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Abstract: Seed vigor is an important trait that determines seed performance in the field, which
corresponds to seed germination rate and seedling establishment. Previous works brought helpful
equations to calculate several parameters allowing vigor characterization. In this work we used base
water potential (Ψb), base temperature (Tb) and seed lot (Ki) constants to characterize the vigor of
44 sunflower seed lots. Contrasting responses to water or temperature stress and storage potential
were recorded within this population, the most interesting being the opposite responses between
Ψb and Ki. The genotypes that were resistant to water stress presented low ability for storage and
vice versa. Furthermore, Ψb and Ki presented narrow ranges while Tb showed important variability
within the 44 genotypes. The analysis of the whole dataset showed that these constants are not
correlated to each other or to the seed size, suggesting that genetic background is the most important
determining factor in seed performance. Consequently, vigor characterization of genotypes is needed
in the crop selection process in order to optimize agricultural productivity.
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1. Introduction:

Seed germination, vigor and viability describe different aspects of the quality of a seed population,
and these three aspects need to be addressed together to understand the overall quality of a seed
lot. Therefore, results of seed germination tests must be analyzed together with results of seed vigor
tests in order to differentiate seed lots of acceptable germination [1]. Germination is defined as the
protrusion of the radicle through the seed envelopes in favorable conditions. However, germination
environments can be far from favorable and can impose stresses on seeds, which can delay or prevent
germination. The standard germination assay performed in the laboratory is thus a poor predictor
of emergence in non-optimal environments. Seed vigor reflects properties of a seed to germinate
in a wide range of environmental conditions. It can be defined as the capacity of seeds to lead to
rapid and homogenous seedling emergence and stand establishment [2]. Since crop yield is a function
of plant density, seed vigor can influence crop yield by its effects on emergence. High seed vigor
may increase crop yield [1]. If seed quality only altered emergence percentage, then growers could
overcome such effects by adjusting sowing rates. However, in practice, seed quality is affected by the
seedbed environment, which make it is difficult to adjust and predict seed sowing rates [3]. At last,
seed viability refers to whether or not a seed contains any metabolically active tissues and enzymes
capable of sustaining living plant cells.
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When seed environmental conditions are close to optimum at the time of sowing, field emergence
can correlate with germination test results. However, such conditions are not often encountered in
practice, and field conditions are often sub-optimal, which may lead to different field performance
depending on the vigor status of the seed lot. This may cause difference in emergence level, rate and
growth uniformity and sometimes lower vegetative and reproductive yield. Thus, high vigor seed lots
are expected to perform better under environmentally stressed conditions than low vigor seed lots,
even if standard germination test results can be comparable (International Seed Testing Association
(ISTA)) [4]. Since then, the ISTA [4,5] brought a more specific definition that takes into account not
only those properties that determine the activity and level of performance of seed lots of acceptable
germination in a wide range of environments but also the performance after storage.

Many environmental factors influence germination, temperature (T) and water potential (ψ)
being the most critical [6,7]. The thermal time (θT) approach has been used to characterize the time
to germination at different temperatures and, by analogy, the hydrotime describes the relationship
betweenψ and seed germination [8]. Mathematical models describing germination patterns in response
to T and ψ have been developed (discussed in [9]).

The genetic basis of seed vigor has been established, although it is poorly understood [10]. In the
last decades, molecular aspects of seed dormancy and germination have been reported in different
species (for review [11–13]) and in sunflower in particular [14–17]. Several genes have been related
to seed vigor [18–20], but, they can hardly be used as vigor genetic markers. The quantitative trait
loci (QTL) approach allows the identification of loci that influence seed vigor in Brassica oleracea,
such as speed of germination (SOG1), which contains two genes related to abscisic acid that influence
negatively the speed of germination [21–23]. Speed of germination is nevertheless one property among
others in the characterization of seed vigor, which is a complex trait, and its proper evaluation is
highly challenging. In fact, the causes of difference in seed vigor can come from the genotype, the
nutrition and growth conditions of the mother plant, the physiological maturity of the seed at harvest,
the physical handling of the seed during processing, seed moisture content and the temperature during
storage [10].

In this paper, we investigated sunflower (Helianthus annuus) seed vigor in 44 genotypes produced
simultaneously in the same field in order to overcome the differences due to the environment. Seed
germination was assessed in response to water and temperature stress and after accelerated ageing,
and the corresponding constants and their relevance in seed vigor were determined. Our objectives
were to decipher the relationship between the various components of seed vigor and to determine
whether they are controlled by the genetic background.

2. Results

2.1. Effect of Water Stress

Several intensities of water stress (from−0.2 to−1.2 MPa) were applied to the seeds of 44 genotypes
using PEG solutions instead of water (0 MPa) during germination at 20 ◦C, and kinetics of germination
were recorded (Table S1). As an example, Figure 1 shows contrasting germination behavior of
the 2 genotypes SOLQUA-160 (Figure 1A) and SOLQUA-165 (Figure 1B). At 20 ◦C, seeds of both
genotypes fully germinated within 3 d at 20 ◦C (Figure 1). Decreasing water availability by increasing
PEG concentrations in the imbibition media had an inhibitory effect on seed germination. Seeds of
SOLQUA-165 were more sensitive to water stress as their germination could not reach 100% when
water stress was applied even at low PEG concentrations. At high stress (−1.2 MPa), seeds of SOLQUA
165 were unable to germinate (Figure 1B), whereas seeds of SOLQUA-160 reached at least 80% of
germination (Figure 1A).
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Figure 1. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and 
SOLQUA-165 (B) Water stress (–0.4 MPa; –0.6 MPa; –0.8 MPa; –1 MPa; –1.2 MPa) was applied during
germination at 20 °C in comparison to the control on water (0 MPa).

