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Immunomodulation strategies are crucial for several biomedical applications. However, the immune system is highly
heterogeneous and its functional responses to infections remains elusive. Indeed, the characterization of immune response
particularities to different pathogens is needed to identify immunomodulatory candidates. To address this issue, we compiled a
comprehensive map of functional immune cell states of mouse in response to 12 pathogens. To create this atlas, we developed a
single-cell-based computational method that partitions heterogeneous cell types into functionally distinct states and
simultaneously identifies modules of functionally relevant genes characterizing them. We identified 295 functional states using 114
datasets of six immune cell types, creating a Catalogus Immune Muris. As a result, we found common as well as pathogen-specific
functional states and experimentally characterized the function of an unknown macrophage cell state that modulates the response
to Salmonella Typhimurium infection. Thus, we expect our Catalogus Immune Muris to be an important resource for studies aiming

at discovering new immunomodulatory candidates.
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INTRODUCTION

The immune response to pathogens, such as viruses, bacteria, or
fungi, is a complex process involving multiple immune and
nonimmune cell types [1, 2]. Although transcriptional changes of
these cells in response to pathogens have been studied for
decades, the development of sensitive analytical techniques such
as single-cell RNA sequencing (scRNAseq) only now enables the
identification and functional characterization of cellular subpopu-
lations in response to different stimuli. Thus, heterogeneous
subpopulations can be identified by specialized transcriptional
profiles that determine their identity and govern their interactions
with invading pathogens [3-6]. Recent studies utilizing various
pathogens have shown that complex transcriptional variability in
macrophages govern their divergent response against individual
invasive agents [7, 8]. For instance, in the case of Salmonella
enterica Serovar Typhimurium, the interplay between the bacteria
and macrophages triggers two different scenarios in which some
cells are polarized to anti-inflammatory response whereas others
display an inflammatory output [9]. Moreover, a subsequent study
was able to identify two distinct cellular states that are responsible
for a bimodal type | interferon response [10]. However, most of
these studies focus on a single pathogen, making them unable
to decipher common and distinct cellular states established in
response to different infections. To date, only a few meta-analyses

exist that aim at identifying common and unique patterns of the
immune response to pathogens [11]. Nevertheless, these studies
are based on the average response across a population of cells or
tissues, making them unable to detect functionally distinct
subpopulations. Moreover, the number of pathogens considered
in these studies remains limited, which impedes more general
conclusions regarding the cellular response to different types of
infectious agents.

To date, several functional states of immune cells, such as
macrophages, natural killer, and T cells, have been identified and
characterized [12-15]. In general, discerning the functional states
of immune cells and their transcriptional characterization is pivotal
for the development of immunomodulatory therapeutic strate-
gies. For instance, previous studies demonstrated the beneficial
effect of reprogramming the macrophage polarization state to
promote tumor suppression or alleviate autoimmunity in ence-
phalomyelitis [16, 17]. However, the development of new
immunomodulatory therapies based on the reprogramming of
functional states is significantly impeded by the incomplete
knowledge about the functional cell states established in response
to pathogens and their characterization.

To address this challenge, we collected 114 single-cell datasets
of six immune cell types in the context of 12 viral, bacterial, fungal,
and parasite infections, and developed a computational method
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for identifying functional immune cell states in response to these
pathogens, creating a Catalogus Immune Muris. We believe it will
serve as a valuable resource of functional immune cell states to
devise novel immunomodulatory strategies.

MATERIALS AND METHODS

Data collection, processing, and annotation

We collected 114 single-cell datasets composed of 6 immune cell types
and 12 pathogens (Table S1). Raw data (accession numbers: PRJEB14043, E-
MTAB-3857, and E-MTAB-4388) were processed using state-of-the-art
pipelines [18]. Smart-seq data were subjected to a quality control step
using fastqc, reads were mapped to the mm10 genome using STAR aligner
and the count matrix were obtained using featureCounts tool. A similar
workflow was applied for UMI-based data, adding the demultiplexing step
and replacing the counting tool by umi-tool.

Datasets composed of several cell types were clustered using Seurat
pipeline with default parameters, manually annotated and extracted. Cells
were annotated using prior knowledge and CIPR web tool with default
parameters [19]. Only the cells annotated with a good confidence were
extracted and used to build the resource.

