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Dendrons containing boric acid 
and 1,3,5‑tris(2‑hydroxyethyl)
isocyanurate covalently attached 
to silica‑coated magnetite 
for the expeditious synthesis 
of Hantzsch esters
Mahsa Sam, Mohammad G. Dekamin* & Zahra Alirezvani

A new multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl)
isocyanurate covalently attached to core–shell silica-coated magnetite (Fe3O4@SiO2@PTS-
THEIC-(CH2)3OB(OH)2) was designed and properly characterized by different spectroscopic or 
microscopic methods as well as analytical techniques used for mesoporous materials. It was 
found that the combination of both aromatic π–π stacking and boron–oxygen ligand interactions 
affords supramolecular arrays of dendrons. Furthermore, the use of boric acid makes this dendritic 
catalyst a good choice, from corrosion, recyclability and cost points of view. The catalytic activity 
of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, as an efficient magnetically recoverable catalyst, was 
investigated for the synthesis of polyhydroacridines (PHAs) as well as polyhydroquinolines (PHQs) 
via one-pot multicomponent reactions of dimedone and/or ethyl acetoacetate, different aldehydes 
and ammonium acetate in EtOH under reflux conditions. Very low loading of the catalyst, high 
to quantitative yields of the desired PHAs or PHQs products, short reaction times, wide scope of 
the substrates, eliminating any toxic heavy metals or corrosive reagents for the modification of 
the catalyst, and simple work-up procedure are remarkable advantages of this green protocol. An 
additional advantage of this magnetic nanoparticles catalyst is its ability to be separated and recycled 
easily from the reaction mixture with minimal efforts in six subsequent runs without significant loss 
of its catalytic activity. This magnetic and dendritic catalyst can be extended to new two- and three-
dimensional covalent organic frameworks with different applications.

New materials are required to be developed for the modern science and technology. These new materials are 
used for different applications such as drug delivery, medical diagnosis, reinforced composites, semiconductors, 
electronics, optics, sensors, sorbents, CO2 capture, heterogeneous catalysis, etc. In this manner, nanomaterials 
can play a vital role1–9. One of the emerging fields for the preparation and fabrication of new nanomaterials is 
dendrimer chemistry which has been recently expanded as two- or three-dimensional covalent organic frame-
works (COFs). These strategies afford multifunctional materials which demonstrate synergistic effects and hence, 
higher performance and efficacy as well as newer and more specific properties than previous counterparts1,10–24. 
In addition, dendrimers can encapsulate and consequently, stabilize metallic catalytic active nanoparticles25–28. 
Furthermore, the properties of new materials can be modified and improved by their immobilization onto 
the surface of magnetic nanoparticles (MNPs), especially in the case of heterogeneous catalysis26,29–36. These 
improvements include better separation using an external magnetic field34,35,37–40, enhancement of the reaction 
rates by MNPs via local heating through induction and increasing the surface area as well as synergistic effects 
in conjunction with other catalytic species or centers due to the catalytic performance of magnetic materials, 
including Fe, Ni, Co or Ce-based ones41–43. Hence, active catalytic species or centres supported onto the surface 
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of MNPs have received much attention in the field of heterogeneous catalysis for promoting organic reactions 
in recent years26,44–46.

As a particular type of magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) are 
more widely available than other MNPs due to advantages such as biologically well-accepted constituents, estab-
lished size-selective preparation, diminished agglomeration, ease of preparation, and lower cost26,45,47–57. On the 
other hand, heterogenization of the active sites of usual dendritic catalysis has been pursued by either attaching 
the catalyst covalently within the dendrimer core or at the branch termini as well as through supramolecular 
interactions such as metal–ligand, hydrogen bonding, aromatic π–π stacking, hydrophobic and van der Waals 
forces22,26,51,58–61. Therefore, design and preparation of new magnetic dendritic catalytic systems by appropriate 
application of dendron segments which can be expanded to 2D or 3D covalent organic frameworks (COFs) is 
still in high demand.

