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Abstract

We developed a computer-aided diagnosis (CADx) method for classification between

benign nodule, primary lung cancer, and metastatic lung cancer and evaluated the follow-

ing: (i) the usefulness of the deep convolutional neural network (DCNN) for CADx of the ter-

nary classification, compared with a conventional method (hand-crafted imaging feature

plus machine learning), (ii) the effectiveness of transfer learning, and (iii) the effect of image

size as the DCNN input. Among 1240 patients of previously-built database, computed

tomography images and clinical information of 1236 patients were included. For the con-

ventional method, CADx was performed by using rotation-invariant uniform-pattern local

binary pattern on three orthogonal planes with a support vector machine. For the DCNN

method, CADx was evaluated using the VGG-16 convolutional neural network with and

without transfer learning, and hyperparameter optimization of the DCNN method was per-

formed by random search. The best averaged validation accuracies of CADx were 55.9%,

68.0%, and 62.4% for the conventional method, the DCNN method with transfer learning,

and the DCNN method without transfer learning, respectively. For image size of 56, 112,

and 224, the best averaged validation accuracy for the DCNN with transfer learning were

60.7%, 64.7%, and 68.0%, respectively. DCNN was better than the conventional method

for CADx, and the accuracy of DCNN improved when using transfer learning. Also, we

found that larger image sizes as inputs to DCNN improved the accuracy of lung nodule

classification.

PLOS ONE | https://doi.org/10.1371/journal.pone.0200721 July 27, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nishio M, Sugiyama O, Yakami M, Ueno

S, Kubo T, Kuroda T, et al. (2018) Computer-aided

diagnosis of lung nodule classification between

benign nodule, primary lung cancer, and metastatic

lung cancer at different image size using deep

convolutional neural network with transfer learning.

PLoS ONE 13(7): e0200721. https://doi.org/

10.1371/journal.pone.0200721

Editor: Yong Deng, Southwest University, CHINA

Received: March 11, 2018

Accepted: May 29, 2018

Published: July 27, 2018

Copyright: © 2018 Nishio et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Japanese privacy

protection laws and related regulations prohibit us

from revealing any health-related private

information such as medical images to the public

without written consent, although the laws and

related regulations allow researchers to use such

health-related private information for research

purpose under opt-out consent. We utilized the

images under acceptance of the ethical committee

of Kyoto University Hospital under opt-out consent.

It is almost impossible to take written consent to

https://doi.org/10.1371/journal.pone.0200721
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200721&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1371/journal.pone.0200721
https://doi.org/10.1371/journal.pone.0200721
http://creativecommons.org/licenses/by/4.0/


Introduction

Computer-aided diagnosis refers to software that helps clinicians to diagnose disease, and it

has the potential to optimize clinicians’ workloads [1,2,3–7]. Computer-aided diagnosis can be

divided into software that detects lesions (CADe, computer-aided detection) and software that

classifies lesions (CADx, computer-aided diagnosis). However, for CADe or CADx to assist

clinicians effectively, they must perform reliable and efficient image recognition. If a method

that can better recognize an image is applied to computer-aided diagnosis, its performance can

be improved.

Lung cancers are the leading cause of cancer-related death in the United States because they

are frequently diagnosed at an advanced stage [8]. Results from the National Lung Screening

Trial showed that lung cancer screening by computed tomography (CT) has significantly

reduced lung cancer mortality among heavy smokers, but that false positives were problematic,

accounting for 96.4% of positive screening results [9]. Another study has indicated that CADe

might help radiologists to detect missed lung cancers on CT screening by assisting with image

interpretation [7]. Experience with CADe suggests that CADx might help reduce the number

of false positives identified by CT during lung cancer screening.

Deep learning is a new technique that is overtaking conventional methods of computer

vision, such as hand-crafted imaging feature plus machine learning, and is increasingly being

used in CAD [10]. Deep convolutional neural network (DCNN) has attracted the attention of

researchers since its introduction in 2012 at the IMAGENET Large Scale Visual Recognition

Challenge [11]. The DCNN method has continued to improve, and it has been shown that

image recognition by DCNN was identical or superior to that by humans in general object rec-

ognition [12].