Functional partitioning algorithm

In order to reliably identify and characterize functionally relevant cell
states, we developed a network-based approach combined with a
recursive hierarchical clustering named FunPart. The algorithm is
composed of four main parts: (1) cleaning and normalization of the data,
(2) network-based approach to identify set of genes strongly correlated, (3)
functional characterization of the set of genes using manually annotated
immune modules by Singhania et al. [11], and (4) recursive unsupervised
hierarchical clustering to perform the splits. Each step is detailed in the
Supplementary Information. A dataset for which no module is found is
considered to be functionally homogenous and corresponds to one
functional cell state.

Validations and comparison with the state-of-the-art

We first aimed at validating our method at two levels: (1) the relevance of
genes belonging to the detected functional modules, and (2) the relevance
of the predicted cell states. We collected literature evidences for some of
the main TFs identified in each module focusing on evidences of the
immune process identified for macrophages. Next, we aimed at comparing
our method with Seurat, a state-of-the-art method [20]. Seurat and FunPart
were used with default parameters for the 17 macrophages datasets. We
assessed the functional relevance of predicted clusters by both methods
and computed a score reflecting the precision of each method in
identifying real or artificial functional heterogeneity per dataset (Supple-
mentary Information).

Characterization of functional cell states

FunPart provides gene modules characterizing the predicted functional
cell states as well as the specific immune process in which they are
enriched. In order to have an additional layer of information, we aimed at
identifying known markers to further characterize these cell states.
Immune cell type markers were collected from the CellMarker database
by considering experimentally validated evidences only [21]. We
performed feature selection using the Boruta algorithm [22], a wrapper
built around the random forest classification algorithm, to determine the
importance of markers in classifying each cell states. Boruta was used in
classification mode with default parameters for each cell state, details are
provided in Supplementary Information. Fold changes and cell expression
ratios were then computed for each cell states markers extracted by the
algorithm (Supplementary Information).

Metadata analysis

Data integration was performed for each dataset using the standard
workflow of Seurat (Supplementary Information). Cell states were then
aggregated across datasets for each cell type by following a hierarchical
clustering approach: (1) Each dataset was first normalized individually by
the third quantile to overcome the different types of expression values
present in the different datasets (TPM, CPM, UMI and counts), (2) The
median expression of each gene in each cell state was calculated, (3)
Euclidean distance was then used to build the dendrogram reflecting the
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similarity between states, and (4) the dendrogram was splitted at a height
corresponding to the seventh quantile of the heights distribution. The
aggregated states were then embedded into the computed UMAP for
visualization and analyses.

Mice and bacteria
C57BI/6 (B6) mice were purchased from Charles River Laboratories and
bred in the Animal Facility at CIC bioGUNE. All the assays performed were
approved by the competent authority (Diputaciéon de Bizkaia) under
European and Spanish directives. CIC bioGUNE is accredited by
AAALAC Intl.

Salmonella enterica subsp. enterica serovar Typhimurium SL1344 (Ger-
man Collection of Microorganisms and Cell Cultures, Leibniz, DE) was
grown in Luria Bertani medium (Sigma-Aldrich) without antibiotics.

Cell culture and gene silencing

Bone-marrow-derived macrophages (BMMs) were generated from 6-12-
week-old B6 mice, as previously described [23]. Low-passaged
HEK293FT cells were cultured in DMEM containing 10% FBS and 1%
penicillin-streptomycin.

Lentiviral particles containing shRNA targeting Zfp597 (TRCN0000215620,
TRCN0000179758, TRCN0000245367, Sigma-Aldrich) and Stat7 (TRCNOOOO
235839) were generated using a third-generation lentivirus vector with a
conditional packaging system [24, 25]. Zfp597-silencing in BMMs was
conducted by co-infection with lentiviral particles containing the three
silencing constructs whereas for Statl one single construct was used.
Lentiviral particles were added at days 3 and 5 of the differentiation process
in the presence of 8 pg/ml protamine sulfate (Sigma-Aldrich). Controls were
infected with lentiviral particles containing the empty vector, PLKO.1. BMMs
derived from three independent mice were used in each silencing assay.