In recent years, thermally stable heteroaromatic 1,3,5-triazinane-2,4,6‐trione (isocyanurate) moiety has 
received significant attention in polymer and material chemistry due to its numerous industrial applications, 
particularly in the field of low toxic drug-delivery agents, tensioactive building blocks and nonlinear optical 
properties, foams, surface coatings, films, paints, fibers, selective anion receptors and preparation of periodic 
mesoporous organosilica1,19,62–77. On the other hand, boric acid and its derivatives have achieved specific atten-
tion, as appropriate catalysts, in organic synthesis due to their advantages including high solubility in water, easy 
handling, low prices, and environmentally friendly and commercial availability78–87. In an attempt to indicate 
how applying SPIONs would affect the dendrimer bearing tridentate and thermally stable isocyanurate moiety 
as well as boric acid catalytic activity, this study reports the use of multifunctional dendritic nanocatalyst con-
taining boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core–shell silica-coated 
SPIONs (Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, 1), as a novel and efficient supramolecular heterogeneous 
catalyst, in the one-pot synthesis of polyhydroacridines (PHAs, 5) and polyhydroquinolines (PHQs, 7) through 
multicomponent reaction (MCR) strategy (Scheme 1).

MCRs are one-pot reactions that involve more than two substrates demonstrating convergence as well as 
very high atom efficiency and bond-forming-index (BFI)88–90. Thus, MCRs are usually a good alternative for 
the sequential multistep synthesis, especially for useful heterocyclic scaffolds such as Hantzsch esters including 
1,4-dihydropyridines (DHPs), PHQs and PHAs in organic synthesis and medicinal chemistry91–96. Generally 
known as one of the main groups of nitrogen heterocycles, polyhydroquinolines (PHQs) and polyhydroacri-
dines (PHAs) have become considerably interesting due to their significant therapeutic and pharmacological 
properties97–100. Indeed, they are used as antimalaria, calcium β-blocker, antioxidant, antimicrobial, antifungal, 
vasodilator, anticancer, bronchodilator, antiatherosclerotic, geroprotective, hepatoprotective and antidiabetic 
agents as well as in the production of laser colors, radical reservoirs and safe hydrogen transfer agents4,101–111. 
First introduced by Arthur Hantzsch in 1882, Hantzsch reaction is an MCR that contains the combination 
of a β-dicarbonyl compound, an aldehyde and a source consisting of ammonia (usually NH4OAc)112. How-
ever, catalytic systems are required to accelerate this multicomponent reaction. Here are some recent reported 
catalysts in this area: Mn@PMO-IL103, vanadium ion doped titania nanoparticles113, Lewis acidic mesoporous 
material (TUD-1) containing Fe114, magnetite nanoparticle-supported ceria41, silica-coated magnetic nano-
particles with tags of ionic liquid115, Boehmite silica sulfuric acid (Boehmite-SSA) 116, PMO-ICSPrSO3H117, 
Fe3O4@B-MCM-41118, PS/PTSA119, PdRuNi@GO13, 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently func-
tionalized MCM-41120, alginic acid121,122 and glycine nitrate (GlyNO3) ionic liquid123.

Results and discussion
Characterization of dendritic nanocatalyst containing boric acid and 1,3,5‑tris(2‑hydroxye‑
thyl)isocyanurate covalently attached to core–shell silica‑coated magnetite (Fe3O4@SiO2@
PTS‑THEIC‑(CH2)3OB(OH)2, 1).  At first, the boric-acid-functionalized-1,3,5-tris(2-hydroxyethyl)isocya-
nurate attached to the silica-coated SPIONs (Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, 1) was characterized 
using different spectroscopic or analytical methods. As it has been shown in FT-IR spectrum (Fig. 1), the absorp-
tion bands at around 632 and 572 cm−1 are related to the Fe–O bond vibrations. On the other hand, absorption 
band of Si–O–Si asymmetric stretching vibrations are apparent at around 1076 cm−1. Furthermore, the observed 
signals at 954, 802 and 459 cm–1 are assigned to the symmetric stretching and bending vibrations of Si–O–Si 
bond43,57,124. Also, the absorption band of C=O bond vibrations of the isocyanurate moiety appeared at around 
1637 cm−177,120,125. Furthermore, the signals in range of 1350–1000 cm−1 belong to the C–N bonds vibrations. 
On the other hand, the absorption band of B–O vibrations appeared at 1510 cm−1. Furthermore, there is an 
absorption signal at around 1191 cm−1 which is related to B–O–H bond vibrations. Also, the signal at 563 cm−1 is 
assigned to O–B–O bond vibrations. It is generally accepted that the broad band centred at 3400 cm−1 is ascribed 
to the stretching vibrations of O–H bonds126,127. All of these data demonstrate that the catalyst 1 has been suc-
cessfully prepared.

