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Abstract: In the development of inflammatory bowel disease (IBD), the gut microbiota has been
established as a key factor. Recently, metabolomics has become important for understanding the
functional relevance of gut microbial changes in disease. Animal models for IBD enable the study of
factors involved in disease development. However, results from animal studies may not represent
the human situation. The aim of this study was to investigate whether results from metabolomics
studies on animal models for IBD were similar to those from studies on IBD patients. Medline and
Embase were searched for relevant studies up to May 2017. The Covidence systematic review
software was used for study screening, and quality assessment was conducted for all included studies.
Data howed a convergence of ~17% for metabolites differentiated between IBD and controls in human
and animal studies with amino acids being the most differentiated metabolite subclass. The acute
dextran sodium sulfate model appeared as a good model for analysis of systemic metabolites in IBD,
but analytical platform, age, and biological sample type did not show clear correlations with any
significant metabolites. In conclusion, this systematic review highlights the variation in metabolomics
results, and emphasizes the importance of expanding the applied detection methods to ensure greater
coverage and convergence between the various different patient phenotypes and animal models of
inflammatory bowel disease.
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1. Introduction

Inflammatory bowel diseases (IBDs) are chronic, relapsing disorders of the gut, comprised mainly
of Crohn’s disease (CD) and ulcerative colitis (UC) [1]. The inflammation in CD is transmural
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and patchy and can affect the entire gastrointestinal tract, while UC is confined to the colon and
primarily involves the mucosa in a continuous manner [2]. The underlying disease mechanisms in
IBD are still being uncovered, but the etiology is known to be multifactorial and governed by host
genetics and environmental factors including the gut microbiota [3]. Discovering details about the
development of IBD has been aided in recent years by new and improved methods to detect and
quantify factors believed or known to be involved in these diseases. For instance, novel sequencing
methods have made it possible to study genome variations and the microbiota in greater detail through
metagenomics, while proteomics now has greater molecular coverage and improved quantification
accuracy. As IBD has a multifactorial etiology and affects the system on multiple levels simultaneously,
several complementary analyses are needed to reveal the underlying pathological mechanisms. One of
the newest “-omics” applied to this field is metabolomics. In this respect, metabolomics can be
considered as a functional analysis investigating metabolites resulting from metabolic processes and
thereby add to the “static” genetic analyses. Indeed, the detection and quantification of metabolites
have revealed metabolites that allow discrimination between IBD patients and healthy controls [4,5].
It is also a supplement to microbiota sequencing, when trying to understand the functional relevance
of disease-related changes in the microbiota. For instance, bacteria that produce short-chain fatty acids
(SCFAs) are reduced in feces from IBD patients [6,7], while Card9-/- mice, which are more susceptible to
colitis, have an altered microbiota unable to metabolize tryptophan [8]. The effect of these microbiota
changes can be investigated using metabolomics, thus potentially making metabolomics a key factor
in discovering diagnostic biomarkers and understanding the role of microbiota and dysbiosis in the
development of IBD.

Animal models are an invaluable tool for discovery and have provided valuable insights into
various disease mechanisms [9]. However, with the emergence of high-throughput omics technologies,
further details on mechanistic insights are within reach. Metagenomics has been applied to animal
models, including animal models for IBD [10,11]. This method will help elucidate the important
interactions between the gut microbiota and the development of multiple diseases, which is needed
for a better understanding of disease pathogenesis and the development of new treatment strategies.
Metabolomics is still a developing method, and therefore little is known about the translational value
of these data. In this review, we have compared metabolomic findings in animal models of IBD and
IBD patients, in order to evaluate the translational potential of metabolomics data found in animal
models of IBD. The aims of the review were to (1) identify metabolites differentiated between IBD
cases versus healthy controls in both animal models and humans, (2) investigate correlations between
different key experimental elements and specific metabolites, and (3) determine if the metabolome
of a specific animal model is representative of the metabolome of IBD or an IBD subtype in humans.
Data showed a convergence of ~17% for metabolites differentiated between IBD and controls in human
and animal studies, and the dextran sodium sulfate model appeared as a good model for analysis of
systemic metabolites in IBD. Other key experimental elements did not show clear correlations with
any significant metabolites.

2. Results

2.1. Study Characteristics

Fifty-eight studies met our search criteria and were included in this review (Figure 1), of which 32
were human studies, 25 were animal model studies, and one study presented data from both humans
and an animal model. The human studies were categorized according to disease (CD, UC, IBD) and age,
while the animal model studies were categorized according to model type and age of the animals (Table 1).
If animals in a study were grouped spanning more than one age group, the study was characterized
according to the older age group. Descriptive characteristics for all studies were extracted, with different
tables for the human and animal studies, respectively (Supplementary Tables S1 and S2).
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Table 1. Age categories for mouse studies (a) and human studies (b) in the systematic review on
metabolomics in inflammatory bowel disease (IBD) patients and IBD animal models.

Mouse Studies Human Studies

Phase of Life Age in Weeks Phase of Life Age (Years)

Infant 0–3 Infant 0–1
Juvenile >3–8 Very early onset and young >1 and <18

Adult >8–24 Adult 18–60
Old >24 Old 60+

(Modified from [12]).

2.2. Quality Assessment

Two sets of quality criteria were used to assess the quality of the human and animal studies,
respectively (Supplementary Tables S3 and S4). Each study was assigned as being of “good”, “medium”,
or “poor” quality, based on the amount of quality criteria fulfilled, as presented in Table 2. The majority
of studies (75%) were of medium quality, while only 9% of all studies were considered good.
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Table 2. Quality assessment of studies included in the systematic review on metabolomics in
inflammatory bowel disease (IBD) patients and IBD animal models.

Level of Quality % of Criteria Fulfilled Animal Studies Human Studies All Studies

Good ≥70% 12% 6% 9%
Medium 40–70% 69% 79% 75%

Poor <40% 19% 15% 17%

2.3. Metabolites Differentiated in Inflammatory Bowel Disease (IBD) Cases Versus Healthy Controls in Both
Humans and Animal Models

A total of 200 different metabolites were reported as being increased in IBD across all included
human studies, while 218 were decreased (Table 3). The numbers were higher for the animal studies
with a total of 280 different metabolites reported as being increased in IBD, while 253 were decreased.
Some metabolites were reported as both increased and decreased in each study type, but the majority
was exclusively reported as increased or decreased. Results for human and animal model studies,
respectively, are presented in separate tables for metabolites that are increased and decreased in each
type of study (Supplementary Tables S5–S8).

Table 3. Number of differentiated metabolites detected across study types included in the systematic
review on metabolomics in inflammatory bowel disease (IBD) patients and IBD animal models.