Many studies have used DCNN to improve the performance of CAD [10,13–20,21]. Several

studies have also proposed the use of DCNN-based CAD for lung nodules. For example, Tera-

moto et al. proposed that use of DCNN in CADe could reduce the false positive rate in posi-

tron emission tomography/CT images of lung nodules [21]. The results of Ciompi et al. also

show that DCNN was useful for CADx, helping to classify lung nodules into six types [19].

In the current study, we focused on developing CADx by DCNN for lung nodules. Our aim

was to evaluate the following: (i) the usefulness of DCNN for CADx compared with conven-

tional methodology (i.e. hand-crafted imaging feature plus machine learning), (ii) the effec-

tiveness of transfer learning, and (iii) the effect of image size as an input to DCNN.

Methods

This retrospective study was approved by the ethical committee of Kyoto University Hospital,

which waived need for informed consent. We used a database which were built for previous

research of CADx [4,22]. Because the previous studies focused on CADx without DCNN, the

purpose of the current study is different from those of the previous studies.

CT image database

The database contained the CT images and clinical information of 1240 patients who had at

least one lung nodule. The CT images were acquired using a 320-detector-row or a 64-detec-

tor-row CT scanner (Aquilion ONE or Aquilion 64; Toshiba Medical Systems, Otawara,

Japan). CT scan parameters were as follows: tube current, 109 ± 53.3 mA (range, 25–400 mA);

gantry rotation time, 0.500 ± 0.0137 s (range, 0.400–1.00 s); tube potential, 120 ± 1.69 kV

(range, 120–135 kV); matrix size, 512 × 512 and slice thickness, 1 or 0.5 mm. Lung nodules

diagnosed as benign nodules, primary lung cancers, or metastatic lung cancers were selected,
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and the CT images, final diagnosis, and nodule positions of these nodules were used for devel-

opment and evaluation of CADx.

Image pre-processing

The CT images were loaded, and their voxel sizes converted to 1× 1 × 1 mm. In each case,

because the position of the center of the lung nodule was available, the CT images including

the lung nodule were cropped with a volume of interest set to 64 × 64 × 64 mm (voxels). The

cropped CT images were then input for CADx.

Conventional CADx

From the cropped CT images, feature extraction was performed by rotation-invariant uni-

form-pattern local binary pattern on three orthogonal planes (LBP-TOP) [23,24,25], which

has been successfully used for CADx of lung nodules [3]. The results of LBP-TOP were fed to

support vector machine (SVM) with kernel trick (radial basis function) [26]. LBP-TOP had

two hyperparameters (LBPR and LBPP), and SVM had two hyperparameters (C and γ).

CADx by DCNN with and without transfer learning

To utilize DCNN for 2D images (2D-DCNN), the 3D cropped CT images were converted to

2D images. Three orthogonal planes (axial, coronal, and sagittal) were set on the center of the

3D images, and 2D images (64 × 64) in the three orthogonal planes were extracted. At extrac-

tion, the sizes of 2D images were converted to L × L, where L was set to 56, 112, or 224. With

this image processing, each lung nodule was represented as the three 2D images (size = L × L).

We referred to a pair of these 2D images and the corresponding final diagnosis as a batch.

Before feeding batches to DCNN, the pixel value range of the 2D images was changed from

−1000, 1000 to −1, 1 by the transformation y = x/1000, where x and y were the pixel value

before and after the transformation, respectively.

The architecture of 2D-DCNN in our CADx was derived from VGG-16 convolutional neu-

ral network [27], which was modified to perform transfer learning (Fig 1). First, fully-con-

nected (FC) layers of VGG-16 were removed, and a new FC layer was added, whose number of

units was denoted by F. Next, an FC layer with three units, whose output would be converted

to a probability of the three classes, was added as the prefinal DCNN layer. Dropout was

applied between the two FC layers, with strength denoted by D (0 = no dropout; 1 = full drop-

out and no connection between the two FC layers). We then used rectified linear units as the

activation function of the FC layer with F units. To convert the output of the FC layer with

three units to a probability of the three classes, a softmax layer was used. For transfer learning,

we used VGG-16 parameters pretrained with IMAGENET [11] and finetuned by stochastic

gradient descent. The initial learning rate of stochastic gradient descent was represented as R.

Parameter finetuning was not performed in several VGG-16 layers, and the number of layers

without finetuning is represented by V. In CADx by DCNN without transfer learning, training

was performed without VGG-16 parameters pretrained with IMAGENET. Data augmentation

was performed for 2D-DCNN training. Hyperparameters of 2D-DCNN were summarized in

Supporting Information.