Energy dispersive spectroscopy (EDX) spectrum of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 (1) proved 
that the magnetic catalyst functionalized with dendrons containing 1,3,5-tris(2-hydroxyethyl)isocyanurate and 
boric acid has been functionalized properly due to the presence of Fe, Si, O, C, N and B elements. The percentages 
of elements were measured to be B (1.96), C (6.99), N (2.50), O (63.58), Si (12.33) and Fe (12.65), respectively. 
It can be deduced from the absence of Cl and Br elements that terminal chloride groups of the 3-chloropropyl 
trimethoxysilane (3-APTS) linker as well as terminal bromide groups of the 1,3-dibromopropane linker have 
been completely replaced by covalent bonding (Fig. 2).

The X-ray diffraction (XRD) pattern of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 (1) exhibited the phase 
structure and crystallization of the magnetic nanomaterials (Fig. 3). The main peaks were observed at 2θ: 27.9°, 
32.5°, 33.8°, 55.6°, 56.4°, 62.3°. By comparing the XRD pattern of the prepared nanocatalyst (1) with the reference 
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card numbers in the X’pert software, the crystal network of Fe3O4, SiO2 and B(OH)3 correspond with 072–2303, 
082–1572 and 030–0199 card numbers, respectively.

The textural properties of the magnetic dendritic Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1) was 
investigated by nitrogen adsorption–desorption isotherms (Fig. 4). The BET isotherm of the prepared catalyst 
corresponds with the BET standard type II adsorption isotherm. The surface area (BET), pore size and pore 
volume of the catalyst were calculated 55.8 m2/g, 13.9 nm, 0.19 cm3/g, respectively.

Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) measurements were carried out 
under air atmosphere by heating the sample at the rate of 10 °C min−1 up to 800 °C (Fig. 5). The first weight loss 
under 100 °C is related to the removal of water and organic solvents which have remained in the dendritic catalyst 
through its preparation processes. On the other hand, the second weight loss about 150 °C can be assigned to the 
dehydration of boric acid moieties and their condensation. Furthermore, two distinct weight losses about 460 
and 510 °C are attributed respectively to the decomposition of aliphatic linkers and 1,3,5-tris(2-hydroxyethyl) 
isocyanurate moieties in the structure of the dendritic Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1) 
according to the data obtained by DTA (Fig. 5b).

Vibrating sample magnetometry (VSM) technique was used for measuring the magnetic properties of catalyst 
(1) at room temperature (Fig. 6). The saturation value of magnetization of Fe3O4 and Fe3O4@SiO2@PTS-THEIC-
(CH2)3OB(OH)2 was measured to be 47.9 and 35.2 emu/g, respectively. Indeed, the reduction of saturation 
magnetization of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 shows that the dendritic catalyst has been formed. 
However, the observed saturation magnetization of catalyst (1) is enough and hence, it can be easily separated 
by an external magnetic field.
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Scheme 1.   Schematic representation of the Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1) and its 
catalytic activity in the one-pot synthesis of polyhydroacridines (5) and polyhydroquinolines (7) through 
multicomponent reaction (MCR) strategy (Drawn using the ChemDraw Ultra 12.0 software developed by 
PerkinElmer).
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To determine the size and morphology of the dendritic Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst 
(1), field emission scanning electron microscopy (FESEM) technique was used (Fig. 7). Interestingly, dendrons 
containing 3-propyl triethoxysilane (3-PTS), 1,3,5-tris(2-hydroxyethyl)isocyanurate and boric acid moieties 
are apparent (Fig. 7a–c). This may arise from the combination of both aromatic isocyanurate π-π stacking and 
boron-oxygen ligand interactions to afford supramolecular arrays of dendrons1,19,128. Furthermore, the obtained 
images shown in Fig. 7c illustrate that the structure of catalyst was made up of particles smaller than 46 nm.

Investigation of the catalytic activity of dendritic Fe3O4@SiO2@PTS‑THEIC‑(CH2)3OB(OH)2 (1) 
for the synthesis of Hantzsch esters.  After characterization of the dendritic Fe3O4@SiO2@PTS-THEIC-
(CH2)3OB(OH)2 catalyst (1), the Hantzsch reaction for the synthesis of polyhydroacridine and polyhydroqui-
noline derivatives was chosen to examine the catalytic activity of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 
(1). For this purpose, the condensation of 4-chlorobenzaldehyde (2a, 1  mmol), dimedone (3), NH4OAc (4, 
1 mmol) and/or ethyl acetoacetate (6, 1 mmol) were selected as the model reactions, for the synthesis of poly-
hydroacridine 5a and polyhydroquinoline 7a, respectively. The reactions were optimized considering different 
parameters such as the amount of catalyst loading, solvents and temperature. The results are reported in Table 1. 
Indeed, the reaction yield for the desired products 9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexa-
hydroacridine-1,8(2H,5H)-dione (5a) or ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahyd-

Figure 1.   The FTIR spectra of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@PTS, Fe3O4@SiO2@PTS-THEIC, Fe3O4@
SiO2@PTS-THEIC-(CH2)3OB(OH)2 (1, from top to down, reproduced using the Microsoft Excel 2016).

