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A B S T R A C T

Saliva plays an essential role in the maintenance of oral health. The oral cavity environment changes during
aging mainly due to alterations in the secretion and composition of saliva. In particular, unstimulated basal
salivary flow decreases with age. The functional decline of the salivary glands impairs chewing and swallowing
abilities and often becomes one of the predispositions for aging-related disorders, including aspiration pneu-
monia. The KEAP1-NRF2 system plays a central role in the regulation of the oxidative stress response. NRF2 is a
transcription factor that coordinately regulates cytoprotective genes, and KEAP1 is a negative regulator of NRF2.
Although NRF2 activation has been suggested to be advantageous for the prevention of aging-related diseases, its
role in the course of physiological aging is not well understood. To investigate the impact of NRF2 activation on
salivary gland aging, we compared the submandibular glands of Keap1-knockdown (KD) (Keap1FA/FA) mice in
which NRF2 is activated with those of wild-type mice. Young mice did not show any apparent differences
between the two genotypes, whereas in old mice, clear differences were observed. Aged wild-type sub-
mandibular glands exhibited iron and collagen depositions, immune cell infiltration and increased DNA damage
and apoptosis accompanied by elevated oxidative stress, which were all markedly attenuated in Keap1-KD mice,
suggesting that NRF2 activation has antiaging effects on salivary glands. We propose that appropriate activation
of NRF2 is effective for the maintenance of healthy salivary gland conditions and for the prevention of hypo-
salivation in the elderly.

1. Introduction

Saliva is an important fluid for oral cavity homeostasis and function.
Human saliva not only consists of water but also other essential sub-
stances, including mucus, antibacterial compounds, electrolytes and
various enzymes, thus playing multiple roles in the oral cavity and
systemic health [1,2]. A decline in salivary function (hyposalivation)
generally occurs in elderly people, often resulting in oral diseases, in-
cluding dental caries and periodontal disease, which impair chewing
and swallowing function, leading to impaired nutritional status. Hy-
posalivation causes difficulties not only in eating and tasting but also in
speaking, seriously affecting quality of life [3–5]. Maintenance of sali-
vary gland function is one of the important requirements for healthy
aging.

Salivary gland aging in humans has been described from functional
and structural aspects. A meta-analysis comparing saliva flow rates in
young and old adults showed that whole saliva flow rates were reduced
significantly in the old group [6]. Histological analysis showed an age-
related decrease in the proportion of parenchymal tissue versus stromal

tissue in salivary glands, which is likely to cause a decline in saliva
production in the elderly [6–8]. Effective intervention to delay the
progression of salivary gland aging has not been described thus far.

One of the important factors underlying aging is the accumulation
of oxidative damage [9–11]. Their alleviation either by decreasing
prooxidants or elevating antioxidants or both was able to extend the
lifespan [12]. The KEAP1-NRF2 system plays a central role in the an-
tioxidant response and defense against oxidative damage and is well
conserved in all vertebrates and some invertebrates, such as flies and
worms [13,14]. NRF2 is a potent transcription activator that co-
ordinately regulates many cytoprotective genes, and KEAP1 is a nega-
tive regulator of NRF2 under unstressed conditions and is responsible
for the inducible activation of NRF2 in response to oxidative and
electrophilic stress [15–18]. Although a number of studies have de-
monstrated that NRF2 activation is beneficial for our health
[16,19–23], the impacts of NRF2 activation on physiological aging are
not fully understood. The available literature only describes that NRF2
inactivation accelerates the progression of aging-associated phenotypes
[24–31]. Whether NRF2 activation counteracts the functional decline
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and morphological/histological alterations of tissues and organs during
physiological aging remains to be elucidated.

To clarify the impact of NRF2 activation on the progression of aging
phenotypes of the salivary gland, we exploited Keap1FA/FA mice, a
Keap1 knockdown (KD) mouse model [32–34]. Due to the decreased
expression of Keap1 from the Keap1FA allele, NRF2 is systemically ac-
tivated even in unstressed conditions in Keap1 KD mice. In this study,
we focused on submandibular glands that make major contributions to
resting saliva production. Compared to stimulated saliva, resting saliva,
which makes approximately two-thirds of the total saliva, is relevant to
oral health and dental integrity. The resting saliva flow rate, reflecting
the basal flow present throughout the majority of the day, correlates
well with the severity of hyposalivation. Thus, we considered that an-
tiaging interventions to the submandibular glands would be a key to the
maintenance of oral health in elderly people. We found that NRF2
pathway activation in Keap1 KD mice effectively protected the sub-
mandibular glands from the accumulation of oxidative damage and
smoldering inflammation during physiological aging.