Statistical analysis

We used 1113 training cases for learning and 123 validation cases for performance evaluation,

which did not overlap. Validation loss and validation accuracy were calculated 10 times with

the same CADx hyperparameters [19]; splitting of the training and validation sets was random
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each time. The averaged values for validation loss and validation accuracy were obtained for

each set of hyperparameters and were used to evaluate the performance. For the conventional

method, we selected the best LBP-TOP and SVM hyperparameters by grid search [28]. For the

DCNN method, we performed random search to optimize the hyperparameters [29]. The

detail of random search was described in Supporting Information.

Results

For benign nodules, primary lung cancers, and metastatic lung cancers, the following number

of lung nodules were selected from the database for development and evaluation of CADx:

benign nodules, n = 412; primary lung cancers, n = 571; and metastatic lung cancers, n = 253.

Four lung nodules were excluded because they did not fit one of these three types (for example,

carcinoid). All diagnoses of primary lung cancer were confirmed pathologically. Benign nod-

ules were primarily confirmed by stability or shrinkage on repeat CT scans over a 2-year fol-

low-up period, but 57 were also diagnosed pathologically. Most of the metastatic lung cancers

were diagnosed radiologically and clinically, and the diagnosis of 90 metastatic lung cancers

was confirmed pathologically. As shown in Table 1, mean and standard deviation of size of

these lung nodules were 20.52 ± 10.22 mm.

The current study included 709 men and 527 women, and the patient demographics of

these 1236 patients are shown in Table 1. Mean and standard deviation of patient age and

smoking history (Brinkman Index) was 65.76 ± 12.65 and 605.1 ± 774.2, respectively. Their

smoking status was as follows: current smoker, n = 266; ex-smoker, n = 456; and never

smoker, n = 514. Previous history of malignant tumor was confirmed in 545 patients. Con-

trast-enhanced CT was performed in 531 patients.

Fig 2 shows representative CT images of a benign nodule, a primary lung cancer, and a met-

astatic lung cancer. Fig 3 shows three representative CT images of a lung nodule obtained

from the three orthogonal planes and used as the input to 2D-DCNN.

Fig 1. Schematic illustration of the modified VGG-16. Note: Except softmax layer, activation function is not shown.

https://doi.org/10.1371/journal.pone.0200721.g001
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Table 1. Summary of patient demographics.

Variables All Benign nodule Primary lung cancer Metastatic lung cancer

Mean SD Mean SD Mean SD Mean SD

N 1236 412 571 253

Age (y) 65.76 12.65 64.81 13.80 68.41 9.70 61.35 14.97

Sex (number of men) 709 237 331 141

Smoking history (Brinkman Index) 605.1 774.2 543.8 747.7 756.4 841.1 354.0 543.3

Smoking status

Current smoker 266 70 151 45

Ex-smoker 456 161 219 76

Never smoker 514 181 201 132

Previous history of malignant tumor 545 148 144 253

Nodule size (mm) 20.52 10.22 18.28 8.54 24.81 10.89 14.48 6.16

Contrast-enhanced CT 531 113 287 131

Because Brinkman index was not clearly described in 20 patients, Mean and SD of brinkman index were calculated without these 20 patients. Abbreviation: SD,

standard deviation; CT, computed tomography.

https://doi.org/10.1371/journal.pone.0200721.t001

Fig 2. Representative CT images of lung nodules. (A) benign nodule, (B) primary lung cancer and (C) metastatic lung cancer.

https://doi.org/10.1371/journal.pone.0200721.g002

Fig 3. Three CT images obtained from three orthogonal planes used for input to 2D-DCNN. Fig 2(B) is identical to Fig 3(A). (A)

axial image, (B) coronal image and (C) sagittal image. Abbreviations: DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.g003
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The best averaged validation accuracy for the conventional method was 55.9%, and the fol-

lowing optimal hyperparameters were used: LBPR = 4, LBPP = 40, C = 1024, and γ = 4. Table 2

shows validation loss, validation accuracy, and the optimal hyperparameters for L values of 56,

112, and 224 for CADx by DCNN with transfer learning. The best averaged validation loss and

validation accuracy for DCNN with transfer learning were, respectively, as follows: 0.822 and

60.7% when L = 56; 0.783 and 64.7% when L = 112; and 0.774 and 68.0% when L = 224.