Figure 2.   Energy dispersive spectroscopy (EDX) analysis of the magnetic Fe3O4@SiO2@PTS-THEIC-
(CH2)3OB(OH)2 catalyst (1).
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Figure 3.   X-ray diffraction (XRD) pattern of the magnetic dendritic Fe3O4@SiO2@PTS-THEIC-
(CH2)3OB(OH)2 catalyst (1, the individual reference card numbers of the catalyst 1 components were collected 
from the X’pert HighScore Plus version 2.1 software developed by the PANalytical B.V.).
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roquinoline-3-carboxylate (7a) were trace in the absence of any catalyst in EtOH at room temperature (entry 
1). However, low yields of the desired products 5a and 7a were obtained under reflux conditions (entry 2) after 
long times. Interestingly, the yields were improved significantly in the presence of dendritic Fe3O4@SiO2@PTS-
THEIC-(CH2)3OB(OH)2 catalyst (1, entries 3–5). Further optimization of the reaction conditions illustrated that 
EtOH is the best solvent to promote the reaction with high efficiency for the synthesis of the desired products 5a 
or 7a (entries 6–12). The results of optimizing of the model reactions demonstrated that the optimal conditions 
for the reaction are 10 mg catalyst 1 loading in EtOH under reflux conditions. On the other hand, both boric 
acid and Fe3O4@SiO2@PTS-THEIC, as the components of the catalyst 1, afforded moderate yields of the desired 
products 5a and 7a at same catalyst loading under optimized conditions (entries 13 and 14). Finally, hot filtra-
tion test (the Sheldon test) was performed to prove the heterogeneous nature of the catalyst 1. During this test, 
the solid catalyst 1 was removed from the mixture of model reaction for producing 7a by filtration after 10 min 
using an external magnet. Then, the obtained mixture was heated again for 10 min. The result showed that after 
removal of the magnetic catalyst 1, the model reaction did not proceed significantly. Indeed, only 48% of the 
desired product 7a was isolated after 1 h (Fig. 8). 

After finding the optimal conditions, the catalytic activity of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 
nanocatalyst (1) was further expanded to several other aromatic or heterocyclic aldehydes for the synthesis 
of other derivatives of PHAs 5a–o and PHQs 7a–u. As it is shown in Tables 2 and 3, the isolated yields of the 
desired products 6 or 8 were good to excellent in all studied cases under the optimized condition of reaction. In 
most cases, the products were obtained in similar periods of time and yields compared to the model reaction. 
Indeed, aldehydes including aromatic carbocyclic or heterocyclic substrates well survived under optimized 
conditions without formation of any by-products. It is noteworthy that aldehydes bearing electron-withdrawing 
groups or six-membered heterocycles almost reacted faster than substrates having electron-donating groups or 
five-membered heterocycles. This trend of reactivity was observed in both symmetric and asymmetric Hantzsch 
reaction to afford PHAs 5a–o or PHQs 7a–u derivatives, respectively. Furthermore, the α,β-unsaturated cin-
namaldehyde (2q) or aliphatic butyraldehyde (2r) reacted in longer reaction times and afforded lower yields. 
These may be due to resonance and electron-releasing of the double bond and alkyl groups, respectively. All of 
these findings, led us to purpose a plausible mechanism depicted in Scheme 2.

An important distinguishing feature of this magnetic dendritic nanocatalyst (1) beside easy separation from 
the reaction mixture is its recyclability. After the reaction was completed, the catalyst was separated and washed 
by acetone and hexane, respectively. Then, it was dried and reused in the model reactions for the next runs. The 
obtained results have been summarized in Fig. 9. These results show that this catalyst can be recovered and reused 
at least for five times in further runs under optimized conditions without a notable loss of its activity. Further-
more, comparison of the FTIR spectra of both fresh dendritic Fe3O4@SiO2@CPTS-THEIC-(CH2)3OB(OH)2 
nanocatalyst (1) and the recycled sample after six consecutive runs for the synthesis of 5a demonstrated that 
their structures are almost similar (Fig. 10). 