2. Material and methods

2.1. Mice

Male wild-type and Keap1 knockdown (Keap1FA/FA) mice on a
C57BL/6 genetic background were used in this study. Keap1FA is a
floxed allele in which Keap1 expression is decreased [32–34]. Mice
were genotyped by PCR using the following primers: Keap1FA forward
5’ - CAG CAG TTA AGG GCA CCA ATG C- 3′, and Keap1FA reverse 5′-
CCT GCC TCA GCT TCC CAT CA-3’. All mice were bred and maintained
under specific pathogen-free conditions according to the regulations of
The Standards for Human Care and Use of Laboratory Animals of

Tohoku University and The Guidelines for Proper Conduct of Animal
Experiments by The Ministry of Education, Culture, Sports, Science, and
Technology of Japan.

2.2. Submandibular gland preparation

Mice were sacrificed at 5 months (young) and 19 or 24 months (old)
of age. For paraffin sections, salivary glands were fixed in 4% paraf-
ormaldehyde and embedded in paraffin. For frozen sections, salivary
glands were fixed for 2 h at 4 °C in mixed fixative solution containing
1% formaldehyde/PBS, 0.2% glutaraldehyde/PBS, and 0.02% NP40/
PBS supplemented with 2 mM MgCl2, washed with PBS supplemented
with 2 mM MgCl2, soaked overnight at 4 °C in 20% sucrose/PBS sup-
plemented with 2 mM MgCl2, embedded in OCT (Catalog No. 4583.,
Sakura Finetek Japan Inc, Tokyo, Japan) and kept at −80 °C.

2.3. Histological analysis

Paraffin-embedded tissue sections were stained with hematoxylin
and eosin (H&E) for routine examination. For visualization of fibrotic
tissue deposition, Picrosirius Red staining (Catalog No. 24901.,
Polysciences Inc, PA, US) was performed. For quantification of fibrosis,
we defined fibrotic regions by setting a threshold for the Picrosirius Red
staining intensity by using NIH ImageJ software (http://rsb.info.nih.
gov/ij/). More precisely, the color image was converted to grayscale
image, and the image segmentation method was used for measurement
of the fibrotic areas that were above the threshold. The ratio of fibrotic
areas against the whole area of the field was calculated. Four to nine
representative fields were counted per sample. Three to four mice were
analyzed per group. Prussian blue staining was performed to detect iron
deposition. For quantification of iron deposition, the observation field

Fig. 1. Gene expression in young and old WT
submandibular glands.
Expression levels of aging marker genes (A) and
NRF2 target genes (B) in the submandibular
glands of WT mice at 5 months and 19 months of
age. All samples were quantified against the
same standard curve, and each expression level
was normalized to Gapdh expression. The data
represent the mean ± s.d. (n = 4). Unpaired
two-tailed Student's t-test was applied.
*P < 0.05. 5 M WT; 5 month-old wild type
mice, 19 M WT; 19 month-old wild-type mice.
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(365 μm × 275 μm) was divided into 200 μm2 grids, and the grids with
iron deposition were counted by using NIH ImageJ software. Seven to
nineteen representative fields were counted per sample. Three to four
mice were analyzed per group.

2.4. Immunofluorescence

8-OHdG and 4HNE immunofluorescence staining was accomplished
using paraffin sections. As a first step, paraffin was removed using xy-
lene, and afterwards rehydrated in graded alcohol. Antigen retrieval
was performed using autoclave (121 °C for 1 min) in citric acid buffer
and sodium citrate buffer solution. After cooling and washing steps
using PBS, the slides were incubated for 10 min at room temperature in
Protein Block Serum-Free Ready-to-use solution (Catalog No. X0909,
DAKO, CA, US), for blocking non-specific staining. Primary antibody
incubation was performed overnight at 4 °C in blocking solution. A
suitable secondary antibody was reacted and counterstained with DAPI
(Catalog No. 11034–56., 1:1000, Nacalai Tesque, Kyoto, Japan) in
blocking solution for 1 h at room temperature. During the procedure,
specimens were protected from light and mounted in Permafluor
mountant (Catalog No. TA030FM, Thermo Fisher Scientific, MA, US).

