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Abstract: Detecting the signals of the primary users in the wideband spectrum is a key issue for
cognitive radio networks. In this paper, we consider the multi-antenna based signal detection in
a wideband spectrum scenario where the noise statistical characteristics are assumed to be unknown.
We reason that the covariance matrices of the spectrum subbands have structural constraints and
that they describe a manifold in the signal space. Thus, we propose a novel signal detection
algorithm based on Riemannian distance and Riemannian mean which is different from the traditional
eigenvalue-based detector (EBD) derived with the generalized likelihood ratio criterion. Using the
moment matching method, we obtain the closed expression of the decision threshold. From the
considered simulation settings, it is shown that the proposed Riemannian distance detector (RDD)
has a better performance than the traditional EBD in wideband spectrum sensing.

Keywords: cognitive radio; wideband spectrum sensing; information geometry; Riemannian distance;
Riemannian mean; moment matching

1. Introduction

In today’s increasingly crowded wireless spectrum environment, cognitive radio (CR) networks
are considered a promising technology to mitigate the contradiction between fixed spectrum allocation
and efficient utilization, which has received sustained attention in recent years [1,2]. In order to access
the spectrum holes without interfering with the primary user (PU) in the network, the secondary user
(SU) is required to perform accurate spectrum sensing.

As a key problem in CR networks, spectrum sensing technology has been extensively studied.
Several classical spectrum sensing methods, such as energy detection (ED), matched filtering (MF)
detection and cyclostationary detection have been proposed. Although ED is easy to implement, it is
sensitive to noise uncertainty [3]. The MF method requires waveform information about the primary
signal [4] and cyclostationary detection needs to know the cyclic frequencies of the primary signal [5].
Compared with the classical methods, eigenvalue-based spectrum sensing methods for multi-antenna
systems require less prior information about noise and signal. Due to the correlation of the primary
signal in multi-antenna reception, some spectrum sensing algorithms are designed according to the
covariance matrix of the received data vectors, and the corresponding test statistics are constructed by
applying the eigenvalues of the covariance matrix. To date, some typical detectors have been proposed
in the literature, including the largest eigenvalue detector (LED) [6], maximum-minimum eigenvalue
(MME) detector [7], the scaled largest eigenvalue (SLE) detector [8], and the arithmetic to geometric
mean (AGM) detector [9]. In practical application scenarios, the CR system may suffer from unknown
interference in the wideband spectrum and the imperfections of the sensor hardware [10–12]. Thus the
independent and identically distributed (i.i.d.) noise assumption in eigenvalue-based algorithms may
not be realistic. Moreover, it is possible for a number of asynchronous independent PUs to access
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the same frequency band at the same time. Accordingly, the CR sensor needs to sense the wideband
spectrum in the case of the unknown noise characteristics and unknown number of PUs.

Meanwhile, in CR networks, spectrum sensing for wideband is also an important topic worthy of
study. In [13], the wideband spectrum sensing (WSS) problem is partitioned into four basic elements
to study, namely, system modeling, performance metrics, sampling schemes and detection algorithms.
In the context of this paper, we choose the detection probability of the primary signal in each subband
of the wideband spectrum as the performance metric. We assume independent PU occupancy across
subbands and that the detections of primary signals in each subband are independent with each other.
For the above independent channel-by-channel detection mode [13], we can employ the more easily
achieved partial band Nyquist sampling scheme to complete the wideband spectrum data acquisition.

In this paper, unlike traditional spectrum sensing algorithms based on a generalized likelihood
ratio test (GLRT) [9,14], we consider the rethinking of WSS problem from the perspective of information
geometry. As a promising cutting-edge discipline, information geometry studies the problems in
the field of statistics and information science by applying modern differential geometry method
on Riemannian manifolds. It has been widely used in machine learning, medical imaging, radar
signal processing, signal classification and other research areas [15–20]. Inspired by these studies,
we consider using the information geometry theory to design the spectrum sensing method, rather than
the normed linear space theory. From the view of Lie group theory, the covariance matrix of sensing
data is a Toeplitz Hermitian positive definite matrix, which forms the negative curvature space [21].
By constructing statistical models on the manifold, we can exploit the Riemannian distance for
hypothesis testing, regardless of the specific characteristic assumptions about signal and noise. On the
other hand, in multiband detection, there may be a plurality of vacant subbands available for estimating
noise. Considering the geometric features of the matrix manifold, we use the Riemannian mean instead
of the arithmetic mean for the joint estimation with multiple covariance matrices. To the best of the
authors’ knowledge, this is the first time the information geometry is used to solve the WSS problem.