Number of Different
Metabolites Detected
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Animal Studies Human Studies Both

Increased 280 200 48 48/280 = 17%
Decreased 253 218 41 41/253 = 16%

Exclusively increased 215 135 27
Exclusively decreased 190 153 20

To assess the similarities in metabolomics findings between study types, metabolites increased or
decreased in IBD in both human and animal studies were identified and are presented in Table 4; Table 5.
Forty-eight metabolites were found to be increased in both types of studies, while 41 metabolites
were decreased. This corresponds to 17% of metabolites found increased and 16% of metabolites
found decreased in IBD in animal studies also being reported as increased and decreased, respectively,
in human IBD studies. Of this subgroup of metabolites, 21 were reported as both increased and
decreased, respectively, in IBD including several amino acids, and this overlap can largely be explained
by the variation in study details. This leaves 27 metabolites exclusively increased, and 20 metabolites
exclusively decreased in IBD in both human and animal studies (in bold in Tables 4 and 5).
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Table 4. Metabolites significantly increased in inflammatory bowel disease (IBD) vs healthy controls in both humans and animals in the systematic review.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

3-Hydroxybutyric UC, IBD AC Serum A, O 1H NMR [14,15] Mouse Serum >3–8 1H NMR DSS (A) [16]
acid Mouse Serum >8–24 GC-MS DSS (A) [17]

4-Hydroxyphenyl- CD AC Urine A, O 1H NMR [18] Mouse Colon >8–24 GC-MS DSS (A) [17]
acetic acid CD, UC All Urine Y 1H NMR [19]

Acetoacetatic acid
IBD AC Serum A, O 1H NMR [15] Mouse Serum >3–8 1H NMR DSS (A) [16]
IBD IA Urine A, O 1H NMR [15]

Acetylaspartic
acid UC All, AC,

IA Serum Y, A, O GC-MS [20] Mouse
Colon

(distal),
cecum

0–3 UPLC/Tof-MS T-syn
deficiency [21]

Acetylcarnitine CD, UC AC Urine A, O 1H NMR [18] Mouse Colon >8–24 LC-qTOF-MS DSS (C) [22]

Acylcarnitine CD All Urine Y 1H NMR [19] Mouse Ileum
(distal) >8–24 LC-MS TNF∆ARE/WT [23]

Alanine
CD All Serum Y, A, O GC-MS [24] Mouse Colon >8–24 GC-MS DSS (A) [17]
CD Unknown Feces Y, A, O 1H NMR [25] Mouse Plasma >3–24 1H NMR IL10-/- [26]

CD, UC AC Feces A, O 1H NMR [4]

Arachidonic acid

CD (ICD) IA Feces Y, A, O FT-ICR-MS [27] Mouse Ileum
(distal) >8–24 LC-MS TNF∆ARE/WT [23]

Mouse
Colon

(distal),
cecum

0–3 UPLC/Tof-MS T-syn
deficiency [21]

Arginine
CD AC Plasma,

serum A, O 1H NMR [18] Mouse Liver >8–24 LC-qTOF-MS DSS (C) [22]

UC AC Urine A, O 1H NMR [18] Mouse Plasma >3–24 1H NMR IL10-/- [26]

Butanal CD All Breath A, O SIFT-MS [28] Mouse Feces >8–24 GC-MS Winnie [29]

Carnitine CD, UC AC Urine A, O 1H NMR [18] Mouse Colon >8–24 LC-qTOF-MS DSS (C) [22]

Cholic acid CD IA Feces Y,
Unknown UPLC/ToFMS [30] Rat Plasma ? UPLC-ESI-QTOF-MS TNBS [31]

Creatine
CD AC Plasma A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC AC Plasma,
serum A, O 1H NMR [18] Mouse Plasma >3–8 1H NMR IL10-/- [26]
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Table 4. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

Dimethylamine IBD IA Serum A, O 1H NMR [15] Rat Urine ? UPLC-MS/MS TNBS [32]

Ethylmalonic
acid UC All, AC,

IA Serum Y, A, O GC-MS [20] Mouse Colon >8–24 GC-MS DSS (A) [17]

Fructose UC IA Serum Y, A, O GC-MS [20] Mouse Feces >8–24 GC-MS Winnie [29]

Fumaric acid
CD, UC All Serum Y, A, O GC-MS [24] Mouse Urine >8–24 1H NMR DSS (A) [13]

Mouse Plasma >3–8 1H NMR IL10-/- [26]

Glucose

UC AC Serum A, O 1H NMR [14,18] Mouse Urine >8–24 GC-MS IL10-/- [33]
UC All Feces A, O 1H NMR [34]

UC All, AC,
IA Serum Y, A, O GC-MS [20]

UC IA Colon Unknown Proton MRS [35]
CD, UC AC Colon Unknown Proton MRS [35]

IBD AC Colon A 1H NMR [36]

Glutamic acid
UC Unknown Feces Y, A, O 1H NMR [25] Mouse Colon >8–24 GC-MS DSS (A) [17]

UC All, AC,
IA Serum Y, A, O GC-MS [20]

Glycerol UC AC Serum Y, A, O GC-MS [20] Mouse Plasma >8–24 1H NMR DSS (A) [13]
CD AC Plasma A, O 1H NMR [18] Mouse Feces >8–24 GC-MS Winnie [29]

Glycine

CD AC Serum A, O 1H NMR [18] Mouse Colon >8–24 GC-MS DSS (A) [37]
CD AC, IA Feces A, O 1H NMR [4] Mouse Feces >8–24 1H NMR Adoptive [38]

CD, UC All Urine Y 1H NMR [19] transfer
CD, UC All Serum Y, A, O GC-MS [24]

IBD AC Serum A, O 1H NMR [15]

Hydroxybenzoic
acid UC All, AC Serum Y, A, O GC-MS [20] Mouse Colon,

serum >8–24 GC-MS DSS (A) [17]

Inositol CD AC Feces A GC-MS [18] Mouse Feces >8–24 GC-MS Winnie [29]
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Table 4. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

Isoleucine

CD AC Serum A 1H NMR [39] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]

CD Unknown Feces Y, A, O 1H NMR [25] Mouse Plasma >8–24 1H NMR IL10-/- [26]
CD, UC AC Feces A, O 1H NMR [4] Mouse Feces >8–24 1H NMR Adoptive [38]

CD, UC AC Serum,
plasma A, O 1H NMR [18] transfer

IBD AC Serum A, O 1H NMR [15]

Kynurenine UC All, AC,
IA Serum Y, A, O GC-MS [20] Mouse Plasma >8–24 LC-MS IL10-/- [40]

Mouse Plasma >8–24 UPLC-MS DSS (A) [41]

Lactic acid

CD AC Plasma,
urine A, O 1H NMR [18] Mouse Colon >8–24 NMR (1H, 1C, 1P) DSS (A) [42]

UC AC Urine A, O 1H NMR [18] Mouse Plasma >3–24 1H NMR IL10-/- [26]
UC AC Feces A, O 1H NMR [4]
UC All Urine Y 1H NMR [19]

UC All, AC,
IA Serum Y, A, O GC-MS [20]

IBD AC Serum A, O 1H NMR [15]

Leucine

CD Unknown Feces Y, A, O 1H NMR [25] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]

CD AC, IA Feces A, O 1H NMR [4]
UC AC Feces A, O 1H NMR [4]
IBD AC Serum A, O 1H NMR [15]

