, p = 0.002) and sex (F(1,56) = 105.623, p < 0.001) were
found, but no significant treatment × sex interaction were
detected (F(1,56) < 0.001, p = 0.988). Student's t-test showed
significant reduction in the M-MS and F-MS groups relative to the
M-NMS (t(28) = 2.245, p = 0.033) and F-NMS groups (t(28) =
2.357, p = 0.026. Figure 1B).

MS Caused Depression-Like and
Anxiety-Like Behaviors in SD Rats
In the behavioral test results, the sucrose preference test was
performed to assess the anhedonia and depressive-like behavior
FIGURE 1 | MS reduces the body weight of SD rats. (A) The tendency of weight gain from PND28 to PND63. (B) Weight gain from PND28 to PND63 after MS.
Statistical analyses are performed by two-way ANOVA followed by t-test. Values are presented as mean ± SEM, *p < 0.05. n = 15 per group.
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of rats. For the sucrose preference, we did not find significant
differences in sex effects (F(1,56) = 0.339, p = 0.563) and treatment ×
sex interaction (F(1,56)= 1.170, p = 0.284). Significant difference was
found in the main effects of treatment (F(1,56) = 196.530, p < 0.001).
Student's t-test results indicated that the sucrose preference in M-
MS and F-MS group significantly decreased relative to that in the
M-NMS (t(28) = 10.119, p < 0.001) and F-NMS (t(28) = 9.716, p <
0.001. Figure 2A) groups. The immobility time of forced swimming
was used to evaluate the behavioral despair of rats, and a significant
treatment effect (F(1,56) = 5.038, p = 0.018) was demonstrated. No
significant sex effect (F(1,56) = 3.622, p = 0.062) and treatment × sex
interaction (F(1,56) = 0.091, p = 0.764) was detected. Student's t-test
results showed that the immobility time in M-MS group
significantly increased compared with the M-NMS group (t(28) =
2.062, p = 0.049). However, no statistical significance was found
between the F-NMS and F-MS groups (t(28) = 1.428, p = 0.164.
Figure 2B). For the assessment of anxiety-like behavior of rats with
open-field test, no significant sex effect (F(1,56) = 0.105, p = 0.747;
F(1,56) = 1.014, p = 0.318; F(1,56) = 3.651, p = 0.061, respectively) and
treatment × sex interaction (F(1,56) = 0.121, p = 0.729; F(1,56) = 0.048,
p = 0.827; F(1,56) = 1.358, p = 0.249, respectively) were detected in the
central region time, central region distance, and activity. Treatment
effect showed significant differences (F(1,56) = 28.545, p < 0.001; F
(1,56) = 13.320, p = 0.001; F(1,56) = 12.089, p = 0.001, respectively).
Student's t-test results showed that the central region time and
distance both in M-MS and F-MS groups were observed
significantly lower relative to those of the M-NMS and F-NMS
groups (t(28) = 3.021, p = 0.005 and t(28) = 5.056, p < 0.001 for central
region time; t(28) = 2.570, p = 0.016 and t(28) = 2.605, p = 0.016 for
central region distance; Figures 2C, D). The activity in the M-MS
group significantly decreased compared with that in the M-NMS
group (t(28) = 4.546, p < 0.001). However, no statistical significance
was found between the F-NMS and F-MS groups (t(28) = 1.344, p =
0.191; Figure 2E).
Frontiers in Pharmacology | www.frontiersin.org 5
MS Decreased the Number of Neurons
Nissl staining demonstrated that the neurons were more loosely
arranged and hypochromic in the M-MS and F-MS groups
compared with M-NMS and F-NMS groups, as shown in
Figures 3A–D. The number of neurons in CA1, CA2, CA3,
and DG area of hippocampus and prefrontal cortex showed no
significant difference in sex effect (F(1,8) = 0.480, p = 0.508; F(1,8) =
1.823, p = 0.214; F(1,8) = 2.469, p = 0.155; F(1,8) = 0.432, p = 0.530;
F(1,8) = 0.364, p = 0.563) and treatment × sex interaction (F(1,8)=
0.627, p = 0.451; F(1,8) = 1.823, p = 0.214; F(1,8) = 0.082, p = 0.782;
F(1,8) < 0.001, p = 0.985; F(1,8) = 0.969, p = 0.354). However,
significant difference was found in treatment effect (F(1,8) =
19.853, p = 0.002; F(1,8) = 55.682, p < 0.001; F(1,8) = 64.000, p <
0.001; F(1,8) = 11.867, p = 0.009; F(1,8) = 29.477, p = 0.001).
Student's t-test results showed a significant reduction of neurons
in the CA1, CA2, and CA3 areas of hippocampus and
prefrontal cortex in the M-MS group relative to the M-NMS
group (t(4) = 5.233, p = 0.006; t(4) = 3.801, p = 0.019; t(4) =
6.409, p = 0.003; t(4) = 4.216, p = 0.014). However, no
significant difference was found in the DG area of M-MS rats
relative to the M-NMS group (t(4) = 2.006, p = 0.168). In
addition, neuron amount in the CA1, CA2, CA3, and DG area
of hippocampus and prefrontal cortex in F-MS group was
significantly lower than that in the F-NMS group (t(4) = 2.801,
p = 0.049; t(4) = 7.410, p = 0.002; t(4) = 5.188, p = 0.007; t(4) =
3.397, p = 0.027; t(4) = 3.424, p = 0.027; Figures 3C, D).