γ-H2AX and CD45 immunofluorescence staining was accomplished
using frozen sections. Frozen tissues embedded in OCT were sectioned
(14 μm) and mounted on glass slides. The mounted tissues were air-
dried overnight at room temperature and fixed in 4% paraformaldehyde

for 10 min. Slides were washed with PBS and blocked in Protein Block
Serum-Free Ready-to-use solution. From blocking to mounting steps,
the same procedures with immunofluorescence using paraffin sections
were performed.

Detailed information on the primary and secondary antibodies is
provided in Supplementary Table S1.

2.5. TUNEL assay

The TUNEL assay for detecting apoptosis was also performed using
paraffin sections with an In Situ Apoptosis Detection Kit (Catalog No.
MK500., Takara, Ohtsu, Japan). The staining steps were performed
according to a designated protocol provided by the manufacturer. The
slides used for the TUNEL assay were counterstained with DAPI
(Catalog No. 11034–56., 1:1000, Nacalai Tesque, Kyoto, Japan).

2.6. Image analysis

All histological samples were imaged by a Keyence BZ-9000 fluor-
escence microscope. Positive cells for γ-H2AX and TUNEL were counted
directly in the area of investigation (365 μm × 275 μm) at a magnifi-
cation of 400×. Five representative areas were counted per slide, using
two slides per sample and four samples per group.

2.7. RNA extraction and RT-PCR

Salivary glands were harvested and snap frozen using liquid ni-
trogen and stored at −80 °C until further analysis. For RNA extraction,
salivary glands were homogenized in Isogen (Nippon Gene, Tokyo,
Japan) according to the manufacturer's instructions using Precellys 24
(Bertin Technology, Montigny-le-Bretonneux, France). RNA was reverse
transcribed using random primers by Revertra Ace (Toyobo, Osaka,
Japan). Quantitative PCR was performed using Thunderbird SYBR
(Probe), qPCR mix (Toyobo, Osaka, Japan) and primers using the ABI
7300 system (Applied Biosystems, CA, US). The primers used in the
quantitative PCR are described in Supplementary Table S2.

2.8. Statistical analysis

Quantitative data are presented as the means ± standard devia-
tions (s.d.). Student's t-test and two-way analysis of variance (ANOVA)
followed by Tukey's multiple comparison test were utilized. For all
tests, P values of< 0.05 were considered statistically significant.

3. Results

3.1. The expression levels of NRF2 target genes are similar in young and old
submandibular glands

We first determined the appropriate timing for the analysis of sub-
mandibular glands during aging by checking the expression levels of the
aging marker genes p16INK4a, p19ARF and p21. All three genes were
significantly elevated in the submandibular glands of wild-type (WT)
mice at 19 months compared with those at 5 months of age (Fig. 1A),
suggesting that senescent cells accumulate in the submandibular glands
by 19 months. Based on the increased levels of senescence markers, we
decided to examine the aging phenotypes of the submandibular glands
at 19 months and later.

As an initial characterization of the NRF2 pathway during salivary
gland aging, we examined the expression levels of four typical NRF2
target genes, namely, Nqo1, Gsta4, Gclc and Gclm, in the submandibular
glands of WT mice at 5 and 19 months of age (Fig. 1B). No significant
differences were observed between the two groups, suggesting that
NRF2 activity is maintained in the submandibular glands during aging
for at least 19 months after birth.

Fig. 2. NRF2 target gene expression in Keap1 KD submandibular glands.
Expression levels of Keap1 and NRF2 target genes in the submandibular glands
of WT and Keap1 KD mice at 5 months of age. The samples of WT mice are the
same as those shown in Fig. 1B. All samples were quantified against the same
standard curve, and each expression level was normalized to Gapdh expression.
The data represent the mean ± s.d. (n = 4). Unpaired two-tailed Student's t-
test was applied. *P < 0.05, **P < 0.01.
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3.2. The NRF2 pathway is activated in the submandibular glands of Keap1
KD mice

To clarify the impact of NRF2 activation on salivary gland aging, we
utilized Keap1 KD mice [32]. We verified the decreased Keap1 expres-
sion in the submandibular glands of Keap1 KD mice (Fig. 2). As ex-
pected, NRF2 target genes were mostly upregulated in Keap1 KD mice,
although the increase in Gsta4, Gclc and Gclm did not reach statistical
significance. These results indicate that the NRF2 pathway is activated
in Keap1 KD submandibular glands.