Linoleic acid CD (ICD) IA Feces Y, A, O FT-ICR-MS [27] Mouse
Colon

(distal),
cecum

>3–8 UPLC/ToFMS T-syn
deficiency [21]
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Table 4. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

Lysine

CD AC Plasma A, O 1H NMR [18] Mouse
Colon,

plasma,
liver

>8–24 1H NMR DSS (A) [13]

UC AC Serum,
plasma A, O 1H NMR [18] Mouse Plasma >3–8 1H NMR IL10-/- [26]

CD, UC AC Feces A, O 1H NMR [4] Mouse Feces >8–24 1H NMR Adoptive [38]
CD, UC Unknown Feces Y, A, O 1H NMR [25] transfer

Maleic acid UC All, AC,
IA Serum Y, A, O GC-MS [20] Mouse Colon >8–24 GC-MS DSS (A) [17]

Malic acid CD All Serum Y, A, O GC-MS [24] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17,37]

Mannose CD, UC AC Serum,
plasma A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]

Methionine
CD All Serum Y, A, O GC-MS [24] Mouse Colon >8–24 GC-MS DSS (A) [17]
UC AC Serum A, O 1H NMR [18] Mouse Plasma >3–8 1H NMR IL10-/- [26]

Mouse Feces >8–24 GC-MS Winnie [29]

Oleic acid CD (ICD) IA Feces Y, A, O FT-ICR-MS [27] Mouse Feces >8–24 GC-MS Winnie [29]

Phenylacetylglycine

UC All Urine A 1H NMR [43] Mouse Urine >8–24 NMR IL10-/- [44]

Mouse Serum >24 UPLC-ESI-TOF-MS H.
hepaticus [45]

Rat Urine ? UPLC-MS/MS,
UPLC-ESI-QTOF-MS TNBS [31,32]

Phenylalanine

CD AC Feces A, O 1H NMR [4] Mouse Plasma >8–24 1H NMR DSS (A) [13]

UC AC Serum A, O 1H NMR [14] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]

IBD AC Serum A, O 1H NMR [15] Mouse Plasma >3–24 1H NMR IL10-/- [26]
Mouse Feces >8–24 GC-MS Winnie [29]

Mouse Feces >8–24 1H NMR
Adoptive
transfer [38]

Proline
CD AC Serum A, O 1H NMR [18] Mouse Colon >8–24 GC-MS DSS (A) [17]
CD All Serum Y, A, O GC-MS [24]
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Table 4. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

Prostaglandin E2 CD Unknown Urine A LC-MS [46] Rat Colon >8–24 LC-MS DSS (C) [47]

Pyruvic acid UC AC Serum,
urine A, O 1H NMR [18] Mouse Plasma >3–24 1H NMR IL10-/- [26]

Mouse Feces >8–24 GC-MS Winnie [29]

Succinic acid

CD All Serum Y, A, O GC-MS [24] Mouse Urine >3–24 GC-MS IL10-/- [40]
Mouse Colon >8–24 GC-MS DSS (A) [17]
Mouse Plasma >3–8 1H NMR IL10-/- [26]

Rat Urine ? UPLC-MS/MS TNBS [32]

Taurocholic acid CD (ICD) IA Feces Y, A, O FT-ICR-MS [27] Mouse
Colon

(distal),
cecum

>3–8 UPLC/ToFMS T-syn
deficiency [21]

Threonine CD, UC AC Urine A, O 1H NMR [18] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]

Tryptophan
UC AC Urine A, O 1H NMR [18] Mouse Feces >8–24 1H NMR

Adoptive
transfer [38]

UC All Urine Y 1H NMR [19] Mouse Serum >3–8 1H NMR DSS (A) [16]
Mouse Liver >8–24 LC-qTOF-MS DSS (C) [22]

Tyrosine
CD AC Feces A, O 1H NMR [4] Mouse Colon >8–24 GC-MS DSS (A) [17]

CD (ICD) IA Feces Y, A, O FT-ICR-MS [27] Mouse Plasma >3–8 1H NMR IL10-/- [26]

Mouse Feces >8–24 1H NMR
Adoptive
transfer [38]

Uracil
UC All, AC,

IA Serum Y, A, O GC-MS [20] Mouse Urine >3–24 GC-MS, NMR IL10-/- [33,40,44]

Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]
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Table 4. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age

(Weeks) Platform Model References

Urea UC All, AC,
IA Serum Y, A, O GC-MS [20] Mouse Serum >8–24 GC-MS DSS (A) [37]

Valine

CD Unknown Feces Y, A, O 1H NMR [25] Mouse Plasma >8–24 1H NMR DSS (A) [13]

CD AC, IA Feces A, O 1H NMR [4] Mouse Colon,
serum >8–24 GC-MS DSS (A) [17]

UC AC Feces A, O 1H NMR [4]

Xylose CD AC Urine A, O 1H NMR [18] Mouse Feces >8–24 GC-MS Winnie [29]
UC AC Serum Y, A, O GC-MS [20]

* Metabolites in bold are exclusively increased in both IBD animal models and IBD patients compared to healthy controls. Disease: CD: Crohn’s disease; IBD: inflammatory bowel disease;
ICD: ileal Crohn’s disease; UC: ulcerative colitis. Activity: AC: active; IA: inactive; All: active + inactive. Age groups: Y: very early onset and young; A: adult; O: old. Platform: FT-ICR-MS:
Fourier-transform ion cyclotron resonance mass spectrometry; GC-MS: gas chromatography-mass spectrometry; LC-MS: liquid chromatography-mass spectrometry; LC-qTOF-MS:
liquid chromatography quadropole time-of-flight mass spectrometry; MRS: magnetic resonance spectroscopy; NMR: nuclear magnetic resonance; SIFT-MS: selected-ion flow-tube mass
spectrometry; UPLC-ESI-(q)TOF-MS: ultra performance liquid chromatography electrospray ionization (quadropole) time-of-flight mass spectrometry; UPLC-MS: ultra performance liquid
chromatography mass spectrometry; UPLC-MS/MS: ultra performance liquid chromatography tandem mass spectrometry; UPLC/ToFMS: ultra performance liquid chromatography
time-of-flight mass spectrometry. Model: (A): acute; ARE: AU-rich elements; (C): chronic; DSS: dextran sodium sulfate; H. hepaticus: Helicobacter hepaticus; IL: interleukin; T-syn:
T-synthase; TNBS: 2,4,6-trinitrobenzenesulfonic acid; TNF: tumor necrosis factor; WT: wild-type.