The rest of the paper is organized as follows: in Section 2, we describe the system model in detail,
introduce the key concepts of information geometry—Riemannian distance and Riemannian mean,
and propose the Riemannian distance-based test statistic. Section 3 presents theoretical analysis and
finds thresholds for the proposed detector using random matrix theory. In Section 4, we show the
numerical results of the proposed algorithm. Finally, the main results of this paper are drawn in
Section 5.

2. System Model and the Proposed Detection Scheme

2.1. System Model

Consider a CR system performing spectrum sensing on a spectrum of B Hz equipped with K
antennas in each sensing node, as depicted in Figure 1. In the context of this article, we focus on
the spectrum sensing of a single SU. It is worth noting, however, that in the cooperative spectrum
sensing model, our methods are still applicable if the data of different nodes can be collected at the
fusion center. It is assumed that the bandwidths of subbands are known to the CR receiver and the
whole band is divided into L subbands. In the sensing time Ts, the receiver collects N samples in
each subbands, the n-th observed data in the i-th subband is xi[n], n = 0, . . . , N − 1. Every subband
sampling vector is composed of K-antenna data xi[n] = [x1

i [n], . . . , xK
i [n]]

T . Then, the spectrum sensing
problem in each subband can be expressed by the following two hypotheses:

H0,i : xi[n] = wi[n], n = 0, . . . , N − 1
H1,i : xi[n] = isi[n] + wi[n], n = 0, . . . , N − 1,

(1)

whereH0,i (null hypothesis) stands for the absence of PUs andH1,i for the presence of PUs. Here, wi[n]
is the n-th noise sample in the i-th subband over the K antennas. In our sensing scenario assumption,
the number of concurrent PU transmissions is P which is unknown to the sensing node. The K×P
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matrix Hi = [h(1)
i , . . . , h(P)

i ] represents the channels between the P PUs and the receiving antennas

in the i-th subband. The P×1 vectors si[n] = [s(1)i [n], . . . , s(P)
i [n]]

T
denote the n-th samples of the

transmitted signal from the PUs in the i-th subband. We assume that the transmitted samples s(p)
i [n]

follow an i.i.d. zero mean complex Gaussian distribution, and are independent from the noise.
The entire collected observations of i-th subband is defined as a K×N matrix

Xi = [xi[0], . . . , xi[N − 1]], where the noise matrix is the K×N matrix Wi = [wi[0], . . . , wi[N − 1]],
and the signal matrix is the P×N matrix Si = [si[0], . . . , si[N − 1]].

By the above assumptions, we define the covariance matrix of i-th subband as Ri = E[xi[n]xH
i [n]],

where (·)H denotes the conjugate transpose. With N received samples in a finite sensing time, the CR
receiver calculates the K×K sample covariance matrix R̂i = XiXi

H to complete the sensing problem.
In our sensing problem assumption, the noise samples subject to zero mean complex Gaussian

distribution, and the noise covariance matrix in i-th subband is assumed to be Ψi. Under the hypothesis
H0,i, the sample covariance matrix is a complex Wishart matrix subject to WK(N, Ψi). Under the
hypothesisHl,i, the sample covariance matrix is denoted as:

H0,i : R̂i = WiWi
H = Ψi (2)

H1,i : R̂i = HiSiSi
HHi

H + Ψi. (3)

With the uncorrelated assumption about Si, and the transmission power of the p-th PU defined as
η
(p)
i = E(s(p)

i [n]s(p)
i [n]H), Equation (3) can be written as:

R̂i =
P

∑
p=1

η
(p)
i h(p)

i h(p)
i

H + Ψi. (4)

The sensing performance is evaluated by the detection probability PD and the false alarm
probability PF, respectively, corresponding to the correct detection of the presence of primary signal at
hypothesisH1 and wrongly claiming of the presence of primary signal at hypothesisH0.
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2.2. Riemannian Distance and Riemannian Mean

In information geometry theory, we consider that F is a set of probability density functions
p(x|θ), where x is a sample of n dimensional complex random variable X, i.e., x ∈ X ⊆ Cn. And θ is
the m dimensional parameter vector, i.e., θ ∈ Θ ⊆ Cm. Generally, the probability distribution space can
be described by its parameter set Θ. The statistical model S is expressed as:

S = {p(x|θ)|θ ∈ Θ ⊆ Cm}, (5)

Under certain topological structures, S can form a differentiable manifold, called statistical
manifoldM, where θ is defined as the natural coordinate of the statistical manifold [22]. From the
point of view of information geometry, the probability distributionWK