3.3. Keap1 knockdown attenuates the manifestation of aging phenotypes in
submandibular glands

We started analyzing the impacts of NRF2 pathway activation on
salivary gland aging from the expression levels of aging marker genes.
The three aging marker genes, which were elevated in WT sub-
mandibular glands, were all robustly suppressed in Keap1 KD sub-
mandibular glands at 19 months of age (Fig. 3A). Although we could
not detect cells showing senescence-associated beta-galactosidase ac-
tivity, which is one of the markers of senescent cells, due to the high

Fig. 3. Aging phenotypes in the submandibular glands of WT and Keap1 KD mice.
A. Expression levels of aging marker genes. The samples of WT mice are the same as those shown in Fig. 1A. All samples were quantified against the same standard
curve, and each expression level was normalized to Gapdh expression. The data represent the mean ± s.d. (n = 4). B. Representative images of Picrosirius Red
staining showing collagen deposition (red color) in submandibular glands (top) and ratios of fibrotic areas (bottom). The experiments were performed on three to
four samples in each group. A scale bar corresponds to 250 μm. C. Representative images of Prussian blue staining showing iron deposition (yellow arrowheads) in
submandibular glands (top) and the number of grids containing iron deposition per field. The experiments were performed on three or four samples in each group. A
scale bar corresponds to 100 μm. 5 M; 5 month-old mice, 19 M; 19 month-old mice; 24 M; 24 month-old mice. Two-way analysis of variance (ANOVA) followed by
Tukey's multiple comparison test was applied. *P < 0.05, **P < 0.01, ***P < 0.001.
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background activity in salivary glands (data not shown), this result
suggested that the emergence and accumulation of senescent cells were
suppressed by NRF2 activation. Consistently, the age-related progres-
sion of periductal and perilobular fibrosis and iron deposition in WT
submandibular glands were ameliorated in Keap1 KD submandibular
glands (Fig. 3B and C). At 5 months, no apparent differences were
observed between the two genotypes, whereas age-related alterations
by 24 months after birth were clearly less apparent in Keap1 KD mice
than in WT mice. Thus, NRF2 pathway activation induced by Keap1
knockdown effectively suppressed the manifestation of aging pheno-
types in submandibular glands.

3.4. Keap1 knockdown suppresses smoldering inflammation in old
submandibular glands

One of the common features of aging status is low-grade chronic
smoldering inflammation. Based on previous reports describing that
NRF2 has potent anti-inflammatory activity [22,35], we hypothesized
that NRF2 activation exerts its antiaging function by suppressing the
smoldering inflammation of salivary glands. As we expected, age-re-
lated upregulation of the proinflammatory cytokine genes Il1b, Il6 and
Tnf in WT submandibular glands was robustly suppressed by Keap1

knockdown (Fig. 4A). To examine the infiltration of inflammatory cells
into the submandibular glands, we conducted immunofluorescence
analysis using an antibody against CD45, a common marker of myeloid
and lymphoid cells (Fig. 4B). At 5 months, very few CD45-positive cells
were observed in the submandibular glands of both genotypes. At 19
months, massive accumulation of CD45-positive cells was observed in
WT mice, which was markedly suppressed in Keap1 KD mice. These
observations suggest that the accumulation of inflammatory cells might
be one of the reasons for the elevated expression of proinflammatory
cytokine genes in old WT submandibular glands. NRF2 pathway acti-
vation indeed suppressed smoldering inflammation in old sub-
mandibular glands.

3.5. Keap1 knockdown prevents DNA damage and cell death in old
submandibular glands

The accumulation of DNA damage is another feature of aging status
[36–42]. We conducted immunofluorescence analysis of γ-H2AX, a
well-established DNA damage marker, to examine DNA damage accu-
mulation in the submandibular glands during aging (Fig. 5). A small
number of γ-H2AX-positive cells were observed in WT mice at 5
months, and their number was dramatically increased at 19 months.

Fig. 4. Age-dependent chronic in-
flammation in the submandibular
glands of WT and Keap1 KD mice.
A. Expression levels of proin-
flammatory cytokine genes. All samples
were quantified against the same stan-
dard curve, and each expression level
was normalized to Gapdh expression.
The data represent the mean ± s.d.
(n = 4). B. Immunofluorescence with
CD45 antibody (left) and CD45 mRNA
quantification (right). The experiments
were performed on four samples in
each group. A scale bar corresponds to
100 μm. 5 M; 5 month-old mice, 19 M;
19 month-old mice. Two-way analysis
of variance (ANOVA) followed by
Tukey's multiple comparison test was
applied. *P < 0.05, **P < 0.01,
***P < 0.001.
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Keap1 KD submandibular glands exhibited very few γ-H2AX-positive
cells at both young and old stages. These results suggested that NRF2
activation inhibited the age-related accumulation of DNA damage in
salivary glands.