MS Reduced SYN Protein Expression in
the Hippocampus and Prefrontal Cortex
We evaluated the expression of SYN in the CA1, CA2, CA3, and
DG areas of the hippocampus and prefrontal cortical area with
immunohistochemistry (Figures 4A–D). The percentage of
positive area showed that the SYN expression did not display
significant difference in sex effect (F(1,8) = 0.059, p = 0.814; F(1,8) =
FIGURE 2 | MS causes depression-like and anxiety-like behavior in SD rats. (A) Effect of MS on sucrose preference (%) in the sucrose-preference test on SD rats.
(B) Effect of MS on immobility time(s) in the forced-swimming test on rats. (C–E) Effect of MS on central region time (s), central region distance (mm), and activity in
the open-field test on rats. Statistical analyses are performed by two-way ANOVA followed by t-test. Values are presented as mean ± SEM. *p < 0.05, **p < 0.01
(compared with the NMS group), n = 15 per group.
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0.996, p = 0.348; F(1,8) = 0.760, p = 0.409; F(1,8) = 1.017, p = 0.343;
F(1,8) = 0.084, p = 0.779) and treatment × sex interaction (F(1,8)=
0.751, p = 0.411; F(1,8) = 1.716, p = 0.227; F(1,8) = 0.127, p = 0.731;
F(1,8) = 0.158, p = 0.701; F(1,8) = 0.004, p = 0.953). However,
significant difference was found in treatment effect (F(1,8) =
67.120, p < 0.001; F(1,8) = 120.317, p < 0.001; F(1,8) = 27.549,
p = 0.001; F(1,8) = 26.481, p = 0.001; F(1,8) = 21.893, p = 0.002).
Student's t-test revealed an obviously decreased SYN level in
M-MS group compared with M-NMS (t(4) = 4.924, p = 0.008;
t(4) = 6.588, p = 0.003; t(4) = 4.641, p = 0.034; t(4) = 3.221, p =
0.032; t(4) = 3.708, p = 0.021), as well as in F-MS group (t(4) =
Frontiers in Pharmacology | www.frontiersin.org 6
9.338, p = 0.001; t(4) = 9.027, p = 0.001; t(4) = 3.298, p = 0.030;
t(4) = 4.102, p = 0.015; t(4) = 3.029, p = 0.039).