Table 4 contains some of the formerly reported methods and representing their catalytic activity for the 
synthesis of polyhydroacridines and polyhydroquinolines to compare them with the dendritic Fe3O4@SiO2@
CPTS-THEIC-(CH2)3OB(OH)2. These data clearly demonstrate that the nanocatalyst 1 is more active than 
other previously reported catalytic systems in terms of catalyst loading, product yield, required reaction time 
and avoiding the toxic solvents.

Figure 4.   Nitrogen adsorption–desorption isotherm (BET) of the magnetic Fe3O4@SiO2@PTS-THEIC-
(CH2)3OB(OH)2 catalyst (1).
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Figure 5.   (a) Thermal gravimetric analysis (TGA) and (b) differential thermal analysis (DTA) curves of the 
magnetic dendritic Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1).

Figure 6.   VSM analysis of the magnetic dendritic Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1, 
reproduced using the Microsoft Excel 2016).
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Experimental section.  General information.  All chemicals and reagents were provided by Merck or Al-
drich chemical companies and used as received without any further purification, except for benzaldehyde which 
was used as a fresh distilled sample. FTIR spectra were recorded using KBr pellets on a Shimadzu FT IR-8400S 
spectrometer. Energy dispersive spectroscopy (EDS) was recorded on a SAMx instrument. The X-ray pow-
der diffraction (XRD) data were collected on an X’Pert MPD Philips diffractometer with Cu radiation source 
(λ = 1.54050 Å) at 40 kV voltage and 40 mA current. Field emission scanning electron microscopy (FESEM) 
images were obtained using a MIRA3 instrument of TESCAN Company, Czech Republic. Thermal gravimetric 
analysis (TGA) and differential thermal analysis (DTA) were performed by means of a Bahr company STA 504 
instrument. The BET specific surface area of the catalyst 1 was obtained using an equipment ASAP 2020 Mi-
cromeritics. Magnetic susceptibility measurements were taken out by using a Lakeshore VSM, 7410 series. Melt-
ing points were determined using an Electrothermal 9100 apparatus and are uncorrected. 1H NMR (500 MHz) 
spectra were obtained using a Bruker DRX-500 AVANCE spectrometer in CDCl3 at ambient temperature. Ana-
lytical TLC was carried out using Merck 0.2 mm silica gel 60 F-254 Al-plates and n-hexane: EtOAc, (3:1, v/v %) 
as eluent. All products are known and their structures were established by comparing the physical constants as 
well as FTIR and NMR spectroscopic data with authentic samples120,122,141.

Preparation of  Fe3O4@SiO2 nanoparticles modified by  (3‑chloropropyl) trimethoxysilane (Fe3O4@SiO2@
CPTS).  The Fe3O4@SiO2@CPTS materials were prepared according to the reported methods in literature with 
a slight modification56.

Figure 7.   FESEM images of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 magnetically recoverable catalyst (1).
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Table 1.   Optimization of the reaction of 4-chlorobenzaldeyde (2a), dimedone (3), NH4OAc (4) and/or ethyl 
acetoacetate (6) under different conditions (The chemical structures were drawn using ChemDraw Ultra 12.0 
software developed by PerkinElmer)a.

 a Reaction conditions: 4-chlorobenzaldehyde (2a, 1 mmol), dimedone (3, 2 or 1 mmol), NH4OAc (4, 
1.5 mmol) or ethyl acetoacetate (6, 1 mmol) in EtOH (2 ml); bisolated yields.

Entry
Catalyst 1 loading 
(mg) Solvent Temp. (°C) Time (min)

Yieldb (%) Product 
5a Time (min)

Yield (%) Product 
7a

1 – EtOH r.t 190 Trace 120 Trace

2 – EtOH Reflux 140 22 100 25

3 5 EtOH Reflux 100 86 45 85

4 10 EtOH Reflux 60 92 20 95

5 15 EtOH Reflux 60 92 20 95

6 10 H2O Reflux 110 67 70 64

7 10 CH3CN Reflux 115 78 80 85

8 10 EtOH r.t 100 76 90 80

9 10 H2O r.t 130 70 100 64

10 10 EtOH 60 °C 90 84 60 84

11 10 H2O 60 °C 120 70 90 64

12 10 Solvent-Free 60 °C 100 82 60 86

13 10 (H3BO3) EtOH Reflux 60 61 20 66

14 10 (Fe3O4@SiO2@
PTS-THEIC) EtOH Reflux 60 75 20 78

Figure 8.   Hot filtration test for the synthesis of ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-
hexahydroquinoline-3-carboxylate (7a) under optimized conditions (reproduced using the Microsoft Excel 
2016).
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Entry ArCHO 2 Product 5 Time (min) Yieldb % Mp (°C) Obs [Lit.]c