2.2. Effect of Temperature Stress 

Several temperatures (5, 10, 15, 20, 25, 30 and 35 °C) were applied to the seeds of the 44 genotypes
during germination tests on water (Table S1). Figure 2, comparing germination percentages of seeds
of SOLQUA-160 and SOLQUA-165, shows that both genotypes can germinate to 100% between 10 
and 25 °C, which correspond to optimal temperatures for sunflower seed germination. However, for 
high temperatures such as 30 and 35 °C SOLQUA-165 seed germination was reduced to less than 40% 
and for low temperature (5 °C), their germination was arrested (Figure 2B). In contrast, even if the 
rate of germination of SOLQUA-160 seeds was lowered at 5 °C, their final germination percentage 
reached 100% at all temperatures tested (Figure 2A). 

Figure 1. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and
SOLQUA-165 (B) Water stress (−0.4 MPa; −0.6 MPa; −0.8 MPa; −1 MPa; −1.2 MPa) was applied during
germination at 20 ◦C in comparison to the control on water (0 MPa).

2.2. Effect of Temperature Stress

Several temperatures (5, 10, 15, 20, 25, 30 and 35 ◦C) were applied to the seeds of the 44 genotypes
during germination tests on water (Table S1). Figure 2, comparing germination percentages of seeds of
SOLQUA-160 and SOLQUA-165, shows that both genotypes can germinate to 100% between 10 and
25 ◦C, which correspond to optimal temperatures for sunflower seed germination. However, for high
temperatures such as 30 and 35 ◦C SOLQUA-165 seed germination was reduced to less than 40% and
for low temperature (5 ◦C), their germination was arrested (Figure 2B). In contrast, even if the rate of
germination of SOLQUA-160 seeds was lowered at 5 ◦C, their final germination percentage reached
100% at all temperatures tested (Figure 2A).
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Figure 2. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and 
SOLQUA-165 (B) Temperature stress (5, 10, 15, 25, 30 and 35 °C) was applied during germination in 
comparison to the control on water at 20 °C.

2.3. Effect of Accelerated Ageing 

Accelerated ageing (100% RH and 45 °C) was applied for 1, 3, 4 or 7 days as compared to the 
control 0, which corresponded to non-aged seeds. This treatment first decreased seed germination 
speed then seed viability as estimated by the final germination percentage after 11 d at 20 °C (Figure 
3). Figure 3 shows that seeds of SOLQUA-160, which were quite tolerant to water and temperature
stresses, were more sensitive to ageing when compared to seeds of SOLQUA-165. In fact, 3 or 5 days 
of treatments decreased germination percentages of seeds of SOLQUA-160 to around 50 and 20%, 
respectively, while SOLQUA-165 seeds germinated to 95 and 82% in the same conditions (Figure 3). 

Figure 2. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and
SOLQUA-165 (B) Temperature stress (5, 10, 15, 25, 30 and 35 ◦C) was applied during germination in
comparison to the control on water at 20 ◦C.

2.3. Effect of Accelerated Ageing

Accelerated ageing (100% RH and 45 ◦C) was applied for 1, 3, 4 or 7 days as compared to the
control 0, which corresponded to non-aged seeds. This treatment first decreased seed germination
speed then seed viability as estimated by the final germination percentage after 11 d at 20 ◦C (Figure 3).
Figure 3 shows that seeds of SOLQUA-160, which were quite tolerant to water and temperature
stresses, were more sensitive to ageing when compared to seeds of SOLQUA-165. In fact, 3 or 5 days
of treatments decreased germination percentages of seeds of SOLQUA-160 to around 50 and 20%,
respectively, while SOLQUA-165 seeds germinated to 95 and 82% in the same conditions (Figure 3).
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Figure 3. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and 
SOLQUA-165 (B) Accelerated ageing (AA) was applied for 1, 3, 4 or 7 days (as compared to the control 
0, which corresponded to non-aged seeds); germination tests were then performed on water at 20 °C.