Salmonella survival in murine macrophages

S. typhimurium was grown from a diluted (1:50) overnight inoculum until
they reached an O.D. = 0.6. BMMs were infected following the protocol by
Avraham et al. [10] at an m.o.i. of 10. In the experiments using
shSTAT1 cells, 100 ng/ml of recombinant murine IFNy was added at the
same time than the bacteria. The mixture was centrifuged, incubated for
30 min, washed twice, and further incubated in the presence of 50 ug/ml
gentamicin for 1 h. Macrophages were then washed and lysed in medium
containing 0.1% Triton X-100. Cell lysates were centrifuged and resus-
pended in 1 ml of LB broth. Serial 1:10 dilutions were plated on LB-agar
plates to determine the number of live intracellular bacteria per condition.

Real-time PCR

Total RNA was isolated using the NucleoSpin® RNA kit (Macherey-Nagel) and
reverse transcribed with M-MLV reverse transcriptase (Thermo Fisher
Scientific). Real-time PCR was performed using the PerfeCTa SYBR Green
SuperMix low ROX (Quantabio) on a ViiA 7™ Real-Time PCR System (Thermo
Fisher Scientific). Fold induction of Zfp597 was calculated relative to Rpl19
whereas Stat1 was compared to Actb by using the 2" method. Standard
curves of all primers were performed by testing serial dilutions of cDNA-
experimental samples obtaining an average of 100 + 5% efficiency. Correla-
tion between target and housekeeping genes was assessed by standard
curve comparisons (Zfp597-Rpl19 slope 0.0194/ Stati1-Actin slope 0.0188).
Details about the primers used can be found as Supplementary Information.

Statistics

Three independent mice were used in each silencing assay. Data normality
assumption was first validated using the Shapiro-Wilk test and variances
between groups were analyzed using an F-test. Statistical difference
between the two groups (control versus silenced assay) was then
computed using a paired Student t-test. Results with a p value less than
0.05 were considered as being significant.

RESULTS

Identification and characterization of functional immune cell
states

In order to create an atlas of functional immune cell states, we
developed FunPart, a single-cell-based computational method
that partitions heterogeneous cell types into functionally distinct
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FunPart general workflow and validation. A General workflow of the functional states identification and characterization. The

computational method we developed, named FunPart, takes single-cell RNA-seq data of one cell type as an input, to identify functional states
based on functional modules of genes. The method searches for modules exclusively expressed in one group of cells and belonging to the
same immune process. Cells are recursively splitted in two groups until no more functionally relevant modules associated to new states can
be found. B Binary heatmap of the 26 terminal genes modules identified by FunPart for the macrophages functional cell states CS. Only TFs
are displayed. C Functional enrichment of these 26 terminal gene modules. Each immune process has a different color, the size of the dots
represents the number of gene modules enriched in the specific process. Intermediate gene modules are not displayed.

states and simultaneously identifies modules of functionally
relevant genes that characterize them. Starting from a population
of cells belonging to the same cell type, the method partitions
them into two subpopulations by searching for modules that are
(i) exclusively expressed in one subpopulation and (ii) composed
of co-expressed TFs belonging to the same immunological
process. This procedure is recursively repeated until no function-
ally relevant modules, associated to new subpopulations, can be
found (Fig. 1A).

To demonstrate the ability of this method to detect functional
immune cell states, we collected 17 macrophage datasets
corresponding to the infection with eight different pathogens
profiled at different timepoints (Table S1). Application of our
proposed method to these datasets revealed the presence of 9

Cell Death and Disease (2021)12:798

M1-like, 13 M2-like cell states, and 14 middle range states
expressing simultaneously some M1-like and M2-like markers [12]
(Fig. S1). Moreover, literature evidences were found for every
immune process and pathway reported by FunPart for the 12
intermediate genes modules, used to distinguish groups of
functional states and 26 terminal gene modules, characterizing
each individual state (Fig. 1B, C, Table S2). Next, we aimed at
demonstrating that current clustering tools are unable to identify
subtle functional differences and applied Seurat [20, 26], a widely
used state-of-the-art clustering method, to each of the datasets.
As expected, the subpopulations obtained are vastly different,
with FunPart identifying 46% of functionally enriched ones
compared to 33% for Seurat across the 17 datasets (Fig. S2A,B).
Furthermore, FunPart distinguishes more accurately functional

SPRINGER NATURE
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homogeneity and heterogeneity with 67% and 43% of true
positives, respectively, compared to 25% and 22% for Seurat (Fig.
S2C). In summary, FunPart identifies immune cell states more
reliably and with an increased resolution compared to state-of-
the-art methods.