(
N, R̂i

)
can be parameterized

separately by the respective covariance matrix. ThenWK
(

N, R̂i
)

can be considered to be located on
the statistical manifold which takes covariance matrix as coordinate. In particular, R̂i is a Toeplitz
Hermitian positive definite matrix with the noise and signal models under H0 and H1. The set of
covariance matrices constitutes a complex symmetric positive definite (SPD) matrix space denoted by
Sym(n, C), which is also defined as SPD manifold. The parameter space Θ of zero-mean multivariate
Gaussian distribution and Sym(n, C) are isomorphic. Therefore the statistical manifold can be described
by Sym(n, C) due to the mapping relationship between them [23]. Many articles have focused on
the research of the geometry structure of complex symmetric positive definite matrix manifold.
It is a completely connected, complete Riemannian manifold with non-positive sectional curvature,
called the Cartan-Hadamard manifold, whose geodesic exists and is unique [21]. In all curves
connecting the two points θAθB on the manifold, the geodesic is the shortest one. This shortest
distance, called the Riemannian distance between θA and θB, can be used to describe the similarity of
the two distributions. The Riemannian distance between two elements in Sym(n, C) is given in [19]
as follows:

D2(R1,R2)= ‖log
(

R−1/2
1 R2R−1/2

1

)
‖

2

= ‖log
(

R−1
1 R2

)
‖

2

= Tr
[
log2

(
R−1

1 R2

)]
=

n
∑

i=1
log2(λi) ,

(6)

where ‖ · ‖ is the Frobenius norm and λi is the n eigenvalues of the matrix R−1
1 R2. Compared with

Kullback-Leibler divergence, D2 has better properties, such as symmetry, satisfying triangle inequality
and so on.

Let R be the midpoint between two points R1 and R2 in space. In the normed linear space,
the midpoint calculation corresponds to the arithmetic mean R = (R1 + R2)/2. On the manifold,
it is found that for Sym(n, C), the local curvature is not constant Sym(n, C), the local curvature is
not constant and not positive, so the calculation of the midpoint must depend on the corresponding
geometric mean rather than the arithmetic mean. Using the Riemannian distance we can define
the midpoint satisfying D2(R1, R

)
= D2(R2, R

)
. The formula for calculating the midpoint with

the geometric means is given as R = R1/2
1

(
R−1/2

1 R1/2
2 R−1/2

1

)1/2
R1/2

1 in [19]. For the N points on
Sym(n, C), the Riemannian mean is defined by Riemannian distance:

R = arg min
R∈Sym(n,C)

1
N

N

∑
k=1

D2(Rk, R). (7)

The geometric representation of the Riemann mean is given in Figure 2. In the field of information
geometry research, Riemannian mean computation is an important problem. In [17], a Riemannian
mean computation method based on the gradient descent algorithm is proposed. The Riemannian
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mean is iteratively computed by using the gradient descent algorithm along the geodesic direction of
the manifold:

Rt+1 = R1/2
t e

−ε
N
∑

k=1
log (R−1/2

t R1/2
k R−1/2

t )
R1/2

t . (8)

In (8), ε ≥ 0 controls the iteration speed and Rk(k = 1, 2, . . . , N) are the N matrices on the manifold.
Rt is the estimate of the Riemannian mean calculated from t iterations. The detailed process of iterative
computation is given in Algorithm 1.

Algorithm 1: Iterative Calculation of the Riemannian Mean By a Gradient Descent Algorithm

Input: Rk(k = 1, 2, . . . , N) and ε.
Output: Estimates of Riemannian mean R.
Initialize: t = 1; R1 = R1.
repeat

Compute gradient of objective function ∇ f =
N
∑

k=1
log
(

R−1/2
t R1/2

k R−1/2
t

)
;

Obtain Rt+1 = R1/2
t e−ε∇ f R1/2

t ;
Update t = t + 1;
until convergence.
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2.3. The Riemannian Distance Based Test Statistic

In our sensing scenario assumptions, the specific form of Ψi is arbitrary and unknown, but the
Ψi of different subbands are identical. This assumption of noise means the different subbands suffer
from the same unknown interference or the imperfections of the sensor hardware. It is difficult to
design the test statistic according to the probability distributions of the received data underH0 under
such assumptions. We consider the sample covariance matrix of the vacant channel in the wideband
spectrum as an estimate of the unknown Ψi, called the reference matrix. Then we calculate the
Riemannian distance between the covariance matrix of the channel under test and the reference matrix.
Thus, the solution to the detection problem is transformed from the traditional statistical inference
method (which is accomplished by hypothesis testing the probability distribution of the statistical
model via the N observations of X) into the information geometry method (which is accomplished by
computing the geodesic between the two points on manifold).