MS reduced the Expression
of Synaptic-Plasticity Protein
In the hippocampus, western blot results showed that the
expression of SYN (sex effect: F(1,8) = 1.630, p = 0.238; treatment
effect: F(1,8) = 16.906, p = 0.003; treatment × sex interaction: F(1,8) =
0.669, p = 0.437), GAP-43 (sex effect: F(1,8) = 4,341, p = 0.071;
treatment effect: F(1,8) = 29.880, p = 0.001; treatment × sex
interaction: F(1,8) = 0.472, p = 0.512), and PSD-95 (sex effect:
FIGURE 3 | MS decreases the number of neurons. (A) Schematic of the coronal section from rat hippocampus and the locations of CA1, CA2, CA3, and DG
regions. (B) The red frame area indicates the field of view of the prefrontal cortex. (C) Representative 400× photomicrographs of Nissl staining in the hippocampal of
CA1, CA2, CA3, and DG regions. Results of the number of Nissl staining positive cells in the hippocampal CA1, CA2, CA3, and DG regions are statistically
significant, except for the decreasing trend of the M-MS group in the DG region. (D) Representative 400× photomicrographs of Nissl staining in the prefrontal cortex.
Statistical results of the number of Nissl-positive cells in the prefrontal cortex. Statistical analyses are performed by two-way ANOVA followed by t-test. Data are
presented as mean ± SEM, *p < 0.05, **p < 0.01, n = 3 per group, scale bar = 50 µm.
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F(1,8) = 2.572, p = 0.147; treatment effect: F(1,8) = 48.240, p < 0.001;
treatment × sex interaction: F(1,8) = 0.003, p = 0.955) significantly
differed in treatment effect and not statistically different in sex
effect and treatment × sex interaction. Moreover, the expression of
SYN (male: t(4) = 3.367, p = 0.028; female: t(4) = 2.826, p = 0.048;
Figure 5A), GAP-43 (male: t(4) = 5.602, p = 0.005; female: t(4) =
2.860, p = 0.046; Figure 5A), and PSD-95 (male: t(4) = 4.304, p =
0.013; female: t(4) = 5.837, p = 0.004; Figure 5A) was significantly
reduced in the M-MS and F-MS groups relative to the M-NMS
and F-NMS groups. The protein marker levels of synaptic
plasticity in the hippocampus were similar to that in the cortex:
SYN (sex effect: F(1,8) = 0.002, p = 0.968; treatment effect: F(1,8) =
31.479, p = 0.001; treatment × sex interaction: F(1,8) = 1.749, p =
0.223; male: t(4) = 4.867, p = 0.008; female: t(4) = 3.054, p = 0.038;
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Figure 5B), GAP-43 (sex effect: F(1,8) = 3.593, p = 0.095; treatment
effect: F(1,8) = 37.893, p < 0.001; treatment × sex interaction: F(1,8) =
1.578, p = 0.244; male: t(4) = 3.171, p = 0.034; female: t(4) = 5.837,
p = 0.004; Figure 5B), and PSD-95 (sex effect: F(1,8) = 1.074, p =
0.330; treatment effect: F(1,8) = 36.889, p < 0.001; treatment × sex
interaction: F(1,8) = 1.154, p = 0.705; male: t(4) = 5.016, p = 0.007;
female: t(4) = 3.716, p = 0.021; Figure 5B).