2.4. Determination of Seed Vigor Constants 

Using the mathematic models described by Ellis and Roberts [24] and Bradford [8], we calculated 
the seed vigor parameters, i.e., base water potential (Ψb), base temperature (Tb) and the viability
constant (Ki) of the 44 genotypes (Table 1). Three cardinal temperatures corresponding to the base 
(Tb), optimum (To) and maximum temperatures (Tc) were determined for germination [27]. They are 
useful to determine the best planting period for a given specie. We focused on Tb because sunflower 
seed vigor was expressed at low temperatures, and the purpose of the present study was to 
characterize germination parameters in suboptimal conditions of germination. Tb, which represented 
the lower thermal limit for seed germination, ranging from negative values as low as –3 °C to 5.62 °C 
according to the genotype (Table 1). Variability of seed response to water stress was shown by Ψb 
values, which also differed markedly among genotypes (Table 1). Ki value represented the initial 
quality of the seedlot and was determined using germination values after accelerated ageing; the 
higher it is, the higher is the initial quality [24]. As for the other vigor constants studied here, our
analysis highlighted a large variability of Ki values among seed lots; they ranged from 4.2 to 1.1 (Table 
1). In order to analyze the correlation that may exist between Ψb, Tb and Ki, corresponding values 

Figure 3. Germination curves of 2 sunflower genotypes, Helianthus annuus sp. SOLQUA-160 (A) and
SOLQUA-165 (B) Accelerated ageing (AA) was applied for 1, 3, 4 or 7 days (as compared to the control
0, which corresponded to non-aged seeds); germination tests were then performed on water at 20 ◦C.

2.4. Determination of Seed Vigor Constants

Using the mathematic models described by Ellis and Roberts [24] and Bradford [8], we calculated
the seed vigor parameters, i.e., base water potential (Ψb), base temperature (Tb) and the viability
constant (Ki) of the 44 genotypes (Table 1). Three cardinal temperatures corresponding to the base (Tb),
optimum (To) and maximum temperatures (Tc) were determined for germination [25]. They are useful
to determine the best planting period for a given specie. We focused on Tb because sunflower seed
vigor was expressed at low temperatures, and the purpose of the present study was to characterize
germination parameters in suboptimal conditions of germination. Tb, which represented the lower
thermal limit for seed germination, ranging from negative values as low as −3 ◦C to 5.62 ◦C according
to the genotype (Table 1). Variability of seed response to water stress was shown by Ψb values, which
also differed markedly among genotypes (Table 1). Ki value represented the initial quality of the
seedlot and was determined using germination values after accelerated ageing; the higher it is, the
higher is the initial quality [24]. As for the other vigor constants studied here, our analysis highlighted
a large variability of Ki values among seed lots; they ranged from 4.2 to 1.1 (Table 1). In order to
analyze the correlation that may exist between Ψb, Tb and Ki, corresponding values were analyzed
using the Pearson correlation method. Table 2 shows very low R2 (between 0.035 and 0.058), indicating
that these parameters were not correlated to each other (Table 2).
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Table 1. Seed vigor parameters, base water potential (Ψb, 50%), base temperature (Tb) and viability
constant (Ki) of seeds of the 44 genotypes. nd: non determined.

Number Genotypes Ψb (50%) (MPa) Tb (◦C) Ki

1 SOLQUA-003 −1.066 3.07 2.0823

2 SOLQUA-006 −1.2284 2.15 2.3716

3 SOLQUA-007 −1.1135 1.58 2.3209

4 SOLQUA-011 −0.9311 4.53 2.0814

5 SOLQUA-015-3 −0.9404 4.17 2.4945

6 SOLQUA-020 −1.0896 3.62 1.6434

7 SOLQUA-023 −0.8251 3.06 0.7898

8 SOLQUA-024 −0.9446 1.72 1.9408

9 SOLQUA-028 −0.9856 1.27 2.3179

10 SOLQUA-030 −1.0049 −0.9 2.034

11 SOLQUA-031 −2.217 4.39 2.169

12 SOLQUA-037 −1.0511 2.4 1.8161

13 SOLQUA-037-2 −1.1699 −0.36 2.0397

14 SOLQUA-040 −2.0158 2.27 1.0646

15 SOLQUA-047 −1.1548 5.42 2.0977

16 SOLQUA-048 −0.9483 1.5 1.8038

17 SOLQUA-050 −0.9966 2.93 1.6187

18 SOLQUA-055 −1.1191 0.05 2.6992

19 SOLQUA-056-3 −1.1189 0.79 1.8438

20 SOLQUA-056-4 −1.1355 −0.86 2.0945

21 SOLQUA-057 −1.1903 1.23 1.2352

22 SOLQUA-068-5 −1.6805 3.67 1.4013

23 SOLQUA-073 −0.966 3.76 1.9841

24 SOLQUA-075 −0.9354 −3.44 3.2565

25 SOLQUA-088 −1.1602 4.08 2.9622

26 SOLQUA-096 −1.2488 5.33 2.7511

27 SOLQUA-107 −1.0686 2.38 2.3946

28 SOLQUA-109 −1.1588 2.57 3.6534

29 SOLQUA-110 −1.1102 2.42 1.1141

30 SOLQUA-110-2 −1.5864 1.69 nd

31 SOLQUA-113 −0.9967 2.86 2.4624

32 SOLQUA-114 −0.9953 3.39 2.1343

33 SOLQUA-123 −1.2608 3.33 2.5701

34 SOLQUA-127 −1.2095 2.64 0.4968

35 SOLQUA-132 −0.6323 3.4 0.6833

36 SOLQUA-133 −1.3559 2.95 2.373

37 SOLQUA-138 −1.2303 1.67 2.3454

38 SOLQUA-143 −1.3089 1.78 1.7256

39 SOLQUA-147 −1.244 2.29 1.8077

40 SOLQUA-148 −1.1306 −3.3 2.6047

41 SOLQUA-160 −3.1991 3.35 1.1666

42 SOLQUA-165 −0.7507 2.5 4.2442

43 SOLQUA-168 −1.6257 5.62 1.4051

44 SOLQUA-169 −1.094 2.64 1.9944
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Table 2. Correlation between Ψb, Tb and Ki (R2).