There are several ways to get the reference matrix. One is to extract noise-only data samples in the
system’s agreed free time and frequency bands. If the interval between the free time and the sensing
time is short enough, or the free bands is close enough to the bands under test, they can be considered
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to have the same noise covariance characteristics. Besides, we can select one or more subbands with the
lower power spectral density (PSD) as the vacant noise-only subbands as detailed in [24]. The sample
covariance matrix of the vacant subband is set to be the reference matrix for the Riemann distance
based detection method.

If the reference matrix is R̂V , then the test statistic is defined as:

TRD = ‖log
(

R̂−1/2
V R̂iR̂

−1/2
V

)
‖

2

= ‖log
(

R̂−1
V R̂i

)
‖

2

=
K
∑

k=1
log2(λk) ,

(9)

where R̂i is the K×K sample covariance matrix of the subband to be tested, and λk(k = 1, . . . , K) is the
eigenvalue of the matrix R̂−1

V R̂i. The proposed Riemannian distance detector is:

TRD

H0,i
≶
H1,i

γ, (10)

where γ is the pre-set detection threshold.
In summary, we propose the process of spectrum sensing algorithm based on Riemannian distance

in wideband:

1. Determine the vacant subband. If there is only one vacant (noise-only) subband, then its sample
covariance matrix ΨV = XVXV

H is calculated and used as a reference matrix R̂V = ΨV . If there
are multiple vacant subbands, such as A, then the Riemannian mean ΨV of the noise covariance
matrices Ψi(i = 1, . . . , A) of the multiple vacant subbands can be used as the reference matrix:

R̂V = ΨV = arg min
Ψ∈Sym(n,C)

1
A

A

∑
i=1

D2(Ψi, Ψ). (11)

2. Compute the sample covariance matrix R̂i = XiXi
H of the i-th subband to be tested.

3. Obtain the test statistic TRD,i−thsubband = D2(R̂V , R̂i
)
=

K
∑

k=1
log2(λk), where λk is the eigenvalue

of R̂−1
V R̂i with ordered 0 ≤ λ1 ≤ · · · λK ≤ ∞.

4. Compare the test statistic with the threshold, and get the sensing result:

TRD,i−th subband

H0,i
≶
H1,i

γ. (12)

In the above sensing method, the main computational complexity lies in the covariance matrix
inversion calculation. The difficulty of inversion depends on the value of K, which is the number of
antennas. As we will present in the Section 4, even with small K, the proposed Riemannian distance
detector still shows good detection performance. If K is large, the matrix inversion calculation may not
be easy. Then the alternative methods noted in [19] may be a better choice. It should be noticed that in
Equation (6), we can calculate the square root matrix instead of the inverse matrix. In [19], a square
root of positive definite matrix computing method is given. Using the Schulz iteration, the intractable
matrix inversion can be avoided.

3. Threshold and Probability of False Alarm

The PF performance and PD performance of the proposed Riemannian distance detector depend on
the probability distribution of the test statistic Equation (9) underH0 andH1. However, the analytical
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forms of the probability distribution under both hypotheses are hard to be obtained. In this section
we derive the accurate closed-form approximation of PF to get the decision threshold. And the PD
performance will be presented and discussed through numerical simulations in Section 4.

3.1. Moments of Test Statistics underH0

We consider a moment matching method to approximate the probability density function (PDF)
of the test statistics. Therefore, we need to obtain the exact moments of TRD underH0:

E(TRD
p) = E

{(
K

∑
k=1

log2(λk)

)p}
. (13)

In this section, we will give a detailed calculation process of the moments of test statistics under
H0. First, we show the joint PDF of the eigenvalues in Equation (9) according to the random matrix
theory. Then we use the joint PDF to solve the moments of test statistics which can be regarded as
the eigenvalue function. The calculation of the first order moments will be presented as an example.
And the closed-form solution to the p-th moment will be given at last.

Consider the case where the number of reference matrices is A = 1, then the reference covariance
matrix and the sample covariance matrix of the i-th subband in the expression of the test statistic TRD
underH0 follow the distributions respectively:

R̂V ∼ WK(N, Ψv), (14)

R̂V ∼ WK(N, Ψv), underH0, (15)

where R̂V is independent of R̂i. The joint PDF of the eigenvalues λk(k = 1, . . . , N) of the matrix
R̂−1

V R̂i has been given under the assumption that the dimensions of two complex Wishart matrices are
equal [25,26], which is:

f (λ1, λ2, . . . , λK) =
ΓN(2K)

ΓN(K)ΓN(K)ΓN(N)

K

∏
k=1

λN−K
k

(1 + λk)
2K

K

∏
k<i

(λi − λk)
2. (16)

In the case of a known joint probability density of λk, we can refer to the moment calculation

method in [27] to solve the moments of the eigenvalue function T(λ1, λ2, . . . , λK) =
K
∑

k=1
log2(λk).