Effect of MS on Sex Hormone Biosynthesis
and Metabolism
Figure 6A shows the negative ion mode PCA score plot of the
F-MS and M-MS groups, and Figure 6B shows the positive-ion
mode PCA diagram of the F-MS and M-MS groups. The results
showed that F-MS and M-MS groups did not separate
FIGURE 4 | MS reduces SYN protein expression in immunohistochemistry. (A) Schematic of the coronal section from rat hippocampus and the locations of CA1,
CA2, CA3, and DG regions. (B) The red frame area indicates the field of view of the prefrontal cortex. (C) Representative 400× photomicrographs of SYN protein
expression of the CA1, CA2, CA3, and DG regions of the hippocampus. Results of the percentage of SYN-positive area in the hippocampal CA1, CA2, CA3, and
DG regions are statistically significant. (D) Representative 400× photomicrographs of SYN protein expression in the prefrontal cortex. Statistical results of the
percentage of SYN-positive area in the prefrontal cortex. Statistical analyses are performed by two-way ANOVA followed by t-test. Data are presented as mean ±
SEM, *p < 0.05, **p < 0.01, n = 3 per group, scale bar = 50 µm.
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significantly. No statistical difference was detected in the peak
area of sex hormones and their metabolites, including estradiol
(male: t(8) = 0.751, p = 0.474; female: t(8) = 0.855, p = 0.417),
testosterone (male: t(8) = 1.344, p = 0.216; female: t(8) = 1.016, p =
0.339), androstenedione (male: t(10) = 0.338, p = 0.742; female:
t(10) = 0.141, p = 0.891), estrone (male: t(10) = 1.410, p = 0.189;
female: t(10) = 0.920, p = 0.379), estriol (male: t(10) = 0.070, p =
0.945; female: t(10) = 0.702, p = 0.499), and 5beta-
dihydrotestosterone (male: t(10) = 0.256, p = 0.803; female: t(10) =
0.605, p = 0.559) between the NMS and MS groups (Figure 6C).
The specific information on these metabolites is listed in Table 1.
Metabolomics on the molecular
mechanisms of MS affecting depression-
like behavior
Brain tissues were collected from the NMS and MS groups. Total ion
current mass spectra were obtained at negative (Figure 7A) and
positive-ion modes (Figure 7E) by LC–MS/MS metabolomics
Frontiers in Pharmacology | www.frontiersin.org 8
profiling. PLS-DA (Figures 7B, F) OPLS-DA (Figures 7C, G) and
the corresponding OPLS (V+S) plots of NMS and MS groups
(Figures 7D, H) were conducted to identify the differential
metabolites and metabolic changes. The NMS and MS groups were
evidently separated. The metabolite with features of VIP > 1 and p <
0.05 were considered potential significant differential metabolites.
Subsequently, 30 endogenous metabolites were confirmed by
comparing their mass spectra and chromatographic retention times
with the available references, including MassBank, PubChem, and
Human Metabolome Database. Their specific information is shown
in Table 2. The peak area of the characteristic peaks for targeted
metabolites is shown in Figure 8A. The biological functions of these
differential metabolites were analyzed on MetaboAnalyst 4.0. Figures
8B, C show the results of heatmap and pathway analysis.
Pantothenate and CoA biosynthesis (FDR = 0.0099; Impact =
0.33); arginine and proline metabolism (FDR = 0.0112; Impact =
0.24); glutathione metabolism (FDR = 0.0475; Impact = 0.43); and
phenylalanine, tyrosine, and tryptophan biosynthesis (FDR = 0.0475;
Impact = 1.00) were significantly altered metabolic pathways.
FIGURE 6 | MS shows no gender difference in depression-like behavior in male and female rats. (A) PCA score plot of the F-MS and M-MS groups in negative ion
mode. (B) PCA score plot of F-MS and M-MS groups in positive-ion mode. (C) Peak area of sex hormones and their metabolites detected by LC–MS/MS.
FIGURE 5 | MS reduces the expression of synaptic-plasticity protein. (A) The bands of synaptic-plasticity proteins of SYN, PSD-95, and GAP-43 in the
hippocampus by WB. Statistical results indicate the relative protein levels expressed by SYN, GAP-43, and PSD-95. (B) The bands of synaptic-plasticity proteins of
SYN, PSD-95, and GAP-43 in cortex by WB. Statistical results indicate the relative protein levels expressed by SYN, GAP-43, and PSD-95. Statistical analyses are
performed by two-way ANOVA followed by t-test. Data are presented as mean ± SEM, *p < 0.05, **p < 0.01, n = 3 per group.
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DISCUSSION

We used an MS model to investigate the effects of depression in
adult SD rats with early adverse stress. The rats were weighed
from PND28 to PND63. We observed that the weight gain of the
MS group was significantly lower than that of the NMS group by
analyzing the weight gain in this cycle, indicating that the MS
model caused weight loss in SD rats. For specific data on food
intake in rats, see Supplement Material 1. Ítalo Leite Figueiredo,
DVM, PhD, believed that prolonged MS induced malnutrition
status in rats (Figueiredo et al., 2016). The behavioral test results
showed that sucrose preference (%) significantly decreased
compared with the NMS group, indicating that MS contributed
to anhedonia in SD rats. Sucrose and water consumption and
percentage of sucrose and water consumption see
Supplementary Material 2. The immobility time in forced
swimming test significantly increased compared with the NMS
group, revealing that MS contributed to the behavioral despair of
SD rats. These findings indicated that the MS model caused
depression-like behavior in SD rats. Central region time and
distance in open-field test significantly decreased compared with
Frontiers in Pharmacology | www.frontiersin.org 9
the NMS group, whereas no significant statistical difference was
found in the activity of the female group (Figure 2E). These data
suggest that the MS model contributed to anxiety-like behavior
in SD rats. All of these behavior results were in agreement with
published results (Almeida-Suhett et al., 2017; Citraro et al.,
2017). No statistical difference was found in gender between
female and male rats. Clinical and experimental studies have
shown that women are more likely to suffer from depression than
men under exposure to early-life adversity (Duman et al., 2016;
Mahmoud et al., 2016). ELS models in rodents cannot replicate
the effects of gender factors. This condition may be due to the
insensitivity of rodents to the means of behavior measurement
and that female rodents are susceptible to differences in estrus
cycles (Leussis et al., 2012; Goodwill et al., 2019). In this study,
the cycle of MS was from PND 1 to PND 21, which was
performed daily for 3 h in the morning and afternoon. The
behavioral experiment started from PND 56. PND 56 to PND 63
denoted the adulthood of SD rats, and the estrogen levels of
female rats in this period were relatively stable. Gender factors
may not be an important factor for depression in the rodent ELS
model. However, women with depression have a two times
higher incidence than men. Future research and discussion on
influence of gender factor on depression are required.