Table 5. Metabolites significantly decreased in inflammatory bowel disease (IBD) vs healthy controls in both humans and animals in the systematic review.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

4-Cresol
sulfate CD All Urine Y, A, O 1H NMR [48] Mouse Urine >8–24 1H NMR DSS (A) [13]

Acetic acid

CD AC Serum A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]
CD All Urine A 1H NMR [43] Mouse Plasma >8–24 1H NMR DSS (A) [13]
CD Unknown Feces Y, A, O 1H NMR [25]
UC AC Serum A, O 1H NMR [18]
UC AC Feces A, O GC-MS [49]
UC All Feces A GC-MS [6]
IBD All Urine A, O NMR [50]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Acetylcarnitine UC AC Serum A, O 1H NMR [18] Mouse Spleen >8–24 LC-qTOF-MS DSS (C) [22]

Acetylglutamic
acid CD IA Feces Unknown UPLC-tof-MS [30] Mouse Serum >24 UPLC-ESI-TOF-MS H.

hepaticus [45]

Aconitic acid
CD, UC All Urine Y 1H NMR [19] Mouse Urine >3–24 GC-MS IL10-/- [33,40]
UC AC Serum Y, A, O GC-MS [20]
IBD All Urine A, O NMR [50]

Acylcarnitine UC All Urine Y 1H NMR [19] Mouse Ileum
(distal) >3–24 LC-MS TNF∆ARE/WT [23]

Alanine

CD All Urine A 1H NMR [43] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC All Rectum Y, A, O GC-MS [24] Mouse Urine >8–24 1H NMR
Adoptive
transfer [38]

CD, UC AC Colonic
mucosa Unknown Proton MRS [35]

IBD IA Urine A, O 1H NMR [15]

IBD AC Colonic
mucosa A 1H NMR [36]

Aspartic acid
CD IA Feces A, O 1H NMR [4] Mouse Feces >3–8 1H NMR DSS (A) [51]

UC AC, IA,
All Serum Y, A, O GC-MS [20]

Betaine
CD, UC AC Plasma,

urine A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]

Mouse Colon >8–24 NMR (1H, 1C, 1P) DSS (A) [42]

Butanoic acid

CD, UC AC Feces A, O GC-MS [49] Mouse Urine >8–24 1H NMR DSS (A) [13]

CD AC Feces A GC-MS [52] Rat Urine,
Feces ? UPLC-MS/MS TNBS [32]

CD AC Feces A, O 1H NMR [4]
CD Unknown Feces Y, A, O 1H NMR [25]

Carnitine CD, UC All Urine Y 1H NMR [19] Mouse Serum >3–8 1H NMR DSS (A) [16]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Citric acid

CD, UC AC Serum A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]
CD, UC All Urine A 1H NMR [43] Mouse Plasma >8–24 UPLC-MS DSS (A) [41]
UC AC Urine A, O 1H NMR [18] Mouse Serum >8–24 GC-MS DSS (A) [17]
UC All Rectum Y, A, O GC-MS [24] Mouse Urine >8–24 NMR IL10-/- [44]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Serum >8 UPLC-ESI-TOF-MS H.

hepaticus [45]

IBD AC, IA Urine A, O 1H NMR [15]
IBD All Urine A, O NMR [50]

Creatine
IBD AC Serum A, O 1H NMR [15] Mouse Plasma >8–24 1H NMR IL10-/- [26]
IBD All Urine A, O NMR [50]

Dimethylglycine CD All Urine A 1H NMR [43] Mouse Plasma 0–3, >8–24 1H NMR IL10-/- [26]

Fumaric acid

UC All Rectum Y, A, O GC-MS [24] Mouse Serum >8–24 GC-MS DSS (A) [17]
UC AC, IA, all Serum Y, A, O GC-MS [20] Mouse Liver >8–24 1H NMR DSS (A) [13]

Mouse Serum >3–8 1H NMR DSS (A) [16]
Mouse Urine >8–24 NMR IL10-/- [44]
Mouse Plasma 0–3 1H NMR IL10-/- [26]

Glucose

CD AC Plasma A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]

Mouse Plasma,
liver >8–24 1H NMR DSS (A) [13]

Mouse Serum >8–24 GC-MS DSS (A) [37]
Mouse Urine >3–24 GC-MS IL10-/- [33,40]
Mouse Plasma >8–24 1H NMR IL10-/- [26]

Glutamic acid

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Feces >3–8 1H NMR DSS (A) [51]

CD IA Feces A, O 1H NMR [4]
UC IA, All Serum Y, A, O GC-MS [20]
UC All Rectum Y, A, O GC-MS [24]

IBD AC Colonic
mucosa A 1H NMR [36]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Glutamine

CD AC Plasma,
urine A, O 1H NMR [18] Mouse Feces >3–8 1H NMR DSS (A) [51]

CD All Serum Y, A, O GC-MS [24] Mouse Serum >3–8 1H NMR DSS (A) [16]

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Colon,

serum >8–24 GC-MS DSS (A) [17]

UC All Serum,
rectum Y, A, O GC-MS [24] Mouse Liver >8–24 1H NMR DSS (A) [13]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Plasma >8–24 1H NMR IL10-/- [26]

UC AC Serum A, O GC-MS [17] Mouse Feces >8–24 1H NMR Adoptive [38]

IBD AC Colonic
mucosa A 1H NMR [36] transfer

Glycero-
phosphocholine

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Colon >8–24 1H NMR DSS (A) [13]

UC IA Colonic
mucosa Unknown Proton MRS [35]

IBD AC Colonic
mucosa A 1H NMR [36]

Glycine
UC All Rectum Y, A, O GC-MS [24] Mouse Serum >3–8 1H NMR DSS (A) [16]
IBD IA Urine A 1H NMR [15] Mouse Serum >8–24 GC-MS DSS (A) [17]

Mouse Feces >8–24 GC-MS Winnie [29]

Hippuric acid

CD IA Urine A, O 1H NMR [53] Mouse Urine >8–24 1H NMR DSS (A) [13]

CD, UC AC Urine A, O 1H NMR [18] Mouse Serum >24 UPLC-ESI-TOF-MS H.
hepaticus [45]

CD, UC All Urine A 1H NMR [43]
CD, UC All Urine Y, A, O 1H NMR [48]
CD, UC All Urine Y 1H NMR [19]
IBD AC, IA Urine A, O 1H NMR [15]
IBD All Urine A, O NMR [50]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Histidine

CD, UC All Serum Y, A, O GC-MS [24] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC AC, IA,
All Serum Y, A, O GC-MS [20]

IBD AC Serum A, O 1H NMR [15]
IBD All Urine A, O NMR [50]

Hypoxanthine CD AC Urine A, O 1H NMR [18] Mouse Spleen >8–24 1H NMR DSS (A) [13]

Inositol

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Colon >8–24 GC-MS DSS (A) [37]

UC IA Colonic
mucosa Unknown Proton MRS [35]

UC AC, IA,
All Serum Y, A, O GC-MS [20]

IBD AC Colonic
mucosa A 1H NMR [36]

Isocitric acid
UC All Rectum Y, A, O GC-MS [24] Mouse Serum >8–24 GC-MS DSS (A) [17]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Urine >3–24 GC-MS IL10-/- [33,40]

Isoleucine

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Feces >8–24 GC-MS Winnie [29]

UC AC, IA,
All Serum Y, A, O GC-MS [20]

UC All Rectum Y, A, O GC-MS [24]

Lactic acid

CD AC Colonic
mucosa Unknown Proton MRS [35] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC AC, IA Colonic
mucosa Unknown Proton MRS [35]

IBD AC Colonic
mucosa A NMR [36]