295 functional immune cell states create a Catalogus Immune
Muris

After validating our approach for detecting functional cell states,
we collected 114 single-cell RNA-seq datasets of B cells, T cells,
natural killer (NK) cells, macrophages, monocytes, and dendritic
cells (DCs) in the context of 12 viral, bacterial, fungal, and
parasitic pathogens (Table S1). For each cell type we obtained
data for six to nine pathogens across three to six tissues (Fig. 2A,
B). Application of our method to these datasets resulted in the
detection of 295 functional cell states in total, thus, creating a
Catalogus Immune Muris (Fig. 2C, Table S3). On average, we
identified 2.26 cell states per dataset and cell type, with NK cells
and B cells having the lowest (average:1.06 and 1.07, respec-
tively) and T cells having the highest (average: 4.45) functional
heterogeneity. The low levels of functional heterogeneity in B
cells are expected as their primary function is antibody secretion.
Only in the context of lymphocytic choriomeningitis (LCMV), B
cells exist in two distinct states characterized by two TFs modules

SPRINGER NATURE

composed of Irf2, Rere, Sp140 for the first and Irf5, Tcf25, Tcf4 for
the second state, respectively (Fig. 3A, B, C). Moreover, Irf5 is
known to play a role in B cell differentiation [27] whereas Irf2 is
known to regulate B cell proliferation and antibody production
[28], suggesting differences in the maturation stage of these
cells. On the contrary, T cells exist in multiple cell states upon
infection with various pathogens, such as LCMV, Influenza, and
Salmonella Typhimurium. These are characterized by a marked
difference in processes linked to stress response, inflammation
and oxidative phosphorylation (Fig. S3). Interestingly, these
processes are known to be involved in the functional diversity
of T cells, more specifically by playing a role in their
differentiation, activation, and function [29, 30]. Finally, we
extracted known cell markers to further characterize the
identified functional cell states (Fig. 3D, Table S4, S5). We found
that combination of broad markers (e.g., CD3 for T cells) and
specific markers (e.g., TIr9 for DCs) was important to classify the
functional cell states, regardless of their relative expression
(Table S4, Fig. S4). Finally, we further characterized functional
states by identifying the expression of the extracted known cell
markers for each functional state (Fig. 3D, Table S5). Interestingly,
we observed few diversity in markers signatures for B and NK cell
states whereas specific signature patterns were found for
macrophages and T cells (Fig. 3D).

Cell Death and Disease (2021)12:798
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Exploiting TF modules for modulating the inflammatory
response

Due to the enrichment of TF modules distinguishing different
cell states in immune cell processes, we hypothesized that the
Catalogus Immune Muris can be exploited to modulate the
inflammatory response to pathogens by perturbing the TFs
characteristic of different states. In order to provide support to
this hypothesis, we selected the macrophage response to
Salmonella enterica Serovar Typhimurium [10] due to a char-
acteristic temporal change in macrophage states during the
infection. In particular, while only a single macrophage state can
be detected 2.5h after the infection, heterogeneity rapidly
increases after 4 h (three states) and diminishes again after 8 h
(two states) (Fig. 4A). By focusing on the two macrophage states
detected 8 h after the infection, we found the first state to be
characterized by the module containing Irf7, Hmgal, Zfp275, and
Stat1 (Fig. 4B) that has been previously shown to initiate the
inflammatory response to pathogens in an interferon gamma

Cell Death and Disease (2021)12:798

dependent manner [10]. In contrast, the second state is
characterized by a module composed of Zfp597, Zbtb38, and
Zfp180 (Fig. 4C), but lacks a functional characterization. Enrich-
ment of these TFs and their co-expressed targets showed their
involvement in RNA and DNA processes as well as pathways such
as janus kinase (JNK) signal transduction (Table S2). Indeed,
previous studies highlighted the importance of kinase activity in
response to bacterial infection and the interference of pathogens
with kinase-mediated phosphorylation as a beneficial strategy
for bacterial survival, replication and dissemination [31, 32]. Thus,
we hypothesized that macrophages exhibiting the second cell
state are not responding to Salmonella infection due to kinase-
mediated phosphorylation of proviral signaling pathways. We
sought to validate this hypothesis by knockdown of Zfp597 as
this TF had the strongest co-expression pattern with its targets in
the cell state characterized by the gene module. Therefore, we
assessed the survival of Salmonella in primary murine bone-
marrow-derived macrophages after silencing Zpf597 with shRNA