In general, if the joint probability density (16) can be written as:

f (λ) = C0|Φ(λ)||Ψ(λ)|
K

∏
k=1

ξ(λk). (17)

Then the expectation of the function β(λk) for λk can be solved as follows:

E
{

K

∏
k=1

β(λk)

}
= C0|U|, (18)

where Φ(λ), Ψ(λ), U are K×K matrices. The (i, j) elements in Φ(λ) and Ψ(λ) are Φi(λj and Ψi
(
λj
)
,

respectively. The (i, j) element in U can be expressed as:

ui,j =
∞w

0

Φi(λ)Ψj(λ)ξ(λ)β(λ)dλ. (19)
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By introducing the function ω(x) = esx, we can use Equations (17) and (18) to solve the
required moments:

E
{

es ∑K
k=1 log2(λk)

}
= E

{
K

∏
k=1

es log2(λk)

}
. (20)

By p-th order derivatives of (20) at s = 0, we have the p-th moment of T(λ1, λ2, . . . , λK):

E
{(

K

∑
k=1

log2(λk)

)p}
=

dp

ds p

{
E
(

esK
k=1 log2(λk)

)}∣∣∣∣∣s=0. (21)

We take C0 = ΓN(2K)
ΓN(K)ΓN(K)ΓN(N)

as the normalized coefficients determined by N, K, and choose

Φ(λ) = Ψ(λ) = V(λ), where V(λ) is a Vandermonde matrix. Choosing ξ(λk) =
λN−K

k
(1+λk)

2K ,

β(λk) = es log2 (λk), we can get:

E
{

K

∏
k=1

es log2(λk)

}
= E

{
K

∏
k=1

β(λk)

}
= C0

∣∣∣∣∣U(s)

∣∣∣∣∣. (22)

The element u(s)i,j in matrix U(s) corresponds to the sub-item in (19) as follows that:

Φi(λ) = Vi(λ) = λi−1,
Ψj(λ) = Vj(λ) = λj−1,

ξ(λ) = λN−K

(1+λ)2N ,

β(λ) = es log2 (λ).

(23)

Then (19) can be written as:

u(s)i,j =
∞w

0

λN−K+i+j−2

(1 + λ)2N es log2 (λ)dλ. (24)

For the differential operation in (22), we can use the rules for the matrix determinant in [28]:

d
ds
|U(s)| =

K

∑
k=1

∣∣∣U(k)(s)
∣∣∣, (25)

where U(k)(s) is the matrix that coincides with U(s) except that every entry in the k-th row (equivalently,
columns could be used) is differentiated with respect to s.

Then we take the first moment calculation as an example, for p = 1:

E(TRD) =
d
ds
{C0|U(s)|}|S=0 = C0

K

∑
k=1

∣∣∣U(k)(0) |. (26)

u(0)i,j and d
ds u(s)i,j|s=0 are the two types of matrix elements in U(k)(0):

u(0)i,j =
∞w

0

λN−K+i+j−2

(1 + λ)2N dλ = B(N − K + i + j− 1, N + K− i− j + 1), (27)

d
ds

u(s)i,j|s=0 =
∞w

0

λN−K+i+j−2

(1 + λ)2N log2(λ)dλ, (28)
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where B(x, y) is the Beta function. Thus the (i, j) element of U(k)(0) can be denoted as and the function
Ik,j(x) is defined by: [

U(k)(0)
]

i,j
=

∞w

0

λN−K+i+j−2

(1 + λ)2N Ik,j

(
log2(λ)

)
dλ. (29)

Ik,j(x) ,

{
x, if k = j
1 , if k 6= j

. (30)

Similarly, the result of p-th moment can be obtained. There will be an integral term with the
following form when computing the p-th moment:

dp

dsp u(s)i,j|s=0 =
∞w

0

λN−K+i+j−2

(1 + λ)2N log2p(λ)dλ. (31)

In Appendix A we give a detailed derivation for the integral form such as
∞r

0

tx−1

(1+t)x+y logq(t)dt.

To sum up, we can get the exact analytical p-th moment.

3.2. Gamma Approximation Approach

With the exact analytical p-th moment obtained in Section 3.1, we can use the gamma distribution
function to approximate the test statistic underH0 according to the moment matching method in [29].