Table 2 also shows validation loss, validation accuracy, and the optimal hyperparameters for L
values of 56, 112, and 224 for DCNN without transfer learning. The best averaged validation

loss and validation accuracy for DCNN without transfer learning were, respectively, as follows:

0.843 and 60.2% when L = 56; 0.824 and 62.4% when L = 112; and 0.860 and 58.9% when

L = 224. The raw results for optimal CADx with DCNN are shown in Supporting Information,

as are the averaged validation loss and validation accuracy data in all trials of random search.

Figs 4 and 5 show representative results for loss and accuracy during DCNN training with

and without transfer learning, respectively. Tables 3 and 4 show the corresponding confusion

matrices between true labels and predicted labels obtained from CADx by DCNN with and

without transfer learning, respectively. In addition, averaged confusion matrix was shown in

Table 5, where the best averaged validation accuracy (68.0%) was obtained.

Discussion

The current results show that CADx of the ternary classification (benign nodule, primary lung

cancer, and metastatic lung cancer) was better when using DCNN than when using the con-

ventional method, and that transfer learning improved image recognition with the DCNN

method. In addition, larger image sizes as inputs to DCNN improved the accuracy of lung

nodule classification.

The averaged validation accuracies of CADx were 68.0% and 55.9% by the DCNN and con-

ventional methods, respectively. These results confirm that DCNN was more useful for the

CADx of lung nodules. While a major advantage of DCNN is that its performance for image

recognition is superior to the conventional method, disadvantages are (i) that it is difficult to

train because it frequently leads to overfitting and (ii) that large-scale data are needed for effec-

tive training. To prevent overfitting, we therefore used transfer learning to provide better diag-

nostic accuracy for lung nodules. We speculated that transfer learning was effective because

our database was medium-scale (>1000 lung nodules).

The previous study [4] evaluated the performance of CADx without DCNN using the

data for 1000 lung nodules obtained from our database. The study produced classification

Table 2. Optimal hyperparameters and classification results for CADx by DCNN with and without transfer learning.

Type L E R V F D Validation Accuracy (%) Validation Loss

DCNN with TF

56 20 0.00002 4 384 0.6 60.7 0.822

112 20 0.00002 11 384 0.4 64.7 0.783

224 20 0.00002 11 384 0.4 68.0 0.774

DCNN without TF

56 30 0.00007 0 384 0.6 60.2 0.843

112 25 0.0001 0 384 0.4 62.4 0.824

224 15 0.0001 0 384 0.4 58.9 0.860

validation loss and validation accuracy were calculated 10 times with the same CADx hyperparameters, and their averaged values were shown. Abbreviations: CADx,

computer-aided diagnosis; DCNN, deep convolutional neural network; TF, transfer learning.

https://doi.org/10.1371/journal.pone.0200721.t002
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accuracies of 57.7% and 61.3% based on the conventional method and their proposed method

(feature vectors calculated based on radiological findings), respectively. Because we used dif-

ferent methods for evaluating CADx performance, it was difficult to directly compare the per-

formance with that of the previous study. However, according to both studies, the accuracy of

CADx with the conventional method was nearly 60% for our database.

According to Litjens et al. [10], few studies have performed a thorough investigation of

whether transfer learning gives better results for medical image analysis. Indeed, the results of

two studies have left controversy about the efficacy of transfer learning [30,31]. By contrast,

another two studies have shown that transfer learning with Google’s Inception v3 architecture

can achieve diagnostic accuracy to expert human level in dermatology and ophthalmology

[32,33]. In conjunction with the results of our study, CADx with transfer learning should

improve diagnostic accuracy provided sufficient training data are used.

It was notable that image size (L) affected the accuracy of CADx by DCNN. Although

image size is a simple factor, its effect on the accuracy of CADx was large in our study. Similar

results were obtained in the previous study, where slice thickness of CT images could affect the

detectability of CADe [34]. We speculated that, because VGG-16 was originally pretrained

with an image size of 224 × 224, the best accuracy was obtained by finetuning VGG-16 with

2D CT images of the same size in our study. In the review of CAD by Litjens et al. [10], it was

suggested that the exact architecture of deep learning was not the most important determinant

Fig 4. Representative results of loss and accuracy during DCNN training with transfer learning. Abbreviations:

DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.g004
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Fig 5. Representative results of loss and accuracy during DCNN training without transfer learning. Abbreviations:

DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.g005

Table 3. Representative result of confusion matrix between true labels and predicted labels by DCNN with transfer learning.