Variables Ψb (50%) (MPa) Tb (◦C) Ki

Ψb (50%) (MPa) 1 (p = 0) 0.035 (p = 0.226) 0.058 (p = 0.116)

Tb (◦C) 0.035 (p = 0.226) 1 (p = 0) 0.036 (p = 0.218)

Ki 0.058 (p = 0.116) 0.036 (p = 0.218) 1 (p = 0)

We next performed a principal component analysis (PCA) using the seed vigor constants, which
permitted clusterization of the genotypes (Figure 4, Table 3). From this analysis, thresholds values of Ψb
of −1.1 MPa and of Ki of 1.5 were determined. Tolerant seed lots to water stress displayed a Ψb < −1.1
and seeds of high initial quality that may be tolerant for storage of Ki > 1.5. The analysis allowed the
distribution of genotypes with a high PCA percentage (74,68%) in seven clusters corresponding to
marked resistance or sensitivity to one or several stresses (Figure 4, Table 3). The cluster 5 contained an
important number of genotypes (17), which did not show a marked response to extreme conditions
(Table 3). In the other clusters, genotypes displayed contrasted responses. For example, cluster 6
regrouped genotypes that presented high initial quality, tolerance to low temperature and sensitivity to
water stress, while cluster 7 included those that presented the same responses but were also sensitive
to high temperatures. Interestingly, these clusters of high initial quality were sensitive to water stress
when clusters from 1 to 4 grouped seed lots of low initial quality that were tolerant to water stress
(Table 3). On the other hand, a very small number of genotypes were represented in cluster 1 and 7
(Table 2). However, in these clusters one can find the interesting genotypes presented earlier, namely
SOLQUA-160 in the cluster 1 and SOLQUA-165 in the cluster 7 (Figures 1–3); i.e., in two opposite sides
of the PCA (Figure 4). Furthermore, the seed lots of high and low 1000 SW were represented in all the
clusters without distinctive distribution (Table 3).
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Table 3. Description of genotypes belonging to the different clusters; 1000 SW corresponds to the
weight of 1000 seeds (g).

Cluster
Number Description of Seed Lot Response Number of

Genotypes

Number of
Genotypes Whose

1000 SW > 50

Number of
Genotypes Whose

1000 SW < 50

1
Tolerant to high temperatures

Tolerant to water stress
Low initial quality

1 0 1

2

Tolerant to low temperatures
Tolerant to water stress

Sensitive to high temperatures
Low initial quality

4 2 2

3 Tolerant to water stress
Low initial quality 6 2 4

4
Sensitive to low or high temperatures

Tolerant to water stress
Low initial quality

8 5 3

5 None 17 11 6

6
Tolerant to low temperature

Sensitive to water stress
High initial quality

6 5 1

7

Tolerant to low temperature
Sensitive to water stress

Sensitive to high temperatures
High initial quality

2 0 2

Lastly, in order to analyze the impact of each stress (temperature, water and ageing) on the
44 genotypes, we displayed the data sets of Ki, Tb and Ψb as a boxplot to show the frequency
distribution of the data (Figure 5). Figure 5 shows the small variability of Ki and Ψb values as shown
by the width of the corresponding boxes, even though there are some outliers. Tb, however, showed
important variability within the 44 genotypes (Figure 5).
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3. Discussion

In optimal conditions (germination in water at 20 ◦C), seeds of the 44 sunflower genotypes studied
here were able to germinate to 100% (Table S1). These conditions nevertheless rarely correspond
to those encountered in the field where temperature and water potential can vary continuously.
When subjected to water stress, temperature stress or ageing treatment, seeds show different capacities
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to face one or several stresses. This fact was well illustrated by germination tests of SOLQUA 160 and
SOLQUA 165 seeds, which presented contrasting responses to stress conditions (Figures 1–3).

To study the importance of each component of seed performance (resistance to water stress,
temperature stress and ageing), Ψb, Tb and Ki were calculated and analyzed. This analysis allowed a
fine characterization of the 44 genotypes, which can be useful for the breeder, as seed vigor has an
economic impact for sale but also for seed multiplication [10]. It is worth noting that these parameters
can be used to determine a threshold for genotype classification as sensitive or resistant to water stress
or low or high initial quality, which is more complicated for temperature response as seed performance
can concern low or high temperatures. Using these parameters, further characterization of these 44 seed
lots has been performed using PCA (Figure 4). The clustering allowed classification based on seed lot
response to temperature or water stresses and initial quality (Table 3). Seventeen out of 44 (cluster 5)
seed lots did not show marked tolerance or sensitivity to one or more vigor parameters suggesting
that more than 38% of these selected lines, which are representative of genetic variability within Soltis,
did not display important vigor. Clusters 2, 3 and 4 contain genotypes (18/44) presenting low initial
quality but good tolerance to water stress at the same time (Tables 1 and 3). The cluster 6 is represented
by six genotypes that are classified as tolerant to low temperature and sensitive to water stress with high
initial quality (Table 3). Therefore, it is worth noting that tolerance to water stress is associated with
low initial quality and vice versa in all genotypes subjected to non-optimal conditions. Regarding the
response to temperature, the 44 seed lots present a wide range of Tb as shown by the box plot analysis
(Figure 5). Castillo-Lorenzo et al. [26] have reported that Tb range can be narrow in five H. annuus
genotypes that differ in their flowering time and seed oil composition without correlation with seed oil
content. In our study, no correlation was found either between Tb and the other vigor parameters
(Table 2), or with seed oil content (data not shown), unlike Gonzales Belo et al. [27], who reported
contradictory findings. Ki, calculated using accelerated ageing treatments, can also be used to compare
seed lots for their germination performance after storage [25]. Seed initial quality determination being
closely related to seed response to high temperature and humidity, it can be assumed that the Ki takes
into account the sensitivity to temperature out of context of accelerated ageing; however, one can
notice that initial quality or water stress are not necessarily related to response to high temperatures.
However, tolerance to low or high temperature represents important information for optimization of
sunflower cultivation (Table 3).