1
(2a)

5a 60 92 311–313 [315–317]129

2
(2b)

5b 90 80 197–200 [201–203]130

3

(2c)
5c 75 80 321–323 [321]131

4
(2d)

5d 45 93 311–314 [311–313]131

5
(2e)

5e 60 80 308–310 [310–312]132

6

(2f)
5f. 60 85 249–252 [249–251]133

7

(2g)

5g 160 72 220–223 [223–225]134

8

(2h)

5h 90 87 268–270 [273–275]130

9

(2i)
5i 60 82 284–286 [284–286]135

10

(2j)

5j 95 85 280–282 [282–283]130

11
(2k)

5k 100 85 244–246 [246–248]136

12
(2l)

5l 60 88 301–303 [298–300]136

13

(2m)

5m 60 86 328–330 [320–325]137

14
(2n)

5n 160 80 277–279 [278–279]138

15
(2o)

5o 90 82 272–274 [274–276]133
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Preparation of the dendritic Fe3O4@SiO2@CPTS@THEIC nanomaterials.  Fe3O4@SiO2@CPTS (1 g) was dis-
persed in toluene (30 ml) and KI (1.66 g) was added to the obtained mixture with the mechanical stirring at 
80 °C for 1 h. Then, K2CO3 (1.38 g) and tris-(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione (1 g) were added to 
the mixture and it was heated under reflux conditions for 8 h. The obtained solid was filtered off and washed with 
EtOH (5 ml) and then dried in an oven for 2 h.

Preparation of  the  dendritic Fe3O4@SiO2@PTS‑THEIC‑(CH2)3OB(OH)2 nanocatalyst (1).  A mixture of 
Fe3O4@SiO2@CPTS@THEIC (1 g) and 1,3-dibromopropane (d = 1.98 g.cm−3, 2 ml) was added to toluene (15 ml) 
and heated at 40 °C for 12 h. The obtained solid was filtered off, washed with toluene (5 ml) and then dried in 
a vacuum oven at 60 °C for 2 h. The as-prepared solid and H3BO3 (1 g) were mixed in EtOH (30 ml) and the 
obtained mixture was stirred at room temperature for 18 h. After completion of the process, the obtained brown 
solid was filtered off and washed with EtOH (5 ml) on a Buchner funnel and then kept in a vacuum oven at 60 °C 
for 12 h. The complete procedure for the preparation of catalyst 1 has been represented in Scheme 3.

General procedure for  the  synthesis of  1,8‑dioxoacridindione derivatives 5a–o catalyzed by  magnetic den‑
dritic Fe3O4@SiO2@PTS‑THEIC‑(CH2)3OB(OH)2 catalyst (1).  In a 5 mL round-bottomed flask, a mixture 
of aldehyde (2a–o, 1 mmol), dimedone (3, 2 mmol, 0.28 g), NH4OAc (4, 1.5 mmol, 0.11 g) and Fe3O4@SiO2@
PTS-THEIC-(CH2)3OB(OH)2 (1, 0.01 g) were added to EtOH 96% (2 mL). The obtained mixture was stirred 
under reflux conditions for the times indicated in Table 2. The progress of the reactions was monitored by TLC 
experiment (eluent; n-hexane: EtOAc, 3:1, v/v %). After completion of the reaction, EtOH (3 mL) was added 
to the mixture and it was heated to dissolve all organic compounds. Then, the catalyst 1 was easily separated 
by an external magnet and the solution was filtered. The filtrate was kept at room temperature and the crystals 
were collected by filtration to afford 1,8-dioxoacridindione derivatives 5a–o in high purity.

General procedure for the synthesis of polyhydroquinoline derivatives 7a–u catalyzed by magnetic dendritic 
Fe3O4@SiO2@PTS‑THEIC‑(CH2)3OB(OH)2 catalyst (1).  In a 5 mL round-bottomed flask, a mixture of alde-
hyde (2a–u, 1  mmol), dimedone (3, 1  mmol, 0.14  g), NH4OAc (4, 1.5  mmol, 0.11  g), ethyl acetoacetate (5, 
1 mmol, 0.13 g) and Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 (1, 0.01 g) were added to EtOH 96% (2 ml). 
The obtained mixture was stirred under reflux conditions for times indicated in Table 3. The progress of the reac-
tions was monitored by TLC experiment (eluent; n-hexane: EtOAc, 3:1, v/v %). After completion of the reaction, 
EtOH (3 mL) was added to the mixture and it was heated to dissolve all organic compounds. Then, the catalyst 1 
was easily separated by an external magnet and the solution was filtered. The filtrate was kept at room tempera-
ture and the crystals were collected by filtration to afford polyhydroquinoline derivatives 7a–u in high purity.