For synaptic plasticity, we observed themorphology and number
of neurons in the hippocampus and prefrontal cortex through Nissl
staining. The experimental results showed that the number of
neurons in the CA1, CA2, and CA3 regions of the hippocampus
and prefrontal cortex in theMS groupwas significantly reduced. The
hippocampal DG region in the F-MS group was significantly
reduced, and the M-MS group was insignificant compared with
the NMS group. The MS model damaged the neurons in the
hippocampus and prefrontal cortex and weakened the function of
neuronal synthetic proteins. This result was consistent with the
results of some studies. For depression, the depression group was
TABLE 1 | Sex hormones and their metabolites.

NO Scan
Mode

Mass RT Metabolites HMDB ID

M1 ESI- 272.1776 5.009 Estradiol HMDB0000151
M2 ESI- 288.2089 10.78 Testosterone HMDB0000234
M3 ESI+ 286.1933 6.356 Androstenedione HMDB0000053
M4 ESI+ 270.162 6.363 Estrone HMDB0000145
M5 ESI+ 288.1725 5.797 Estriol HMDB0000153
M6 ESI+ 290.2246 10.272 5beta-

Dihydrotestosterone
HMDB0006770
Determination of sex hormones and their metabolites of samples in negative ion and
positive-ion modes via LC–MS/MS in HMDB database.
FIGURE 7 | Model analysis of nontargeted metabolomics of brain tissues in SD rats. (A) TIC mass spectrum in negative ion mode. (B) PLS-DA 3D score plot in
negative ion mode of the NMS and MS groups. (C) OPLS-DA score plot in negative ion mode of the NMS and MS groups. (D) The corresponding OPLS (V+S) plot
of the NMS and MS groups in negative ion mode. (E) TIC mass spectrum in positive-ion mode. (F) PLS-DA 3D score plot in positive-ion mode of the NMS and MS
groups. (G) OPLS-DA score plot in positive-ion mode of the NMS and MS groups. (H) The corresponding OPLS (V+S) plot of the NMS and MS groups in positive-
ion mode.
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associated with abnormal neuronal morphology, decreased
hippocampal volume, and reduced pyramidal cells and
granulocytes (Zhao et al., 2018). Changes in the size and density of
neurons in the cortex and a decrease in the number of glial cells
contribute to the development of depression (Bakhtiarzadeh et al.,
2018). The effects of the MS model on the expression of synaptic-
plasticity protein in the hippocampus and prefrontal cortex of adult
SD rats were explored by immunohistochemistry. The experimental
results showed that theMSgrouphad lighter staining comparedwith
the NMS group, and the percentage of positive area in the
hippocampal CA1, CA2, CA3, DG, and prefrontal cortex was
significantly reduced. This finding suggested that the MS model
may cause adult-derived depression-like behavior in SD rats by
regulating the expression of synaptic-plasticity proteins in the
hippocampus and cortex. We evaluated the expression levels of
the synaptic-plasticity protein markers PSD-95, SYN, and GAP-43
in the hippocampus and cortex by WB analysis. The experimental
Frontiers in Pharmacology | www.frontiersin.org 10
results showed that the expression levels of the three synaptic-
plasticity proteins in the hippocampus and cortex of the MS group
were significantly lower than that of the NMS group. This finding
indicated that the MS model regulates synaptic plasticity and causes
SD rats to suffer depression during adulthood. The same results
showed that learned helplessness paradigm, as an accepted
experimental model of depression, decreased the immunostaining
of SYN, PSD-95, andGAP-43 in theCA3 region of the hippocampus
of model animals. The results were opposite for animals treated with
fluoxetine, revealing that the treatment of fluoxetine can modify the
synaptic and axonal remodeling of the hippocampal CA3 region by
learning helplessness models (Reines et al., 2008).