Among the 19 genotypes that are tolerant to water stress with high initial quality (clusters 1 to 4),
9 have a 1000 SW > 50 (high) and 10 have a 1000 SW < 50 (low) (Table 3). In the opposite category
(clusters 5 and 6), the proportion of high and low 1000 SW is 5 vs. 3, respectively (Table 3). In the
literature, the correlation between seed size or weight and vigor is controversial even though seed
size is generally positively correlated with vigorous seedlings and field performance [28]. Previous
works on wheat have shown that grain weight or size had no significant effect on germination [29,30],
while other papers have reported that seed size was correlated with final seed germination and
vigorous seedlings [31,32]. In sunflower it has been shown that the effect of seed size was significant
on germination percentage, the germination of large seeds being less important [33,34]. Our results
show that there is no correlation between vigor parameters and seed weight in sunflower. Among
the 44 genotypes, maintainers (23/44) had high 1000 SW (>50) and restorers (21/44) had mostly low
1000 SW (only 3 had a 1000 SW > 50) (B and R lines, respectively, Table S1). Such difference can be
explained by the fact that maintainer and restorer lines belong to 2 genotype groups corresponding to
plants characterized by one or several capitula, respectively (Soltis personal data), suggesting that the
size is correlated to the genotype but not to vigor parameters.

Based on genetic distance (Soltis personal data), within each cluster, the closer the genotypes,
the closer are their values of vigor parameters. For example, in cluster 2, SOLQUA-168 (R) and
SOLQUA-068-5 (R), which are more closely related with each other than with SOLQUA-031 (B),
had almost the same Ψb (−1.6) and Ki (1.4) values, while SOLQUA-031 had a Ψb of −2.2 and a Ki
of 2.1 (Tb was variable but high for all of them). On the other hand, even if some closely related
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genotypes belonged to different clusters, they could have close Ψb and Ki values, such as SOLQUA-68-5
(cluster 2) and SOLQUA-110 (cluster 3) that displayed Ψb and Ki values of −1.6, 1.4 and −1.1, 1.1,
respectively (Table 1 and Table S1). Less frequently, some closely related genotypes may have different
Ψb, Tb and Ki, such as SOLQUA-132 and SOLQUA-133 (Table 1 and Table S1), indicating that genetic
variation, as small as it may be, can induce physiological changes, especially when characterizing
vigor, which encompasses many physiological processes. In fact, to meet all the criteria, the seed must
possess the mechanisms of tolerance to water and thermal stress in addition to having mechanisms of
protection against ageing. This demonstrates that genotype characterization with vigor parameters is
definitely necessary to make the best selection.

Controversial findings about the correlation between seed traits, such as seed size or oil composition,
and vigor parameters highlight the important part of the genetics that can be, in addition, significantly
influenced by the environment (temperature, water and oxygen) from fertilization to seedling
emergence [10]. Being unable to control the environmental conditions, it is important to have
relevant tests to predict seed performance. Here we show that sunflower seeds display contrasting
responses to water stress and seed initial quality. Consequently, Ψb and Ki may represent the parameters
of importance in relation to seed response to unfavorable environmental conditions. Tb can also be
of high interest for breeders or farmers to choose the suitable cultivation areas according to local
temperatures. This indicates how hard it is to get vigorous seed lots that can meet all the criteria
assigned to vigor, but these are important in the characterization of genotypes in the selection process.

4. Materials and Methods

4.1. Plant Material

Experiments were carried out with seeds of 44 sunflower (Helianthus annuus L.) lines corresponding
to different genotypes used in sunflower breeding program by SOLTIS (Table S1). They correspond
to 21 restorer lines called “R” characterized by small seed size (mean weight of 1000 seeds per
g (1000 SW) < 50) and 23 maintainer lines called “B” characterized by large seeds (1000 SW > 50).
The 1000 SW were provided by Soltis (Table S1). They were produced in 2014 in the same field in
Occitanie, France. Seeds were stored at 20 ◦C and 60% relative humidity (RH) for three months in
order to break dormancy and then kept at 10 ◦C during the experiment time.