Because DNA damage, especially double strand breaks indicated by
γ-H2AX, often results in apoptotic cell death, we conducted a TUNEL
assay to detect apoptosis. The increase in TUNEL-positive cells in WT
submandibular glands during aging was suppressed in Keap1 KD sub-
mandibular glands (Fig. 6). NRF2 activation successfully reduced the
age-related accumulation of DNA damage and possibly consequent
apoptosis in submandibular glands.

3.6. Keap1 knockdown reduces oxidative stress in old submandibular
glands

Since NRF2 is known to exert a potent antioxidant function, NRF2 was
expected to reduce DNA damage and apoptosis via regulation of oxidative
stress. We examined the oxidative stress markers 4-hydroxynonenal (4-
HNE) and 8-OHdG by immunofluorescence. At 5 months, 4-HNE staining
was similarly weak in WT and Keap1 KD submandibular glands (Fig. 7A).
At 24 months, WT submandibular glands showed markedly intense
staining, whereas the staining intensity was much weaker in Keap1 KD
submandibular glands. For the staining of 8-OHdG, WT submandibular

Fig. 5. Detection of γ-H2AX in the submandibular glands of WT and Keap1 KD mice.
A. Immunofluorescence with γ-H2AX antibody. The experiments were performed on four samples in each group. A scale bar corresponds to 100 μm. B. Quantification
of γ-H2AX-positive cells. The results are presented as the means ± s.d. Two-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test was
applied. ****P < 0.0001. 5 M; 5 month-old mice, 19 M; 19 month-old mice.
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glands exhibited a dramatic increase in intensity during aging, whereas the
staining intensity in Keap1 KD submandibular glands was low and did not
show any obvious age-related changes (Fig. 7B). Thus, NRF2 pathway
activation by Keap1 knockdown attenuated the age-related increase in
oxidative stress in submandibular glands.

4. Discussion

This study unequivocally demonstrated that KEAP1 inhibition and
resultant NRF2 pathway activation attenuated the progression of

submandibular gland aging. Multiple parameters evaluating the aging
of submandibular glands were examined, including fibrosis, iron de-
position, cell senescence, inflammation and oxidative stress, and age-
related changes in these factors were all attenuated by Keap1 knock-
down and consequent NRF2 pathway activation. This is the first report
revealing the antiaging effects of the NRF2 pathway in physiological
aging. We propose that NRF2-activating intervention maintains oral
health by invigorating salivary glands.

Several studies described that NRF2 activity is decreased with age
[43,44]. In contrast, we did not observe any significant differences in

Fig. 6. Detection of apoptotic cells in the submandibular glands of WT and Keap1 KD mice.
A. TUNEL assay for the detection of apoptotic cells. The experiments were performed on four samples in each group. Yellow arrowheads indicate TUNEL-positive
cells. A scale bar corresponds to 100 μm. B. Quantification of TUNEL-positive cells. The results are presented as the means ± s.d. Two-way analysis of variance
(ANOVA) followed by Tukey's multiple comparison test was applied. ****P < 0.0001. 5 M; 5 month-old mice, 24 M; 24 month-old mice.
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Fig. 7. Evaluation of oxidative stress in the submandibular glands of WT and Keap1 KD mice.
Immunofluorescence with 4HNE (A) and 8OHdG (B) antibodies. The experiments were performed on four samples in each group. Scale bars correspond to 100 μm. 4-
HNE; 4-hydroxynonenal, 5 M; 5 month-old mice, 24 M; 24 month-old mice.
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the expression levels of NRF2 target genes in young and aged sub-
mandibular glands. This result suggests that progression of age-related
phenotypes detected in this study is not primarily caused by the decline
of protective function by NRF2 pathway. Increased production rather
than decreased quenching capacity of reactive oxygen species (ROS) is
likely to drive the aging phenotypes of submandibular glands.