Selected spectral data.  9‑(4‑Chlorophenyl)‑3,3,6,6‑tetramethyl‑3,4,6,7,9,10‑hexahydro‑1,8(2H,5H)‑acri‑
dinedione (5a).  Pale yellow solid; m.p. = 310–312 °C; FT-IR (KBr, cm−1): 3282, 3176, 3060, 2954, 2875,1650, 
1608, 1492, 1365, 1220, 1147, 1089, 1014, 840, 761, 597, 526; 1H NMR (500 MHz, CDCl3): δ (ppm): 0.98 (s, 6H, 
2CH3), 1.10 (s, 6H, 2CH3), 2.19–2.37 (8H, m, 4CH2), 5.06 (s, 1H, CH), 7.17 (d, 2H, Ar–H), 7.28 (d, 2H, Ar–H), 
6.97 (s, 1H, NH).

3,3,6,6‑Tetramethyl‑9‑(pyridin‑2‑yl)‑3,4,6,7,9,10‑hexahydroacridine‑1,8(2H,5H)‑dione (5i):.  Pale yellow solid; 
m.p. = 284–286 °C; FT-IR (KBr, cm−1): 3604, 3519, 3440, 3284, 2875, 1637, 1600, 1477, 1365, 1218, 1139, 995, 
744, 563; 1H NMR (500 MHz, CDCl3): δ (ppm): 0.98 (s, 6H, 2CH3), 1.07 (s, 6H, 2CH3), 2.12–2.46 (8H, m, 4CH2), 
5.22 (s, 1H, CH), 7.51–7.58 (t, 3H, Ar–H), 8.41 (d, 1H, Ar–H), 6.97 (s, 1H, NH).

Ethyl 4‑(4‑methoxyphenyl)‑2,7,7‑trimethyl‑5‑oxo‑1,4,5,6,7,8‑hexahydroquinoline‑3‑carboxylate (7l).  Pale yel-
low solid; mp.: 255–260 °C; FT-IR (KBr, cm−1): 3278, 3203, 3076, 2956, 1699, 1604, 1496, 1379, 1276, 1218, 1070, 
1031, 842, 765, 536; 1H NMR (500 MHz, CDCl3): δ (ppm): 0.92 (s, 3H, CH3), 1.04 (s, 3H, CH3), 1.20 (t, 3H, 
J = 7.2 Hz, CH3 (OEt)), 2.11–2.28 (m, 4H, CH2), 2.33 (s, 3H, CH3), 3.71 (s, 3H, OCH3), 4.03–4.07 (q, 2H, J = 7.2 Hz, 

Table 2.   Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2-catalyzed one-pot synthesis of polyhydroacridines 
5a–o from different aldehydes (2a–o), dimedone (3) and NH4OAc (4) under the optimized conditions (The 
chemical structures were drawn using ChemDraw Ultra 12.0 software developed by PerkinElmer)a.

 a Reaction conditions: aldehyde (2, 1 mmol), dimedone (3, 2 mmol) and NH4OAc (4, 1.5 mmol) in EtOH 
(2 ml); bisolated yields. cAll products are known and their structures were established from their spectral data 
and melting points compared to authentic samples or literature values.
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Entry ArCHO 2 Product 7 Time (min) Yieldb % Mp (°C) Obs [Lit.]c

1
(2a)

7a 20 95 243–245 [242–244]115

2

(2b)

7b 20 92 249–251 [248–250]139

3
(2c)

7c 45 89 234–236 [238–240]139

4

(2d)

7d 45 92 196–198 [200–202]140

5

(2e)

7e 45 84 182–184 [182–184]115

6

(2f)
7f. 60 80 224–226 [226–228]140

7

(2g)

7g 45 85 234–237 [238–241]141

8

(2h)
7h 45 96 223–225 [224–226]115

9

(2i)
7i 55 96 235–237 [239–242]140

10
(2j)

7j 25 93 260–263 [263–265]115

11

(2k)
7k 220 67 209–212 [208–211]142

12
(2l)

7l 20 95 256–259 [255–257]115

13

(2m)

7m 190 62 223–225 [225–227]143

14
(2n)

7n 80 70 230–232 [233–235]144

Continued
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CH2 (OEt)), 4.98 (s, 1H, CH benzylic), 6.43 (br s, 1H, NH), 6.71–6.73 (d, 2H, J = 8.2 Hz, Ar–H), 7.21 (d, 2H, J = 8.2 Hz, 
Ar–H).