4.2. Seed Treatments and Germination

Germination assays were performed in darkness at 20 ◦C in 10 cm petri dishes by placing whole
achenes (25 per dish, 3 replicates) on a layer of cotton wool moistened with distilled water or with a
range of polyethylene glycol (PEG) solutions giving water potential values from −0.4 to −1.2 MPa [35].
The effect of temperature on germination was also analyzed by placing seeds on water in a range of
temperature from 5 to 35 ◦C. Seed accelerated ageing was performed using 100% RH and 45 ◦C as
storage conditions for 24, 72, 120 and 168 h. After ageing, seed germination was evaluated on water at
20 ◦C for 10 days. A seed was considered germinated when the radicle had pierced the envelopes
(seed coat + pericarp). Germination counts were made daily for 11 to 13 days.

4.3. Germination Parameter Calculation

4.3.1. t50 Calculation
The time to obtain 50% germination (t50) was calculated according to the following formula

of [36], as modified by [37]:
t50 = ti + ((N/2 − ni)(ti − tj)]/ni − nj (1)

where N is the final number of germinating seeds, and nj and ni are the cumulative number of seeds
germinated by adjacent counts at times tj and ti, respectively, when ni < N/2 < nj.
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4.3.1. Base Water Potential

Germination results were analyzed using the hydrotime model described by Bradford [38],
which allowed the calculation of the base water potential Ψb, which corresponds to the minimum Ψ
that allows germination [8]. The following equations describe the basis of the hydrotime model:

ΘH = (Ψ − Ψb(g)) × tg (2)

GRg = 1/tg = (T − Tb)/ΘT(g) = (Ψ − Ψb(g))/ΘH (3)

Probit(g) = (Ψ − (ΘH/tg) − Ψb (50))/σ Ψb (4)

where ΘH is the hydrotime constant (Hydrotime); ΘT(g) is the time constant function of temperature
permitting radicle emergence of percentage g of seed population; Ψ is the water potential of the
water source (MPa); Ψb is the base, or minimum, water potential permitting germination (MPa); tg is
time to radicle emergence of germination percentage g (h); T is imbibition temperature; Tb is the
minimum temperature allowing radicle emergence; GRg is the germination rate of percentage g of
the seed population (h−1); σ Ψb is the standard deviation in base water potential within the seed
population (MPa).

4.3.2. Base Temperature

The minimum or base temperature (Tb) is the lowest T at which germination can occur [8]. It is
calculated using the following formula:

θT(g) = (T − Tb)tg, or GRg = 1/tg = (T − Tb)/θT(g) (5)

ΘT(g) = (T − Tb) × tg (6)

GRg = 1/tg = (T − Tb)/ΘT(g) (7)

Probit(g) = log((T − Tb) × tg) − log ΘT(50)/σ ΘT (8)

where ΘT(g) is the time constant function of temperature permitting radicle emergence of g percentage
of the seed population; tg is the time to radicle emergence of germination percentage g (h); T is the
imbibition temperature; Tb is the minimum temperature allowing radicle emergence; GRg is the
germination rate of percentage g of the seed population (h−1); σ ΘT is the standard deviation of the
base temperature.

This model predicts that the germination rate for a given seed fraction or percentage g (GRg or
1/tg) is a linear function of T above Tb, with a slope of 1/θT (g) and an intercept on the T axis of Tb.

4.3.3. Viability Constant Calculation (Ki)

Viability constant (Ki) permits one to evaluate the initial quality of a seed lot before the ageing
process. The equation of this constant as follows [24]:

ν = Ki − p/σ (9)

where ν is viability after p days in storage (probit); p is the storage period (days); Ki is the seed-lot
constant probit percentage viability at the beginning of storage; σ is the slope of the line, which shows
germination percentage (in probit) function of storage duration.

Ki is obtained after a probit analysis of a mortality curve of a seed lot obtained after accelerating
ageing. This regression analysis follows the mortality frequencies of a seed lot across time (days). Ki is
the intercept of the regression with the slope v with y axes of a seed lot.
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4.4. Statistical Analyses

Matrix correlation calculation, PCA, ANOVA and box plot analyses were performed using
FactoMineR package in R software.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/3/386/s1,
Table S1: Genotypes characteristics and constants.

Author Contributions: Conceptualization, H.E.-M.-B. and C.B.; methodology, M.S., C.B. and H.E.-M.-B.; formal
analysis, M.S., B.B. and H.E.-M.-B.; resources, T.A. and B.B.; writing—original draft preparation, M.S. and
H.E.-M.-B.; writing—review and editing, H.E.-M.-B. and C.B.; supervision, H.E.-M.-B., C.B. and T.A.; funding
acquisition, T.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Soltis and Association Nationale de la Recherche Technique (ANRT, grant
CIFRE n◦2015/0174).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. David, L.D. Chapter 2: Seed Vigor. In Seed Quality. Basic Mechanisms and Agricultural Implications; Food
Product Press: Basra, Iraq, 1995; pp. 45–80.