We used nontargeted metabolomics to detect metabolites in
the brain tissue of SD rats to elucidate the underlying molecular
mechanism of depression in the MSmodel by regulating synaptic
plasticity. The results indicated that differential metabolites,
including glutamine, aspartate, arginine, proline, L-glutamic
acid 5-phosphate, glutamate regulate arginine, and proline
metabolism, are considered to be associated with depression
based on the pathway analysis of nontargeted metabolomics of
brain tissue (Liu et al., 2019). Patients with depression show
lower arginine levels compared with healthy controls (Moaddel
et al., 2018). The NO levels in depression group was significantly
lower than those in the normal group (Chrapko et al., 2004).
Arginine is hydrolyzed to ornithine and urea by arginase in the
urea cycle and oxidized to citrulline. Arginine is also converted
by nitric oxide synthases to nitric oxide and citrulline in the nitric
oxide cycle. NO acts as a messenger in physiological processes
associated with depressive disorders (Wegener and Volke, 2010),
especially on synaptic plasticity (Forstermann and Sessa, 2012).
Asymmetric dimethylarginine, a potential endogenous factor
that affects L-arginine levels, competitively inhibits eNOS and
prevents NO production, which is related to depression and high
arginine levels (Cooke and Ghebremariam, 2011; Hess et al.,
2017). This result is consistent with our experimental results. L-
proline is similar to GABA in terms of chemical structure and is a
GABA mimetic. The accumulation of proline in GABAergic
neurons can competitively inhibit glutamate decarboxylase,
leading to the decrease in GABA production and affecting
synaptic plasticity (Crabtree et al., 2016). The levels of proline
in the MS group significantly increased in our results. Three
differential metabolites, namely, pantothenic acid, D-
pantothenoyl-L-cysteine, and pantetheine 4'-phosphate, enrich
the pathway for pantothenate and CoA biosynthesis. Decreased
pantothenic acid levels and increased pantetheine 4'-phosphate
levels in the MS group may affect CoA synthesis. CoA plays an
essential role in the metabolism of carboxylic and fatty acids
(Leonardi et al., 2005). High CoA levels in the mitochondria can
increase ATP synthesis, increasing the glutathione levels,
inhibiting inflammation, and reducing oxidative stress to
promote depression (Nitto and Onodera, 2013; Slyshenkov
et al., 2004; Wojtczak and Slyshenkov, 2003). The glutathione
metabolism pathway is involved in glutamate, gamma-
glutamylcysteine, glutathione, cysteine, glycine, and
gysteinylglycine. Glutathione is a potential marker of
depression in early stage (Freed et al., 2017). Impaired synaptic
plasticity is associated with low levels of glutathione (Almaguer-
TABLE 2 | Differential metabolites.

NO Scan
mode

Mass RT Metabolites HMDB ID MS/
NMS

M1 ESI- 448.139 11.732 Deoxycholic acid
glycine conjugate

HMDB0000631 ↑

M2 ESI- 548.062711.757 LysoPC(20:1(11Z)) HMDB0010391 ↑
M3 ESI- 72.0218 1.336 Aminoacetone HMDB0002134 ↑
M4 ESI- 586.1207 2.453 Adenosine

tetraphosphate
HMDB0001364 ↑

M5 ESI- 167.0246 2.088 Phosphoenolpyruvic
acid

HMDB0000263 ↑

M6 ESI- 270.058 2.954 Prolyl-Arginine HMDB0029011 ↑
M7 ESI- 255.988 1.889 Glycerophosphocholine HMDB0000086 ↑
M8 ESI- 179.0245 2.273 myo-Inositol HMDB0000211 ↑
M9 ESI- 378.0898 1.442 S-Lactoylglutathione HMDB0001066 ↑
M10 ESI+ 161.1073 1.386 Tryptamine HMDB0000303 ↑
M11 ESI+ 300.2829 7.726 Palmitoyl Ethanolamide HMDB0002100 ↑
M12 ESI+ 228.1507 1.919 L-Glutamic acid 5-