SPRINGER NATURE
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Immunomodulation of macrophage responses and functional states analysis. A t-SNE displaying functional states identified by

FunPart across three timepoints for macrophages infected by Salmonella typhimurium. B, C Violin plots showing the expression levels for the
two functional states identified at timepoint 8 h of (B) the first module composed of Irf7, Zfp275, Hmgal, Stat1 and (C) the second module
composed of Zp597, Zfp180, Zbtb38. D Summary of the experimental design used to validate Zfp597 and Stat1 as immunomodulators. E-H
Differential survival of S. enterica typhimurium in Zfp597-silenced and Stati-silenced macrophages compared to their respective pLKO
controls. E, F Colony-forming units recovered from silenced and control-transfected BMMs infected with Salmonella at an m.o.i of 10 for (E)
Zfp597 and (F) Stat1. G, H Zfp597 and Stat1 gene expression levels in macrophages lentivirally infected with shRNAs targeting the gene or
controls (plKO). The results are represented as average + SE of three independent mice per silencing. The p values were calculated by paired
Student’s t-test. A result is considered as significant if its p value is less than 0.05.

lentiviral constructs during the differentiation process [23] (Fig.
4D). The results in three independent mice showed that silencing
of Zpf597 resulted in a decreased ability to recover viable
bacteria upon 90 min incubation periods demonstrating that
Zpf597 is responsible for preventing the macrophage response to
Salmonella infection (Fig. 4E). Thus, the subpopulation character-
ized by the module involving Zfp597 is indeed not responding to
the pathogen due to the propathogenic effects of Zfp597 and its
inhibition induced a change in cell state. To further support the
induced macrophage state change, we employed the same
experimental setup to silence Stat? and hypothesized that
bacterial survival is increased. Indeed, recovery of viable bacteria
upon 90 min incubation periods in the presence of IFNy
demonstrated that Stat? is a driver of bacterial clearance
(Fig. 4F), which is consistent with previous reports [33, 34].
Moreover, we analyzed the expression of both silenced TFs on
their respective TF module counterparts in order to determine
regulatory relationship between the two modules (Fig. 4G, H).
We observed that silencing of Zfp597 induced a significant
increase in Statl expression whereas Stat] silencing did not
significantly alter Zfp597 expression (Fig. 4G, H). This suggests a
regulatory relationship between the two modules, with Zfp597
inhibiting the expression of Stat1, which belongs to the opposite
module.

In summary, the TFs characteristic of the detected cell states
could be harnessed to modulate the immune response to
pathogens by inducing a transition of cell states.

SPRINGER NATURE

Integration across pathogens identifies common and unique
cell states in time and space

As previously described, a major bottleneck of previous studies is
the inability to compare the immune response across pathogens
and timepoints. To address this issue, we set out to unify the
previously detected cell states across different datasets by
combining similar states. As a result, we obtained between 5
and 45 unique states for each cell type. We observed that the
majority of functional states is homogeneous although some
states display heterogeneous functionalities shared by other states
(Fig. S5). Similar to the analysis conducted for individual datasets,
NK and B cells have the lowest number of unique states whereas
T cells have the highest. Next, we leveraged this integrated
collection to identify functional states common and unique in the
response to different pathogens. Interestingly, we observed
largely distinct responses to different types of pathogens for
most of the cell types, underscoring the previously reported
predominance of pathogen-specific immune responses (Fig. 5A)
[35]. Finally, we set out to interrogate the changes in cell states at
different timepoints of an infection. We analyzed the Mycobacter-
ium smegmatis infection for the six cell types and observed a
conserved functional state for T cells, NK cells, and monocytes
across the three timepoints, respectively (Fig. 5B). Indeed, no
functional diversity is observed for T cells, which are in one
conserved state across the 7 days. However, B cells and DCs have
conserved and unique states, with the functional diversity of DCs
increasing at day 7. We noticed a shift of functional B cell states
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between the first and second day, mainly characterized by the
differential expression of IgD (Fig. 5C) [36]. Furthermore, we
observed that the functional diversity of DCs at day 7 is
characterized by three functional states (Fig. 5D) and could reflect
differential DCs maturation during the inflammatory response, as
reported in previous reports [37]. In addition, the functional state
CS3 is the most different with the expression of Cd86, Cd4, and
especially Ccl22, suggesting this state to be actively recruiting
other cells, such as invariant NKT or regulatory T cells, in response
to the infection [38-41].