2. Hampton, J.G. What is seed quality? Seed Sci. Technol. 2002, 30, 1–10.
3. Ellis, R.H. Seed and seedling vigour in relation to crop growth and yield. Plant Growth Regul. 1992, 11,

249–255. [CrossRef]
4. ISTA Vigour Test Committee. Understanding Seed Vigour. In Handbook of Vigour Test Methods; International

Seed testing Association: Zurich, Switzerland, 1995.
5. ISTA Vigour Test Committee. Chapter 15 Seed vigour testing. In International Rules for Seed Testing;

International Seed testing Association: Zurich, Switzerland, 2015.
6. Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination, 2nd ed.; Plenum Press: New York,

NY, USA, 1994.
7. Delouche, J.C.; Baskin, C.C. Accelerated aging techniques for predicting the relative storability of seed lots.

Seed Sci. Technol. 1973, 1, 427–452.
8. Bradford, K.J. Water relations in seed germination. In Seed Development and Germination; Jaime Kigel and Gad

Galili Marcel Dekker Inc: New York, NY, USA, 1995; pp. 351–396.
9. Alvarado, V.; Bradford, K.J. A hydrothermal time model explains the cardinal temperatures for seed

germination. Plant Cell Env. 2002, 25, 1061–1069. [CrossRef]
10. Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond

adaptation. J. Exp. Bot. 2016, 67, 567–591. [CrossRef] [PubMed]
11. Nonogaki, H. Seed dormancy and germination emerging mechanisms and new hypotheses. Front. Plant Sci.

2014, 5, 233. [CrossRef] [PubMed]
12. Nonogaki, H. Seed Biology Updates—Highlights and New Discoveries in Seed Dormancy and Germination

Research. Front. Plant Sci. 2017, 8, 524. [CrossRef] [PubMed]
13. Gao, F.; Ayele, B.T. Functional genomics of seed dormancy in wheat: Advances and prospects. Front. Plant Sci.

2014, 5, 458. [CrossRef] [PubMed]
14. Bazin, J.; Langlade, N.; Vincourt, P.; Arribat, S.; Balzergue, S.; El-Maarouf-Bouteau, H.; Bailly, C. Targeted

mRNA Oxidation Regulates Sunflower Seed Dormancy Alleviation during Dry After-Ripening. Plant Cell
2011, 23, 2196–2208. [CrossRef]

15. El-Maarouf-Bouteau, H.; Meimoun, P.; Job, C.; Job, D.; Bailly, C. Role of protein and mRNA oxidation in seed
dormancy and germination. Front. Plant Sci. 2013, 4, 77. [CrossRef]

16. Xia, Q.; Ponnaiah, M.; Cueff, G.; Rajjou, L.; Prodhomme, D.; Gibon, Y.; Bailly, C.; Corbineau, F.; Meimoun, P.;
El-Maarouf-Bouteau, H. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected
by temperature in seed dormancy and germination. Plant Sci. 2018, 269, 118–125. [CrossRef]

17. Xia, Q.; Saux, M.; Ponnaiah, M.; Gilard, F.; Perreau, F.; Huguet, S.; Balzergue, S.; Langlade, N.; Bailly, C.;
Meimoun, P. One Way to Achieve Germination: Common Molecular Mechanism Induced by Ethylene and
After-Ripening in Sunflower Seeds. IJMS 2018, 19, 2464. [CrossRef] [PubMed]

http://www.mdpi.com/2223-7747/9/3/386/s1
http://dx.doi.org/10.1007/BF00024563
http://dx.doi.org/10.1046/j.1365-3040.2002.00894.x
http://dx.doi.org/10.1093/jxb/erv490
http://www.ncbi.nlm.nih.gov/pubmed/26585226
http://dx.doi.org/10.3389/fpls.2014.00233
http://www.ncbi.nlm.nih.gov/pubmed/24904627
http://dx.doi.org/10.3389/fpls.2017.00524
http://www.ncbi.nlm.nih.gov/pubmed/28443117
http://dx.doi.org/10.3389/fpls.2014.00458
http://www.ncbi.nlm.nih.gov/pubmed/25309557
http://dx.doi.org/10.1105/tpc.111.086694
http://dx.doi.org/10.3389/fpls.2013.00077
http://dx.doi.org/10.1016/j.plantsci.2018.01.014
http://dx.doi.org/10.3390/ijms19082464
http://www.ncbi.nlm.nih.gov/pubmed/30127315


Plants 2020, 9, 386 13 of 13

18. Hilhorst, H.W.M.; Toorop, P.E. Review on dormancy, germinability and germination in crop and weed seeds.
Adv. Agron. 1997, 61, 112–165.

19. Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed Germination and Vigor. Annu. Rev.
Plant Biol. 2012, 63, 507–533. [CrossRef]

20. Saux, M.; Ponnaiah, M.; Langlade, N.; Zanchetta, C.; Balliau, T.; El-Maarouf-Bouteau, H.; Bailly, C. A
multiscale approach reveals regulatory players of water stress responses in seeds during germination.
Plant Cell Environ. 2020, 13731. [CrossRef] [PubMed]

21. Bettey, M.; Finch-Savage, W.E.; King, G.J.; Lynn, J.R. Quantitative genetic analysis of seed vigour and
pre-emergence seedling growth traits in Brassica oleracea: RESEARCH QTL analysis of seed vigour in
Brassica. New Phytol. 2000, 148, 277–286. [CrossRef]

22. Finch-Savage, W.E.; Clay, H.A.; Lynn, J.R.; Morris, K. Towards a genetic understanding of seed vigour in
small-seeded crops using natural variation in Brassica oleracea. Plant Sci. 2010, 179, 582–589. [CrossRef]