Leucine
CD, UC AC Colonic

mucosa Unknown Proton MRS [35] Mouse Plasma >8–24 1H NMR IL10-/- [26]

UC All Rectum Y, A, O GC-MS [24]
UC AC Plasma A, O 1H NMR [18]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Lysine
UC All Rectum Y, A, O GC-MS [24] Mouse Feces >3–8 1H NMR DSS (A) [51]
UC All, IA Serum Y, A, O GC-MS [20]
IBD All Urine A, O NMR [50]

Malic acid
UC AC, IA,

All Serum Y, A, O GC-MS [20] Mouse Serum >8–24 GC-MS DSS (A) [17]

UC All Rectum Y, A, O GC-MS [24]

Methionine
UC AC, IA,

All Serum Y, A, O GC-MS [20] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC All Rectum Y, A, O GC-MS [24] Mouse Plasma >8–24 1H NMR IL10-/- [26]

Methylamine CD, UC Unknown Feces Y, A, O 1H NMR [25] Mouse Urine >8–24 1H NMR DSS (A) [13]
IBD All Urine A, O NMR [50]

Proline
UC AC, All Serum Y, A, O GC-MS [20] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC All Rectum Y, A, O GC-MS [24] Mouse Urine >8-24 1H NMR
Adoptive
transfer [38]

Sebacic acid UC IA Serum Y, A, O GC-MS [20] Mouse Feces >8–24 GC-MS Winnie [29]

Succinic acid

CD AC Plasma,
urine A, O 1H NMR [18] Mouse Serum >8–24 GC-MS DSS (A) [17]

CD, UC AC Colonic
mucosa Unknown Proton MRS [35] Mouse Urine >8–24 NMR IL10-/- [44]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Urine >8–24 1H NMR

Adoptive
transfer [38]

UC AC Urine A, O 1H NMR [18]
UC All Urine Y 1H NMR [19]

UC All Rectum
tissue Y, A, O GC-MS [24]

IBD AC, IA Urine A, O 1H NMR [15]
IBD All Urine A, O NMR [50]
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Table 5. Cont.

Human Studies Animal Studies

Metabolite * Disease Activity Sample
Type

Age
Group Platform References Species Sample

Type
Age
(Weeks) Platform Model References

Taurine

CD, UC All Urine Y 1H NMR [19] Mouse Colon,
spleen >8–24 1H NMR DSS (A) [13]

CD AC Urine A, O 1H NMR [18]

UC AC, IA,
All Serum Y, A, O GC-MS [20]

IBD AC, IA Urine A, O 1H NMR [15]
IBD All Urine A, O NMR [50]

Threonine
UC IA, All Serum Y, A, O GC-MS [20] Mouse Feces >3–8 1H NMR DSS (A) [51]
UC All Rectum Y, A, O GC-MS [24]

Triglyceride
UC All Plasma A LC-MS/MS [54] Mouse

Colon
(proximal),
ileum
(distal)

>8–24 1H NMR TNF∆ARE/WT [23]

Mouse Liver >8–24 1H NMR
Adoptive
transfer [38]

Trimethylamine CD, UC Unknown Feces Y, A, O 1H NMR [25] Mouse Plasma >8–24 1H NMR IL10-/- [26]

Tryptophan
CD, UC All Serum Y, A, O GC-MS [24] Mouse Plasma >8–24 UPLC-MS DSS (A) [41]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Serum >8–24 GC-MS DSS (A) [17]

Mouse Plasma >8–24 LC-MS IL10-/- [40]

Tyrosine

CD AC Plasma A, O 1H NMR [18] Mouse Serum >3–8 1H NMR DSS (A) [16]

UC AC, IA,
All Serum Y, A, O GC-MS [20] Mouse Serum >8–24 GC-MS DSS (A) [17]

UC AC Serum,
plasma A, O 1H NMR [18] Mouse Plasma >8–24 UPLC-MS DSS (A) [41]

UC All Rectum Y, A, O GC-MS [24] Mouse Plasma >8–24 1H NMR IL10-/- [26]
Mouse Feces >8–24 GC-MS Winnie [29]

* Metabolites in bold are exclusively decreased in both IBD animal models and IBD patients compared to healthy controls. Disease: CD: Crohn’s disease; IBD: inflammatory bowel disease;
UC: ulcerative colitis. Activity: AC: active; IA: inactive; All: active + inactive. Age groups: Y: very early onset and young;, A: adult; O: old. Platform: GC-MS: gas chromatography-mass
spectrometry; LC-MS: liquid chromatography-mass spectrometry; LC-MS/MS: liquid chromatography tandem mass spectrometry; LC-qTOF-MS: liquid chromatography quadropole
time-of-flight mass spectrometry; MRS: magnetic resonance spectroscopy; NMR: nuclear magnetic resonance; UPLC-ESI-TOF-MS: ultra performance liquid chromatography electrospray
ionization time-of-flight mass spectrometry; UPLC-MS: ultra performance liquid chromatography mass spectrometry; UPLC-MS/MS: ultra performance liquid chromatography tandem
mass spectrometry; UPLC-tof-MS: ultra performance liquid chromatography time-of-flight mass spectrometry. Model: (A): acute; ARE: AU-rich elements; (C): chronic; DSS: dextran sodium
sulfate; H. hepaticus: Helicobacter hepaticus; IL: interleukin; TNBS: 2,4,6-trinitrobenzenesulfonic acid; TNF: tumor necrosis factor; WT: wild-type.
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2.4. Metabolites of Special Interest

Several tryptophan metabolites were found to be regulated in human studies, animal studies,
or both. Kynurenine and quinolinic acid were increased in UC and CD patients, respectively
(Supplementary Table S5). Kynurenine was also found to be increased in DSS (dextran sodium
sulfate) and IL-10-/- mouse models (Supplementary Table S7), while quinolinic acid was decreased
in IL-10-/- mice along with kynurenic acid and 5-hydroxyindoleacetic acid (Supplementary Table
S8). Additionally, 5-hydroxytryptophan and 3-hydroxykynurenine were also increased in DSS and
IL-10-/- mouse models, respectively (Supplementary Table S7). Conflicting observations were made for
tryptophan itself, which was reported to be both increased and decreased in human studies as well as
the DSS mouse model (see Tables 4 and 5). SCFAs were reported to be regulated in numerous human
IBD studies, although some results were conflicting. Formic acid and acetic acid were thus observed
to be both increased and decreased in CD and UC patients, depending on the study (Supplementary
Tables S5 and S6). However, propionic acid, butanoic acid, isobutyric acid, and pentanoic acid were
all observed to be decreased in CD and UC patients (Supplementary Table S6). Interestingly, only
animal studies using the acute DSS mouse model or the TNBS (2,4,6-trinitrobenzenesulfonic acid) rat
model reported differentiated levels of SCFAs (Supplementary Tables S7 and S8). Acetic acid was
decreased in the DSS model, while butanoic acid was decreased in the TNBS model (Supplementary
Table S8). Dong et al. [13] also observed butanoic acid to be decreased, but only on the first day of DSS,
after which it was increased throughout the experiment.