phosphate
HMDB0001228 ↑

M13 ESI+ 221.0253 1.248 5-Hydroxy-L-
tryptophan

HMDB0000472 ↑

M14 ESI+ 284.2866 7.722 Lysyl-Histidine HMDB0028953 ↑
M15 ESI+ 191.1338 4.906 Aspartyl-Glycine HMDB0028753 ↓
M16 ESI+ 220.0002 1.86 Pantothenic acid HMDB0000210 ↓
M17 ESI- 69.0568 1.501 beta-Aminopropionitrile HMDB0004101 ↑
M18 ESI- 322.1007 5.983 D-Pantothenoyl-L-

cysteine
HMDB0006834 ↑

M19 ESI- 319.0512 1.977 15-HETE HMDB0003876 ↑
M20 ESI- 100.0161 5.865 (S)-Methylmalonic acid

semialdehyde
HMDB0002217 ↑

M21 ESI- 304.1441 6.355 Arachidonic acid HMDB0001043 ↑
M22 ESI+ 278.1341 5.277 Methionyl-Glutamate HMDB0028972 ↑
M23 ESI+ 278.0973 2.209 Methionyl-Glutamine HMDB0028971 ↑
M24 ESI- 363.0573 2.271 Anandamide HMDB0004080 ↑
M25 ESI- 307.0836 2.139 Glutathione HMDB0000125 ↑
M26 ESI- 358.0957 5.104 Pantetheine 4'-

phosphate
HMDB0001416 ↑

M27 ESI- 267.0954 4.725 Cysteinyl-Phenylalanine HMDB0028782 ↑
M28 ESI- 670.1369 1.564 PE(14:1(9Z)/P-18:1

(9Z))
HMDB0008886 ↑

M29 ESI- 278.0753 5.226 Phenylalanyl-Isoleucine HMDB0028998 ↑
M30 ESI+ 296.1513 5.185 Tyrosyl-Aspartate HMDB0029101 ↓
Differential metabolites are confirmed in the NMS and MS groups based on VIP > 1.
P < 0.05, ↑ shows upregulated metabolite. ↓ shows downregulated metabolite.
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Melian et al., 2000). Phenylalanine is increased and tyrosine is
decreased in the enrichment pathway of phenylalanine, tyrosine,
and tryptophan biosynthesis. High phenylalanine concentration
and phenylalanine/tyrosine ratio are associated with neopterin
concentrations in patients suffering from inflammation
(Vancassel et al., 2018; Korte-Bouws et al., 2019), which can be
mediated by synaptic-plasticity regulation.

In this study, no significant separation was found between the
male and female groups in the MS group by PCA analysis. No
significant statistical difference was found in the biosynthesis and
metabolismof sexhormones betweenNMSandMSgroupbasedon
the LC–MS/MS analysis of the peak area of estradiol, testosterone,
androstenedione, estrone, estriol, and 5b-dihydrotestosterone. This
condition indicated that theMS caused depression-like behavior in
adult male and female rats were similar. A rational rodent model
should be developed to investigate the effects of gender factors in
depression research.
Frontiers in Pharmacology | www.frontiersin.org 11
CONCLUSION

The experimental results showed that the MS model of SD rats
can lead to depression-like behavior in adulthood. The molecular
mechanism to regulate synaptic plasticity may be related to
arginine and proline metabolism; pantothenate and CoA
biosynthesis; glutathione metabolism; and phenylalanine,
tyrosine, and tryptophan biosynthesis. However, gender did
not interfere with depression-like behaviors in adult MS rats.
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FIGURE 8 | Analysis of differential metabolites. (A) Peak area detected by LC–MS/MS for differential metabolites in the brain tissue. (B) The relative content of
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metabolites from low to high. (C) Pathway analysis of differential metabolites in the NMS and MS groups. a: pantothenate and CoA biosynthesis, b: arginine and
proline metabolism, c: glutathione metabolism, d: phenylalanine, tyrosine, and tryptophan biosynthesis.
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TABLE S1 | Food intake for each group from PND28 to PND62 (g, n = 15).
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FIGURE S2 | Consumption of sucrose and water in the sucrose preference test.
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preference test.
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