23. Morris, K.; Barker, G.C.; Walley, P.G.; Lynn, J.R.; Finch-Savage, W.E. Trait to gene analysis reveals that allelic
variation in three genes determines seed vigour. New Phytol. 2016, 212, 964–976. [CrossRef]

24. Ellis, R.H.; Roberts, E.H. Improved equations for the prediction of seed longevity. Ann. Bot. 1980, 45, 13–30.
[CrossRef]

25. Balesevic-Tubic, S.; Malencic, D.; Tatic, M.; Miladinovic, J. Influence of aging process on biochemical changes
in sunflower seed. Helia 2005, 28, 107–114. [CrossRef]

26. Castillo-Lorenzo, E.; Finch-Savage, W.E.; Seal, C.E.; Pritchard, H.W. Adaptive significance of functional
germination traits in crop wild relatives of Brassica. Agric. For. Meteorol. 2018, 264, 343–350. [CrossRef]

27. Belo, R.G.; Tognetti, J.; Benech-Arnold, R.; Izquierdo, N.G. Germination responses to temperature and water
potential as affected by seed oil composition in sunflower. Ind. Crop. Prod. 2014, 62, 537–544. [CrossRef]

28. Ambika, S.; Manonmani, V.; Somasundar, G. Review on Effect of Seed Size on Seedling Vigour and Seed
Yield. Res. J. Seed Sci. 2014, 7, 31–38. [CrossRef]

29. Moshatati, A.; Gharineh, M.H. Effect of grain weight on germination and seed vigor of wheat. Int. J. Agric.
Crop Sci. 2012, 4, 458–460.

30. Zareian, A.; Hamidi, A.; Sadeghi, H.; Jazaeri, M.R. Effect of seed size on some germination characteristics,
seedling emergence percentage and yield of three wheat (Triticum aestivum L.) cultivars in laboratory and
field. Middle-East J. Sci. Res. 2013, 13, 1126–1131.

31. Ries, S.K.; Everson, E.H. Protein Content and Seed Size Relationships with Seedling Vigor of Wheat Cultivars 1.
Agron. J. 1973, 65, 884–886. [CrossRef]

32. Naylor, R.E.L. The effect of parent plant nutrition on seed size, viability and vigour and on germination of
wheat and triticale at different temperatures. Ann. Appl. Biol. 1993, 123, 379–390. [CrossRef]

33. Farahani, H.A.; Moaveni, P.; Maroufi, K. Effect of seed size on seedling vigour in sunflower (Helianthus annuus
L.). Adv. Environ. Biol. 2011, 5, 1701–1705.

34. Saranga, Y.; Levi, A.; Horcicka, P.; Wolf, S. Large sunflower seeds are characterized by low embryo vigor.
J. Am. Soc. Hortic. Sci. 1998, 123, 470–474. [CrossRef]

35. Michel, B.E.; Kaufmann, M.R. The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiol. 1973, 51,
914–916. [CrossRef]

36. Coolbear, P.; Francis, A.; Grierson, D. The effect of low temperature pre-sowing treatment on the germination
performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 1984, 35, 1609–1617.
[CrossRef]

37. Farooq, M.; Basra, S.M.A.; Ahmad, N.; Hafeez, K. Thermal hardening: A new seed vigor enhancement tool
in rice. J. Integr. Plant Biol. 2005, 47, 187–193. [CrossRef]

38. Bradford, K.J. Applications of hydrothermal time to quantifying and modeling seed germination and
dormancy. Weed Sci. 2002, 50, 248–260. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev-arplant-042811-105550
http://dx.doi.org/10.1111/pce.13731
http://www.ncbi.nlm.nih.gov/pubmed/31994739
http://dx.doi.org/10.1046/j.1469-8137.2000.00760.x
http://dx.doi.org/10.1016/j.plantsci.2010.06.005
http://dx.doi.org/10.1111/nph.14102
http://dx.doi.org/10.1093/oxfordjournals.aob.a085797
http://dx.doi.org/10.2298/HEL0542107B
http://dx.doi.org/10.1016/j.agrformet.2018.10.014
http://dx.doi.org/10.1016/j.indcrop.2014.09.029
http://dx.doi.org/10.3923/rjss.2014.31.38
http://dx.doi.org/10.2134/agronj1973.00021962006500060011x
http://dx.doi.org/10.1111/j.1744-7348.1993.tb04100.x
http://dx.doi.org/10.21273/JASHS.123.3.470
http://dx.doi.org/10.1104/pp.51.5.914
http://dx.doi.org/10.1093/jxb/35.11.1609
http://dx.doi.org/10.1111/j.1744-7909.2005.00031.x
http://dx.doi.org/10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction: 
	Results 
	Effect of Water Stress 
	Effect of Temperature Stress 
	Effect of Accelerated Ageing 
	Determination of Seed Vigor Constants 

	Discussion 
	Materials and Methods 
	Plant Material 
	Seed Treatments and Germination 
	Germination Parameter Calculation 
	Base Water Potential 
	Base Temperature 
	Viability Constant Calculation (Ki) 

	Statistical Analyses 

	References