2.5. Included Studies Are Characterized by Great Variation in the Key Experimental Elements

A metabolomics study consists of several different key experimental elements that can vary
between studies. Here, these elements are the experimental subjects (disease subtype for the human
studies and species, strain, and type of model for the animal studies), biological sample type,
analysis methodology, and age of experimental subjects/study population. Large variations in these
elements can make it difficult to compare results across the different studies and thereby difficult to
draw any overall assumptions on the topic in question.

To clearly elucidate the large variation between the different studies included in this review, we
tallied up the number of studies containing the different variants of each key experimental element
in animal studies and human studies, respectively (see Tables 6 and 7). Looking at Tables 6 and 7,
it becomes immediately clear that there could be a very high degree of variation between studies as a
result of the different elements applied in the studies. For the animal studies (Table 6), three different
species with a total of 11 different mouse and rat strains were used along with eight different IBD
animal models, three main analytical platforms, 13 different sample types, and four different age
groups across the 26 studies. The variation in study population and sample type was less for the
human studies (Table 7), however seven different analytical platforms were applied, giving rise to a
considerable heterogeneity across the human studies.

A few studies did, however, share a high degree of similarity in experimental factors. Animal studies
by Shiomi et al., Gu et al., and Wang et al. all used C57BL/6J mice from the same age group for a 3%
DSS model as well as using gas chromatography-mass spectrometry (GC-MS) to detect metabolites in
serum and colon samples (see Supplementary Table S2) [17,37,55], although it is worth noting that Gu et al.
and Wang et al. belong to the same department at Kobe University, Japan. Equally, two studies by
the same first author also shared a similar degree of similarity using an IL10-/- model [33,40]. For the
human studies, two studies used proton nuclear magnetic resonance (1H-NMR) to detect metabolites in
serum samples from CD and UC patients of 18-60+ years of age [15,43], while two other studies detected
metabolites in serum samples from CD and UC patients in the >1–60+ age groups using GC-MS [20,24].
The authors of the latter two studies are also from the same department and even co-authors the other
study, again underlining the difficulties at present comparing studies from different research groups.
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Table 6. Overview of the variation in key experimental elements in animal model studies and the
number of studies containing the different versions of each element.

Species & Strain * Model Analytical
Platform

Biological Sample
Type

Age Group
(Weeks)

Mouse 22 DSS (A) 12 LC-MS ** 15 Colon 12 0–3 3
C57BL/6 14 DSS (C) 2 NMR *** 8 Plasma 8 >3–8 15
BALB/c 2 IL10-/- (C) 6 GC-MS 6 Urine 8 >8–24 19

C57Bl6/N 1 TNBS (A) 3 Serum 7 >24 2
Winnie 1 TNF∆ARE/WT (C) 1 Feces 4 Not reported 2

ICR 1 T-synthase 1 Liver 4
CD1 1 deficiency (C) Spleen 2

129/SvEv Rag2-/- 1 H. hepaticus (C) 1 Ileum 1
129(B6)-Il10tm1Cgn/J 1 Winnie 1 Cecum 1

129/SvEv 1 (spontaneous) (C) Small intestine 1
Rat 3 Adoptive 1 Red blood cells 1

Sprague-Dawley 2 Transfer (C) Masseter 1
Fischer 344 1 Longissimus dorsi 1

Piglet 1

* Species are in bold with strains belonging to each species listed below. ** refers to all variations
of this platform: HPLC-MS/MS (high performance liquid chromatography tandem mass spectrometry),
LC-MS (liquid chromatography-mass spectrometry), LC-MS/MS (liquid chromatography tandem mass
spectrometry), LC-qTOF-MS (liquid chromatography quadropole time-of-flight mass spectrometry), short column
LC-MS, UHPLC-MS (ultra high performance liquid chromatography mass spectrometry), UHPLC/MS-MS (ultra
high performance liquid chromatography tandem mass spectrometry), UPLC-ESI-TOF-MS (ultra performance
liquid chromatography electrospray ionization time-of-flight mass spectrometry), UPLC-ESI-qTOF-MS (ultra
performance liquid chromatography electrospray ionization quadropole time-of-flight mass spectrometry),
UPLC-MS/MS (ultra performance liquid chromatography tandem mass spectrometry), UPLC-MS (ultra
performance liquid chromatography mass spectrometry), UPLC/ToF-MS (ultra performance liquid chromatography
time-of-flight mass spectrometry). *** refers to all variations of this platform: 1H-NMR (proton nuclear magnetic
resonance), NMR (nuclear magnetic resonance) (1H, 1C, 1P). Note: one study can contain more than one
variant of a key experimental element, e.g., both colon and plasma samples. (A): acute; (C): chronic; GC-MS:
gas chromatography-mass spectrometry.

Table 7. Overview of the variation in key experimental elements in human studies and the number of
studies containing the different versions of each element in the systematic review on metabolomics in
inflammatory bowel disease (IBD) patients and IBD animal models.

IBD/IBD Subtype Analytical Platform Biological Sample Type Age Group (Years)

CD 27 NMR * 13 Feces 9 0–1 0
UC 24 GC-MS ** 11 Urine 9 >1 and <18 6
IBD 1 LC-MS *** 5 Colon 4 18–60 21

SIFT-MS 3 Breath 4 60+ 13
ESI-MS 1 Serum 3 Not reported 1

FT-ICR-MS 1 Plasma 2
Proton MRS 1 Ileum 1

PBMC Macrophages 1

* refers to all variations of this platform: 1H-NMR (proton nuclear magnetic resonance), NMR (nuclear magnetic
resonance). ** refers to all variations of this platform: GC-MS (gas chromatography-mass spectrometry),
GC-tof-MS (gas chromatography time-of-flight mass spectrometry). *** refers to all variations of this platform:
HPLC-MS (high performance liquid chromatography mass spectrometry), LC-ESI-MS/MS (liquid chromatography
electrospray ionization tandem mass spectrometry), LC-MS (liquid chromatography mass spectrometry),
LC-MS/MS (liquid chromatography tandem mass spectrometry), UPLC/ToFMS (ultra performance liquid
chromatography time-of-flight mass spectrometry). Note: one study can contain more than one variant of a
key experimental element, e.g., both colon and plasma samples. CD: Crohn’s disease; ESI-MS: electrospray
ionization mass spectrometry; FT-ICR-MS: Fourier-transform ion cyclotron resonance mass spectrometry; IBD:
inflammatory bowel disease; MRS: magnetic resonance spectroscopy; SIFT-MS: selected-ion flow-tube mass
spectrometry; UC: ulcerative colitis.

2.6. Differentiation of Metabolites According to Key Experimental Elements

We found that in both human and animal studies, the vast majority of the metabolites were
detected by more than one analytical platform (Supplementary Table S9). The study subjects in most of
the human studies spanned all age groups from very early onset and young to old, making it difficult to
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differentiate metabolite detection between age groups in the human studies. However, most metabolites
were generally detected in more than one age group in the animal studies, suggesting that age is not a
deciding factor when it comes to the metabolome. Nevertheless the amino acid isoleucine stood out,
as it was increased only in human subjects above 18 years of age and in mice of >8–24 weeks. One of
the animal studies that reported increased levels of isoleucine also included animals of 1 week, but the
amino acid was not significantly altered in this group [26].