Predicted label

Benign nodule Primary lung caner Metastatic lung cancer

True label Benign nodule 22 8 5

Primary lung caner 6 46 8

Metastatic lung cancer 5 4 19

Because splitting of the training and validation sets was random each time, the ratio between the 3 classes was variable. This confusion matrix corresponds to the results

of Fig 4. Abbreviations: DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.t003

Table 4. Representative result of confusion matrix between true labels and predicted labels by DCNN without transfer learning.

Predicted label

Benign nodule Primary lung caner Metastatic lung cancer

True label Benign nodule 15 19 6

Primary lung caner 10 43 6

Metastatic lung cancer 6 3 15

Because splitting of the training and validation sets was random each time, the ratio between the 3 classes was variable. This confusion matrix corresponds to the results

of Fig 5. Abbreviations: DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.t004
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of a good solution, and that data pre-processing or augmentation based on expert knowledge

about the task could provide advantages beyond simply adding more layers to DCNN. Our

results also show that a pre-processing step, such as adjusting the image size, should be per-

formed carefully to obtain accurate results from CADx.

We developed a CADx method which classifies lung nodules into benign nodules, primary

lung cancer, or metastatic lung cancer. A Lung CT Reporting and Data System (Lung-RADS)

has been proposed for estimating lung cancer risk and the optimal follow-up strategy based on

nodule-specific characteristics (i.e. nodule type, nodule size) [35]. Ciompi et al. developed

CADx with DCNN for classifying the nodule type based on Lung-RADS [19]. However,

although the nodule type is an important factor when evaluating lung cancer risk, it is not

directly associated with pathological or clinical diagnosis. In contrast to this, our CADx

method using DCNN can directly output the probabilities of the three classifications and

would be more useful for clinicians than CADx which classifies nodule type.

Both our database and that of The Lung Image Database Consortium and Image Database

Resource Initiative (LIDC/IDRI) [36] contain in excess of 1000 cases and CT images. However,

clinical diagnostic results are only partially available in the LIDC/IDRI database. Few studies

exist in which CADx was performed by DCNN with directly outputted probabilities of disease

classification. We built our database to include both clinical diagnosis and radiological image

findings [22].

There were several limitations to our study. First, we ignored all nodule-specific features,

such as nodule size and type. The results of a previous study [4] show that CADx using radio-

logical findings provided better results; given this, utilizing radiological findings may improve

DCNN-based CADx. We hope that our study could serve as a basis for further exploration of

CADx based on lung nodule characteristics. Second, we used 2D-DCNN for the CADx of lung

nodules. Through image pre-processing, the 3D CT images of the lung nodules were converted

to 2D CT images in three orthogonal planes, which greatly reduced the computational burden

for DCNN training and testing. We focused on 2D-DCNN in the present study because it was

difficult to perform transfer learning with 3D-DCNN on medical image analysis. We will

attempt 3D-DCNN for CADx of lung nodules in a future study. Third, we only investigated

the effect of smaller image sizes (L� 224) because the computational cost precluded the evalu-

ation of larger images. Given that the performance of graphic processing units has increased

since the study inception, we expect to be able to evaluate the effect of larger image sizes in a

future study.

In conclusion, the 2D-DCNN method was more useful for ternary classification of lung

nodule than the conventional method for CADx, and transfer learning enhanced the image

recognition for CADx by DCNN when using medium-scale training data. In addition, our

Table 5. Result of averaged confusion matrix between true labels and predicted labels by DCNN with transfer learning.

Predicted label

Benign nodule Primary lung caner Metastatic lung cancer

True label Benign nodule 19.9 12.6 7.2

Primary lung caner 8.4 43.5 4.1

Metastatic lung cancer 4.6 2.5 20.2

Because splitting of the training and validation sets was random each time, the ratio between the 3 classes was variable. This averaged confusion matrix was calculated

from the 10 sets of classification results of 123 validation cases at the optimal hyperparameters. The validation accuracy of this confusion matrix was 68.0%.

Abbreviations: DCNN, deep convolutional neural network.

https://doi.org/10.1371/journal.pone.0200721.t005
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results show that larger image sizes as inputs to DCNN improved the accuracy of lung nodule

classification.
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