Using the gamma approximation, we only need to compute the first and second moments to
obtain the mean and variance of the test statistic as follows:

µT
∆
= E(TRD) = M(1)

σ2
T

∆
= E

(
T2

RD
)
− [E(TRD)]

2 = M(2)−M(1)2,
(32)

where M(p) is the p-th moment of TRD. Suppose the test statistic satisfies the gamma distribution with
shape parameter kT and scale parameter θT and FTRD is denoted as the cumulative distribution function
(CDF) of TRD. According to the CDF of a gamma distribution defined in [30], FTRD is derived as:

kT =
µ2

T
σ2

T
= M(1)2

M(2)−M(1)2

θT =
σ2

T
µT

= M(2)−M(1)2

M(1) ,

(33)

FTRD (x ; kT ,θT) = 1− Γ(kT , x/θT)

Γ(kT)
, (34)

where Γ(kT , x/θT) is the upper incomplete gamma function.
Denoting γ as the decision threshold, then the probability of false alarm underH0 is:

PF = 1− FTRD (γ ; kT , θT). (35)

So we can use the inverse of the gamma cumulative distribution function to compute the
decision threshold:

γ = F−1
TRD

(1− PF ; kT , θT). (36)

Although the threshold calculation method we derived seems to be complex enough,
such complexity may not be a serious problem in the spectrum sensing process. As we can see
in the deduction process above, the threshold depends on the desired PF and the system parameters N,
K. These parameters should be predefined in the CR node. Therefore threshold calculation does not
need to be real-time. Even if the system is required to operate under different parameter set, we can
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still calculate the threshold of different parameter sets in advance and make a query table for real-time
mode changing.

4. Numerical Results

In this section, we give the performance evaluation of the proposed algorithms by means of Monte
Carlo simulations. First, we examine the accuracy of the PF approximation method and the decision
threshold calculation. Then we compare the detection performance of RDD with some conventional
EBDs in different scenarios. In addition, we show the performance of RDD when Riemannian mean
method is applied in multiple vacant subbands situation. In this section of the simulation, we choose
the value of N, K according to the practical system. Due to the limited sensing time and sampling
rate, N generally takes tens to hundreds, while K is generally less than eight because of hardware size.
We choose the exponential correlation model [31] as the noise covariance matrix:

(Ψ0)i,j = ρ|i−j|, ρ ∈ [0, 1) (37)

where ρ denotes the degree of noise correlation. And each subband has the same noise covariance
matrix, i.e., Ψi = Ψ0 for i = 1, 2, . . . , L.

In addition, we assume that the channel matrix Hi of the subband is composed of independent
Gaussian random variables and satisfies the normalization conditions ‖Hi‖2 = 1. In each Monte Carlo
realization, the channel matrix is generated randomly. The PU signals in the simulation follow the i.i.d.
zero mean complex Gaussian distribution, and are independent from the noise.

The received SNR of p-th primary signal in the i-th subband is defined as:

SNR(p)
i =

η
(p)
i ‖Hi‖2

νi
(38)

where η
(p)
i is the transmission power of the p-th PU, and νi is the noise power in the i-th subband,

which satisfies νi = Tr(Ψi)/K. In the case of multiple PUs, we set different SNRs for different PUs
due to the fact that the distance between multiple PUs and SU are not the same in the practical
sensing situations.

4.1. Decision Threshold and PF

In Table 1, we present the numerical simulation of the moments computing method proposed in
Section 3.1. It is worth noting that the joint PDF of the eigenvalues defined by (16) holds for any value
of the covariance matrix parameter Σ in two complex Wishart distributionsWK(N,Σ). Hence, in the
simulation, we can specify some combinations of the sample size N and antenna number K, and then
generate the complex Wishart matrix with arbitrary covariance matrix to calculate the test statistic
underH0. In Table 1, the accuracy of the theoretical calculation is verified by comparing the simulated
and theoretical values of the first and second moment of the test statistic TRD underH0.

Table 1. Numerical results of TRD.

(N, K) E(TRD) Simulated E(TRD) Analytical E(T2
RD) Simulated E(T2

RD) Analytical

(30,4) 1.1708 1.1695 1.5489 1.5474
(50,4) 0.6750 0.6756 0.5147 0.5151
(50,8) 2.8708 2.8667 8.5091 8.4914
(80,8) 1.7135 1.7424 3.1125 3.14

In Figure 3, we give the simulation values of the CDF of the test statistic and the theoretical value
of the gamma distribution approximation at the specified (N,K). This figure shows that the gamma
distribution approximation based on the moment matching method proposed in Section 3.2 achieves
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good performance. Moreover, our approximation algorithm are perfectly matched to the simulation
values for different (N,K).
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Figure 3. Cumulative distribution functions (CDFs) of the test statistics for (N,K) = (30,4) and
(N,K) = (50,8).