Higher NRF2 activity was reported to correlate with longer lifespan
in various organisms, including C. elegans [45], Drosophila, [13] naked-
mole rat [46], and snell dwarf mice [15]. However, hyperactivation of
NRF2 was rather unfavorable and shown to accelerate the aging of
Drosophila [47]. In line with this report, we previously observed that
Keap1 disruption in mouse hematopoietic stem cells accelerated their
exhaustion [48]. These results suggest that the extent of NRF2 activa-
tion needs to be appropriately adjusted to obtain maximum benefits,
such as better maintenance of tissue integrity and organismal fitness.
Because whole-body deletion of Keap1 leads to lethality at weaning,
tissue-specific Keap1 disruption is a way to examine an impact of NRF2
activation on the age-related changes in the tissue homeostasis. Com-
pared with the tissue-specific Keap1 knockout mice, Keap1 KD mice,
which we used in this study, exhibit mild activation of NRF2 in the
tissue of interest. This may be a reason why we observed beneficial
effects of NRF2 pathway activation on the submandibular gland during
aging.

Chronic smoldering inflammation is one of the important factors
associated with aging phenotypes and aging-related diseases [49–51].
We indeed observed that infiltration of CD45-positive cells and the
expression of proinflammatory cytokine genes were increased in aged
salivary glands. As expected from the well-documented potent anti-in-
flammatory action of NRF2 [22,35], the inflammation parameters were
significantly reduced in the aged submandibular glands by systemic
KEAP1 reduction and consequent NRF2 activation. However, we have
not determined in which cell lineages NRF2 substantially contributes to
the anti-inflammatory and antiaging effects in the submandibular
glands of Keap1 KD mice. NRF2 in acinar and ductal cells of sub-
mandibular glands may have delayed the development of aging phe-
notypes. Alternatively, vascular endothelial cells may have maintained
the healthy condition of the parenchymal cells, considering a previous
report that describes systemic antiaging effects of endothelial cell-spe-
cific inhibition of inflammatory signaling mediated by NFkB [52].

It should be noted that the age-related increase in iron deposition
was attenuated in Keap1 KD submandibular glands. The iron homeo-
static system is altered during aging, and disturbance in iron regulation
is closely related to aging phenotypes in various organs, such as the
brain [53–55], liver [56], kidney [57], and muscle [58,59]. Iron is
considered a prooxidant and catalyst for the formation of ROS in bio-
logical systems [60,61], and iron-associated oxidative damage often
underlies aging-related diseases [58]. NRF2 directly activates genes
encoding ferritin heavy chain and light chain (Fth and Ftl) [62], which
are subunits of ferritin, an iron-binding protein complex responsible for
iron storage and, at the same time, for protection of cellular compo-
nents from ROS generated by the Fenton reaction triggered by unbound
iron ion. NRF2 also directly activates Slc40a1 [63], whose product
ferroportin is an iron transporter that plays a role in cellular iron re-
lease. With these activities, we suppose that NRF2 activation decreases
iron-derived ROS generation in addition to increasing antioxidant ca-
pacity for quenching ROS, resulting in the suppression of age-related
increases in ROS in old submandibular glands [64,65].

In this study, we could not detect significant alterations in salivary
gland function due to aging in either WT or Keap1 KD mice (un-
published observation). This may be because precise quantification of
basal saliva secretion that is mainly performed by submandibular
glands was rather difficult due to the small volume. Other salivary
glands, such as the parotid and sublingual glands, may compensate for
the reduced saliva secretion from the submandibular glands, as histo-
logical alterations of parotid and sublingual glands were not as obvious
as those of submandibular glands at 19–24 months of age (unpublished

observation). Functional alterations could be detected in mice older
than those we examined in this study.

Considering the multiple roles of saliva, such as helping with di-
gestion, swallowing and taste perception and its antibacterial/anti-
fungal activities, maintaining the structural and functional integrity of
the salivary glands is essential for not only oral health but also systemic
health. Phytochemicals, such as sulforaphane from broccoli sprouts and
phenethyl isothiocyanate from watercress [66], are expected to be ef-
fective for attenuating the aging phenotypes of salivary glands by in-
ducing moderate levels of NRF2 activation. Intriguingly, anethole tri-
thione, which has been shown to increase salivary flow and clinically
used for the treatment of hyposalivazation [67,68], has an NRF2 in-
ducing activity [69]. The stimulatory effect of anethole trithione on the
salivary gland may depend on NRF2.

5. Conclusions

KEAP1 inhibition and resultant NRF2 pathway activation atte-
nuated the progression of submandibular gland aging in mice. NRF2-
activating intervention is expected to maintain oral health by in-
vigorating salivary glands. For this purpose, phytochemicals, such as
sulforaphane contained in broccoli sprout, would be a preferable re-
agent inducing moderate levels of NRF2 activation.
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