The subgroup of metabolites differentiated in both study types was sorted according to the biological
sample types in which they were detected (Supplementary Table S9). This allowed us to examine any
parallels between human and animal studies. Many metabolites were found in several different sample
types in both humans and animals, but not necessarily the same. For example, alanine was increased
in serum [24] and feces [4,25] from humans and in colon [17] and plasma [26] from mice, but it was
decreased in urine [43] and colon [35,36] in humans and serum [16] and urine [38] in animals, illustrating
the differences observed for many metabolites (Supplementary Table S9). The highest similarity to human
studies was observed with the acute DSS mouse model (Supplementary Table S9). Since this model was
used in almost half of the included animal studies, this finding is not surprising. However, only five of
the acute DSS mouse model studies analyzed serum samples, but still 11 of the increased and 11 of the
decreased metabolites were detected in serum samples from both humans and the DSS mouse model.
A total of 34 and 29 different metabolites were reported as increased and decreased in IBD, respectively,
in serum samples from the acute DSS mouse model. This means that 32% of the increased metabolites
and 38% of the decreased metabolites in serum samples from the acute DSS mouse model were reported
to be correspondingly differentiated in the human studies. Conversely, the acute DSS mouse model could
account for 16% (22 out of 136 metabolites) of the overall metabolite changes observed in serum of IBD
patients. This could suggest serum samples from the acute DSS mouse model as having good translational
potential when analyzing systemic metabolites in IBD.

2.7. Correlation between Animal Models and IBD Subtypes

For all the metabolites significantly differing in both human and animal studies, it was investigated
if some animal models were specifically good models for CD or UC when it comes to metabolomics
(Supplementary Table S9). Most of the models had similarities with both CD and UC. For instance,
regarding metabolites decreased in the IL10−/– mouse model, glucose was also decreased in CD,
while leucine was decreased in UC, and trimethylamine in both CD and UC. The TNF∆ARE/WT model
only had similarities with UC, but this could easily be due to the fact that only one study with this
model was included. Overall, this indicates that the metabolomes of the animal models included in
this review are not correlated specifically to CD or UC.

2.8. Metabolite Classifications

All metabolites differentiated between IBD cases and controls in either humans or animals were
sorted into metabolite subclasses according to the classification system used in The Human Metabolome
Database (www.hmdb.ca) (Supplementary Tables S10 and S11). The most differentiated subclass was
“amino acids, peptides, and analogues” in both human and animal studies, representing approximately
16% of all differentiated metabolites reported. “Fatty acids and conjugates” as well as “carbohydrates
and carbohydrate conjugates” were also among the most differentiated in both human and animal
study types. “Glycerophosphocholines” were also differentiated in both, but to a much larger extent in
animal studies. In general, different kinds of lipids were reported more frequently as differentiated in
IBD in animal studies compared to human studies. Metabolites from 142 different subclasses were
reported as differentiated between IBD and controls overall. Of these, 47 were differentiated in both
human and animal studies, while 48 and 47 differentiated subclasses were unique to human and animal
studies, respectively. This shows a large gap between the type of metabolites that are investigated and
detected in the two study types, as only a third of the total amount of differentiated subclasses are
reported in both.

www.hmdb.ca
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When focusing on the metabolites differentiated in IBD in both human and animal studies,
they represented a total of 25 subclasses overall. Metabolites from nine different subclasses were
present among both the increased and decreased metabolites, while eight subclasses were exclusively
increased and decreased, respectively.

3. Discussion

This systematic review was conducted to assess the overall translational value of conducting
metabolomics analyses on animal models of IBD. We found that approximately 17% and 16% of
metabolites reported as differentiated between IBD and controls in the animal studies were also
reported as differentiated in human studies for both increased and decreased metabolites, respectively.
Amino acids accounted for almost half of these metabolites. Tryptophan metabolites were differentiated
in both human and animal studies, and reduced tryptophan metabolism has been associated with
colitis [8]. Here, two metabolites of the kynurenine pathway were observed to be increased in IBD
patients, while one from the kynurenine pathway and one from the serotonin pathway were increased
in the acute DSS mouse model. In the IL-10-/- mouse, two metabolites from the kynurenine pathway
were increased and two were decreased, while another was decreased in the serotonin pathway.
SCFAs were also differentiated in both human and animal studies. Most results showed decreased
levels of SCFAs, which corresponds well to the reduced levels of SCFA-producing bacteria seen in IBD
patients [6,7]. Interestingly, animal studies using the acute DSS or TNBS models reported differentiated
levels of SCFAs. Data from metabolomics on serum samples from the acute DSS mouse model showed a
convergence of 29% for increased and 38% for decreased metabolites in human serum samples. All this
is indicative of a good translational potential of the acute DSS mouse model. However, results from
different animal models were not correlated specifically to CD or UC.

In the animal studies included in this review, the majority of the studies used models induced as
acute models, which is in contrast to the fact that IBD in the human patients is a chronic condition [1].
However, the 68 different metabolites differentiated in both IBD patients and IBD animal models were
from both acute and chronic models. This, along with the observation that the acute DSS model had
the most similarities with IBD patients in terms of differentiated metabolites, indicates that the specific
mechanism operative in the genesis of the inflammation may be of greater importance than whether
an animal model is induced as acute or chronic when studying metabolomics in IBD [56]. It should,
however, be noted that none of the existing models truly recapitulates the spontaneous and fluctuating
nature of the human disease. The limitations of each model should always be taken into consideration
before directly applying experimental findings to the human condition [57].

Only a few of the human studies provided information on the clinical phenotype. Some studies
provided information about localization of disease, but only a few stratified for this in their results,
although studies have shown a correlation between disease phenotype and gut microbiota composition
in CD [58,59]. Different animal models would be expected to explain different phenotypical traits of
IBD. In order to uncover these associations, it is essential that the phenotype of human IBD subjects is
described in greater detail with more clinical information regarding e.g., disease localization and the
course of the disease.

The different analytical techniques used to detect metabolites, mainly nuclear magnetic resonance
(NMR) and mass spectrometry (MS), each have their strengths and weaknesses, and no technique is
able to completely identify and quantify all metabolites within a sample [60–62]. This could explain
some of the large variation observed in the metabolites detected and reported as differentiated in
IBD in human and animal studies, respectively, because several different techniques were employed.
However, we still find that most of the metabolites differentiated in both human and animal studies
were detected by at least two different techniques, showing some degree of agreement between the
coverage of the different techniques after all.