We plot the decision threshold as a function of PF for the specified (N,K) in Figure 4. The simulation
value curve is obtained by Monte Carlo method. Meanwhile, the theoretical value of PF can be obtained
directly by (35). The figure shows the perfect agreement between the theoretical computing and
simulation results. Therefore, the sensing algorithm can get the corresponding decision threshold
under the specified (N,K) and the desired PF. In this way, the detector can satisfy the constant false
alarm rate (CFAR) requirements of the CR system.Sensors 2017, 17, 661 12 of 18 
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4.2. Detection Performance

First, the Receiver Operating Characteristic (ROC) curve is used to compare the performance of
the proposed detector and other detectors when the number of reference matrices is A = 1. The ROC
curve gives the detection probability PD as a function of the false alarm probability PF. By changing
the threshold γ, the operating point of the detector can be chosen anywhere along its ROC curve.

Considering that the noise variance, noise covariance matrix and the number of PUs are both
unknown in our assumption, blind detection is necessary. Among the conventional EBDs, the SLE
detector and the AGM detector are two typical blind detectors [32]. According to the classification of
EBD in [29], they correspond to arithmetic mean detector (ARMD) and arithmetic-geometric mean
detector (AR-GEMD), respectively. Both detectors operate in a single-band spectrum sensing scenario
and do not require noise-only subband for detection. In order to deploy these two EBDs in multi-band
detection, we use the pre-whitening technique [33] to improve their sensing performance in multi-band
with unknown noise. By replacing R̂i by R̂−1

V R̂i for the EBD in the i-th subband, we can compare the
performance of EBD and the proposed RDD in the simulation.

The ROC curves of the detectors when there is one primary signal are plotted in Figure 5 where
SNR(1) = −3 dB, ρ = 0.4 and (N,K) = (100,4). It is clear that the proposed detector outperforms the
two EBDs under the assumption of correlated noise.

Figures 6 and 7 show the ROC curves when the number of PUs is assumed to be P = 3 and
P = 5 respectively. The SNRs of multiple PUs are defined as SNR(i+1) = SNR(i) − 1 dB. In the case
of different combinations of N and K, we can see the same performance differences between RDD
and EBDs as in Figure 5. It should be seen that ARMD performs better than AR-GEMD in the case of
single PU but worse in the case of multiple PUs. As noted in [9,14], the rank of received covariance
matrix is assumed in the derivation of the GLR-based detector. In our signal model, the number of
PUs has an effect on the rank of the covariance matrix, resulting in the EBD method being selective
to P, as shown in the figures. By contrast, RDD is not sensitive to the number of PUs because we do
not make any assumptions about P in the proposed algorithm. From the geometric point of view,
the detection performance of RDD depends on the Riemannian distance between R̂i and R̂V . Although
the combination of different primary signals will lead to the position change of R̂i on the manifold,
the distance-based detection method remains effective.Sensors 2017, 17, 661 13 of 18 
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Figure 5. The ROCs comparison for (N,K) = (100,4). Assuming P = 1, ρ = 0.4, and SNR(1) = −3 dB.
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Figure 6. The ROCs comparison for (N,K) = (100,4). Assuming P = 3, ρ = 0.4, and SNR(1) = −6 dB.Sensors 2017, 17, 661 14 of 18 
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Figure 7. The ROCs comparison for (N,K) = (80,8). Assuming P = 5, ρ = 0.4, and SNR(1) = −8 dB.

In practical, communication systems often require a constant PF, as required by the IEEE 802.22
standard to be 10% [34]. We plot PD at different average received SNR in Figure 8 and choose
(N,K) = (50,4) and ρ = 0.4, while the decision threshold has been set to achieve PF = 0.1. And the
number of PUs is one in Figure 8a and three in Figure 8b. The figures illustrate that the RDD can
achieve higher detection probability than EBD for the same SNR level.
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Figure 8. The probability of detection versus SNR for (N,K) = (50,4) and ρ = 0.4 in different PU numbers
(a) P = 1; (b) P = 3.