DISCUSSION

In this study, we developed FunPart, a single-cell-based computa-
tional method to dissect the heterogeneous cellular response of
immune cells to pathogens. In particular, this method is
conceptually different from traditional clustering methods [42]
as it accounts for functional aspects by identifying specific set of
genes required to belong to the same immune process. Moreover,
the striking difference between our approach and current
clustering methodologies can be exemplified in the context of
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B cell states. Although traditional clustering methods detected 11
memory B cell states in a recent study, only a few states exhibited
significant differences [43]. This is in accordance with our
observation that B cells do not exhibit a high functional diversity
with respect to immune processes. Furthermore, it was not
unexpected to identify the largest number of functional states for
T cells [44, 45]. The differential diversity between B and T cells was
observed at the marker expression level, initially used to
distinguish cells (sub)types [21], but not fully explanatory of the
functional diversity captured. Thus, the main advantage of our
approach is that it mainly captures functional rather than
transcriptional heterogeneity. Moreover, FunPart provides mod-
ules of genes used to identify the functional cell states and the
immune processes [11] to which they belong. As a result, we were
able to compile a Catalogus Immune Muris, the most comprehen-
sive atlas of immune cell states currently available to the research
community.

In addition, the Catalogus Immune Muris contains a molecular
characterization of each state that can be leveraged to design
novel immunomodulatory strategies. Here, we showed that the
cellular response to Salmonella infection can be modulated by

SPRINGER NATURE
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inhibiting TFs from identified gene modules by FunPart to
enhance or inhibit pathogen clearance. Indeed, as reported in
previous studies, we found Stat! to be a driver of bacterial
clearance [33, 34], whereas we identified Zfp597, a previously
unreported TF, to have propathogenic effects. We showed that
perturbation of TFs predicted to be characteristic of two
macrophage cell states allows the modulation of their response
to the infection by a switch between functional cell states.
Moreover, our analysis suggests a regulatory relationship between
the two modules where Zfp597 inhibits the expression of Statl.
Therefore, targeting the identified TFs provides a rationale
strategy for immunomodulatory therapies [46, 47]. Nevertheless,
the development of novel immunomodulatory therapies typically
relies on the utilization of drugs and compounds to alter cellular
functions [48, 49]. In this regard, a limitation of the presented
strategy is that it solely considers modules composed of
transcription factors that are potentially difficult to target.

Finally, the strategy implemented in FunPart could be of use for
deciphering and characterizing functional heterogeneity within
cell populations in diverse pathological and physiological condi-
tions. Indeed, our method is not biased by the cell type it analyzes
and thus could be applied to any cell type in any tissue or
condition. Although FunPart currently identifies modules enriched
in immune cell processes, it can be easily adapted to other
genesets characteristic of any biological process. For instance, it
could be applied to study the functional impairement of cell (sub)
types in liver-related diseases [50, 51]. Indeed, it is known that the
cellular location around the lobule plays an important role for their
function [52], however the dysregulations imparing the hepato-
cytes functions is not well defined [51, 53]. The identification and
characterization of such functional subtypes could help improving
regenerative medicine strategies [54].

In summary, we presented a computational strategy for
resolving functional cell states in the context of infections and
identifying TFs involved in the maintenance of these states. We
expect our approach to be of great utility for deciphering and
characterizing functionally distinct cell states in physiological and
pathological conditions. Moreover, application of our method to
114 datasets created a Catalogus Immune Muris, which we believe
to be of great utility in the development of novel immunomo-
dulatory therapies.

DATA AVAILABILITY

The accession number of the datasets used are available in the table S1. The
integrated datasets for each cell type are available at: https:/gitlab.com/C.Barlier/
immunofunmap.git. The maps are available via an interface developed with Shiny at:
https://gitlab.com/C.Barlier/immunofunmap.git.
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