The majority of the human studies were conducted using GC-MS or NMR spectroscopy, while liquid
chromatography-MS (LC-MS) was used more in the animal studies. NMR spectroscopy is quantitative
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and very accurate, but has a low sensitivity compared to MS [60]. GC-MS analysis provides good
reproducibility, but is limited to the detection of volatile compounds, whereas LC-MS can be combined
with various ionization techniques to optimize detection of specific classes of metabolites [60].
These different techniques are complementary and using more than one technique to analyze the
same sample will increase coverage and provide a more complete representation of the metabolites
within a sample. The total number of detected metabolites reported from especially the human studies
could thus potentially have been increased by using a combination of techniques. This would increase
the overall coverage and thereby also the possibility of seeing more similarities between different
study types.

For the animal studies, age did not appear to be a deciding element for the metabolome in IBD
models, as no (particular) difference in metabolite composition were seen between different age groups.
In humans, we know that different microbiomes of the body, e.g., the gut and skin microbiomes, change
with age [63–65], and the same has been found for the gut microbiota in mice and rats [66,67]. It has
also been shown that blood metabolites are affected by the gut microbiota [68]. So, it is reasonable to
speculate that metabolomes in the body should also change over time as a consequence of age-related
changes in the gut microbiome. Indeed, a longevity study by Collino et al. [69] showed different
metabolomic signatures in different age-groups between 24 and 111 years of age. Here, the lack of
an age-related effect on the animal model metabolomes could be attributed to the low number of
studies with infant, juvenile, or old animals (see Supplementary Table S2) compared to the number
of studies with adult animals. More studies in each age group are possibly needed for this effect to
become apparent.

As the study populations in most of the included human studies spanned all age groups,
no conclusions could be drawn for metabolite differentiation between age groups. As for the animal
studies, it would be of interest to have metabolomics studies investigating human study populations
of specific ages, to be able to report on potential age-related differences in the metabolome. This would
preferably be performed alongside microbiome analyses to study metabolome-microbiome associations
across different age groups.

For the subgroup of metabolites both increased and decreased in both study types, a closer look at
the data revealed that differences in disease activity, age, IBD subtype, and sample type could explain
these apparently opposing results. This underlines the importance of including detailed information
about the subject population, when evaluating research results.

In conclusion, the acute DSS model appeared to be the best animal model for metabolomics in
IBD and could account for 16% of the metabolite changes seen in serum of IBD patients. The great
variation in results between study types suggests that it is necessary to align and expand the choice of
detection methods and biological sample types analyzed in order to be able to accurately compare
metabolomics analyses performed in humans and animals. Furthermore, transdisciplinary research is
needed to ensure results that can be translated for use in the clinical setting and benefit the patients.

4. Materials and Methods

4.1. Search Strategy

The databases searched (up to May 2017) were Embase Classic + Embase 1947 to 2017 (382 hits) and
MedLine (via PubMed) (182 hits). The search was limited to English and Danish language manuscripts
and using a combination of terms for (1) metabolomics, (2) mass spectrometry and spectroscopy,
and (3) inflammatory bowel disease. Exact terms used for each group in each database can be found in
Supplementary Table S12. A total of 560 hits were found, 151 of which were removed by EndNote as
duplicates, leaving 409 hits for screening.
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4.2. Selection Criteria

We wanted to include all patient studies and animal model studies evaluating differences
in metabolites between IBD cases and healthy controls. Studies were excluded if they (1) were
performed with animals other than mice, rats, or pigs; (2) did not have an appropriate control group
(e.g., individuals with other gastrointestinal diseases); (3) did not show if differences in metabolites
were significant; (4) were in a language other than English and Danish. The Covidence systematic
review software (Veritas Health Innovation, Melbourne, Australia) was used for abstract and full-text
screenings, the latter of which was performed independently by L.A.K and R.D., the former by L.A.K.
only. In cases of discrepancies between the independent screenings, these were resolved by a discussion
between the two screening authors. The flowchart of the study screening process in Covidence can be
seen in Figure 1. In spite of a thorough literature search strategy, many irrelevant studies were still
included in the search results. Of the 409 screened studies, 318 studies were excluded already during
the abstract screening due to a number of reasons. More than half of the 318 excluded studies were
reviews, editorials, or abstracts. A few were in a language other than English or Danish or duplicates
not removed by the reference program. Others were on patients with other diseases than IBD (e.g.,
Clostridium difficile infection or necrotizing enterocolitis) or IBD animals with other conditions aside
from IBD. Additionally, several studies focused solely on degradation products from IBD drugs,
while some were in fact microbiome or genome-wide association studies with no metabolomics data.
During the full-text screening, 10 studies were excluded with the reason “wrong outcomes” and 12
were excluded with the reason “wrong study design”. An example of a wrong outcome was prediction
performance estimates, i.e., how well metabolomics could discriminate between UC and control
without any quantitative data for specific metabolites. A study categorized as having a wrong study
design had two separate studies—one with healthy volunteers and one with CD patients, without any
comparison of healthy and CD. After the full-text screening, a total of 58 studies were selected for the
analysis of metabolomics studies in animal models for IBD and IBD patients [4–6,13–55,70–81].

4.3. Data Extraction

All data were extracted using three checklists for patient studies and animal studies, respectively:
descriptive, quality, and results. The descriptive checklist was used for population characteristics
and technical details about metabolomics. The quality checklist for patient studies was based on the
QUADOMICS tool for quality assessment [82], while that of the animal studies was based on both
the QUADOMICS tool and the animal study specific SYRCLE [83]. Descriptive and quality checklists
with data can be seen in the supplementary material (Supplementary Tables S1–S4). Aspects taken
into consideration for the summarized animal study results were species, biological sample type,
metabolomics platform, type of animal model, and references. For the human studies, similar aspects
were included: disease (incl. location if specified), disease activity (active, inactive), biological sample
type, age, metabolomics platform, and references. Sex was not included as all human studies analyzed
both male and female IBD patients or found no differences in metabolite detection between males
and females. Data were extracted by LAK and RD and assisted by SM on statistical matters to ensure
correct evaluation of included studies.

The nomenclature in metabolomics is redundant in some cases (e.g., butyric acid and butanoic
acid are two names for the same fatty acid, while butyrate and butanoate are the corresponding names
for their conjugate bases), and we have attempted to minimize this redundancy by gathering identical
metabolites under one name. In the case of acids, we have chosen to report the acid instead of the
conjugate base.

PROSPERO Registration number: CRD42017068289
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Abbreviations

ARE AU-rich elements
CD Crohn’s disease
DSS dextran sodium sulfate
ESI electrospray ionization
FT-ICR Fourier-transform ion cyclotron resonance
GC gas chromatography
H. hepaticus Helicobacter hepaticus
HPLC high performance liquid chromatography
IBD inflammatory bowel disease
IL interleukin
LC liquid chromatography
MRS magnetic resonance spectroscopy
MS mass spectrometry
MS/MS tandem mass spectrometry
NMR nuclear magnetic resonance
(q)TOF (quadrupole) time-of-flight
SCFA short-chain fatty acid
SIFT selected-ion flow-tube
TNBS 2,4,6-trinitrobenzenesulfonic acid
TNF tumor necrosis factor
TOF time-of-flight
UC ulcerative colitis
UHPLC ultra high performance liquid chromatography
UPLC ultra performance liquid chromatography
WT wild-type
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