4.3. Multiband Detection with Riemannian Mean

In this section, we consider the performance of RDD when multiple vacant subbands are present,
i.e., A > 1. First, we would like to evaluate the performance of matrix mean estimation between the
Riemannian mean (RM) method and the arithmetic mean (AM) method. In the simulation, the matrix
dimension parameter is (N,K) = (80,8), the matrix type is the correlated noise matrix, and the correlation
coefficient ρ satisfying the uniform distribution U (0,1) is randomly generated in each Monte Carlo
implementation. The objective function in the Riemannian mean expression (7), which is the mean
distance, can be written as follows:

f (Rk, Rt) =
1
A

A

∑
k=1

D2(Rk, Rt) . (39)

The trend of the mean distance with the iteration number t is shown in Figure 9. When calculating (8),
we choose ε = 0.1 to control the iteration speed. Meanwhile, in Figure 9 we show the comparison of
RM and AM estimation performance when the number of reference matrices is A = 4 and A = 8. It can
be observed that the objective function of the RM calculation based on the gradient descent algorithm
decreases as the number of iterations increases, and tends to be stable after a certain number of iterations.
It should be noted that the iterative computation is not required in AM method, so the mean distance of
AM in the figure remains unchanged. The figure shows that for different number of reference matrices,
the mean distance of the converged RM method is less than that of the AM method.

Finally, we compare the ROC curves of RM method and the AM method in the case of multiple
vacant subbands. We choose (N,K) = (80,8), ρ = 0.4, P = 3 and SNR(1) = −5 for the simulation.
Figure 10a,b plot the ROC curves with reference matrices A = 2 and A = 4, respectively, where the
iteration number of RM method is 8. We can see that for RDD, RM estimation outperforms the AM
estimation, and when the number of reference matrices is large, the gap is more obvious. The above
simulation results illustrate that the sensing performance can be improved if the RM matrix of reference
matrices is used for the RDD when multiple vacant subbands are available in WSS.
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Figure 9. Estimation Performance Comparison for (N,K) = (80,8) and random ρ when the number of
reference matrices is A = 4 and A = 8.
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Figure 10. The ROCs of RDD using AM method and RM method for (N,K) = (80,8), ρ = 0.4, P = 3 and
SNR(1) = −5 with different number of reference matrices (a) A = 2; (b) A = 4.

5. Conclusions

In this paper, we propose a novel WSS detector based on Riemannian distance for multi-antenna
CR. For a wideband spectrum divided into several subbands, we compute the Riemannian distance of
covariance matrices between the vacant subband and the subband to be detected. Through theoretical
analysis, we obtain the exact closed expression of the decision threshold using the moment matching
method. Unlike the traditional EBD derived with the GLR criterion, the proposed RDD is derived from
information geometry theory. By applying the geometric method, we do not have to make too many
assumptions about noise and primary signals like the traditional methods do. Therefore we obtain
a detector which is blind to noise statistical characteristics and number of PUs. The simulation results
show that the proposed detector exhibits better performance than the conventional EBD method in
the correlated noise model and is robust to the number of PUs. Moreover, we propose a matrix mean
estimation method based on RM. In the presence of multiple vacant subbands, the RM method can
better estimate the noise distribution than the AM method. Thus it is more suitable for RDD due to the
better use of the wideband spectrum information for sensing.
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Appendix A

According to the definition of Beta function [30] we have:

B(x, y) =
∞w

0

tx−1

(1 + t)x+y dt, (A1)

∂q

∂xq B(x, y) =
∞w

0

tx−1

(1 + t)x+y logq
(

t
1 + t

)
dt, (A2)

∂q

∂yq B(x, y) =
∞w

0

tx−1

(1 + t)x+y [− log(1 + t)]qdt. (A3)

By transformation as: {
log
(

t
1 + t

)
− [− log(1 + t)]

}q
= logq t (A4)

We can easily obtain:

∞w

0

tx−1

(1 + t)x+y logq tdt =
(

∂

∂x
− ∂

∂y

)q
B(x, y) . (A5)

In calculating the first and second moments of the test statistic, there are q = 2 and q = 4 in the
integral equation to be solved. They can be expressed as follows:

∞w

0

tx−1

(1 + t)x+y log2 tdt = B2,0(x, y) + B0,2(x, y)− 2B1,1(x, y), (A6)

∞w

0

tx−1

(1 + t)x+y log4 tdt = B4,0(x, y) + B0,4(x, y)− 4B3,1(x, y)− 4B1,3(x, y) + 6B2,2(x, y) (A7)

where ∂m

∂xm
∂n

∂yn B(x, y) = Bm,n(x, y). The required Bm,n(x, y) in the computing can be written as
a combination of digamma functions, such as:

B1,0(x, y) = B(x, y)(ψ(x)− ψ(x + y)), (A8)

B2,0(x, y) = B(x, y)
(

ψ(1, x)− ψ(1, x + y) + (ψ(x)− ψ(x + y))2
)

. (A9)

Similarly, we can derive other Bm,n(x, y) using digamma function expansion.
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