Ethyl 2,7,7‑trimethyl‑4‑(3‑nitrophenyl)‑5‑oxo‑1,4,5,6,7,8‑hexahydroquinoline‑3‑carboxylate (7e).  Pale yellow 
solid; m.p. = 180–184 °C; FT-IR (KBr, cm−1): 3276, 3193, 2964, 1703, 1604, 1490, 1379, 1278, 1215, 1143, 1070, 
1022, 829, 754, 690, 507; 1H NMR (500 MHz, CDCl3): δ (ppm): 0.93 (s, 3H, CH3), 1.09 (s, 3H, CH3), 1.19 (t, 
3H, J = 7.2 Hz, CH3 (OEt)), 2.13–2.40 ( 7H, s CH3, m 2CH2), 4.03–4.07 (q, 2H, J = 7.2 Hz, CH2 (OEt)), 5.15 (s, 1H, 
CHbenzylic), 5.98 (s, 1H, NH), 7.35–8.10 (m, 2H, Ar–H) (Supplementary Information 1).

Conclusions.  In conclusion, the multifunctional dendritic nanocatalyst containing boric acid and 
1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core–shell silica-coated magnetite (Fe3O4@SiO2@
PTS-THEIC-(CH2)3OB(OH)2) was prepared and properly characterized for the first time. It was found that the 
combination of both aromatic π–π stacking and boron–oxygen ligand interactions affords supramolecular arrays 
of dendrons. The use of boric acid makes this dendritic catalyst a green choice from corrosion, recyclability and 
cost points of view. The magnetic dendritic catalyst was used, as a mild and recyclable catalyst, for the one-pot 
efficient synthesis of polyhydroacridines and polyhydroquinolines through MCR strategy in EtOH as a green 
solvent. Indeed, very low catalyst loading, short reaction times, mild reaction conditions, high to excellent yields, 
reusability of the catalyst, ease of separation by an external magnetic field, and the use of nontoxic materials for 
the preparation of the catalyst are among other advantages of this protocol. Further exploring of this magnetic 
dendritic magnetic catalyst for other organic transformations is underway in our research lab and would be 
presented in due course.

Entry ArCHO 2 Product 7 Time (min) Yieldb % Mp (°C) Obs [Lit.]c

15
(2o)

7o 90 65 186–188 [184–186]144

16

(2p)
7p 120 74 218–221 [223–225]144

17
(2q)

7q 90 56 203–20 [204–205]141

18
(2r)

7r 90 67 166–168 [165–167]145

19

(2t)
7t 55 94 273–275 [274–276]146

20

(2u)
7u 45 80 157–160 [157–160]147

Table 3.   Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2-catalyzed one-pot synthesis of polyhydroquinolines 
7a–u from different aldehydes (2a–u), dimedone (3), NH4OAc (4) and ethyl acetoacetate (5) under the 
optimized conditions (The chemical structures were drawn using ChemDraw Ultra 12.0 software developed by 
PerkinElmer)a.

 a Reaction conditions: aldehyde (2, 1 mmol), dimedone (3, 1 mmol), NH4OAc (4, 1.5 mmol) and ethyl 
acetoacetate (5, 1 mmol) in EtOH (2 ml); bisolated yields. cAll products are known and their structures were 
established from their spectral data and melting points compared to authentic samples or literature values.
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Scheme 2.   Plausible mechanism for the one-pot synthesis of polyhydroacridines 5 and polyhydroquinolines 
7 catalyzed by the agnetically recoverable Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2 catalyst (1, Drawn using 
the ChemDraw Ultra 12.0 software developed by PerkinElmer).
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Figure 9.   Recyclability of the dendritic Fe3O4@SiO2@CPTS-THEIC-(CH2)3OB(OH)2 nanocatalyst (1) for the 
synthesis of 5a and 7a (Drawn using the Microsoft Excel 2016).

Figure 10.   FTIR spectra of the fresh Fe3O4@SiO2@CPTS-THEIC-(CH2)3OB(OH)2 nanocatalyst (1) and the 
recycled sample after six consecutive runs for the synthesis of 5a (reproduced using the Microsoft Excel 2016).
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