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Abstract

Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe
form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized.
Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as
proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate
the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by
the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model
of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in
the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess
renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of
oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular
permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction.
Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of
oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of
lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the
idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney
architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
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Introduction

Every year, there are about 800 thousand people dying from

severe form of malaria (World Malaria Report). Malaria-

associated acute kidney injury (AKI), one of the three major life-

threatening well-know causes of death in P. falciparum [1,2] and P.

vivax severe malaria [3,4], occurs between 1–4% of hospitalized

adult [5] with a mortality that can reach up to 45% [1]. The

pathogenesis of malaria-associated AKI is multifactorial and not

well characterized, but several hypotheses suggest involvement of

cytoadherence of iRBC, proinflammatory response as well as

nephrotoxicity due to oxidative stress. It is well-establish that

pathogenesis of severe malaria is associated with an up regulation

of proinflammatory cytokines [6,7]. During intra-erythrocytic

phase, the consumption of hemoglobin by parasites gives rise of

considerable amounts of free heme (Fe+3), a molecule that have the

ability to induce oxidative stress [8]. The oxidative stress mediated

by free heme has been implicated in lipoprotein oxidation [9] and

serious damage in different organs such as the kidneys [10]

through generation of reactive oxygen intermediates, and nitrogen

intermediates (ROI and NO) by host cells. Moreover, ox-LDL

upregulates the expression of adhesion molecules, facilitating the

cytoadherence of infected erythrocytes [11]. The sequestration

and adhesion of infected red blood cells (iRBC) to endothelial cells
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compromises vascular permeability of vital organs [12]. The

changes in the endothelial permeability contribute to alterations of

microvascular pattern and proinflammatory cytokine release

[13,14]. According to this, the main focus of this study was to

evaluate how P. berghei ANKA infection affects or modifies

kidney pathophysiology leading to cell injury, as well as the

involvement of oxidative stress that occurs during plasmodium

infection, determine the influence of renal endothelial modifica-

tions to development of malaria-associated AKI and also

characterize how HO-1 may participate in both protection and

pathogenesis of clinical outcome.

Materials and Methods

Mice
BALB/c mice were bred and housed in specific pathogen-free

facilities of the Instituto de Ciências Biomédica IV (USP) and

CEDEME (UNIFESP – Escola Paulista de Medicina, EPM). The

Animal Care Committee of the UNIFESP approved all protocols.

Parasites, infection and disease assessment
BALB/c mice were infected by intraperitoneal (i.p.) inoculation

of 105 red blood cells infected with green fluorescent protein

(GFP)-transgenic P. berghei ANKA, clone 259Cl2 [15,16]. Daily

parasitemia were determined by flow cytometry from day 3 after

inoculation. Blood, urine and kidney samples were collected at

different days after infection. Uninfected mice were used as control

group.

Renal vascular permeability
The renal microvascular modification was assessed by extra-

vasations of Evans blue dye from the kidneys parenchyma as

previously described [17]. Evans blue dye concentration was

measured through absorbance at 620 nm. Data was presented as

microgram of Evans blue dye per gram of tissue.

Assessment of renal function
Blood urea nitrogen (BUN) was measured using a Labtest Kit

(Labtest, Minas Gerais, Brazil) and serum creatinine was

measured by Jaffé’s modified method. Urinary protein/creatinine

ratios were analyzed by using a Labtest kit (Labtest, Minas

Gerais, Brazil).

Total heme determination
Total heme determination in plasma was quantified using

a colorimetric assay according to the manufacturer’s instructions

(QuantiChrom heme assay kit, Bioassay Systems) as previously

described [18].

Figure 1. Impairment of renal function during P. berghei ANKA malaria infection. (A) Parasitemia, and (B) survival of BALB/c mice infected
with 106 parasitized erythrocytes by P. berghei ANKA. Renal function was assessed by (C) plasma creatinine, (D) blood urea nitrogen (BUN) and (E)
quantification of erythrocyte protoporphyrin estimated on different days after infection. Results represent the mean of 5–10 animals per group 6
standard deviation. One-way ANOVA with Bonferroni post-test was performed to renal assessment using GraphPad Prism. * P,0.05 vs the control
group – day 0, ** p,0.01 vs the control group – 0 days.
doi:10.1371/journal.pone.0044004.g001
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Porphyrin extraction
The assessment of erythrocytes Protoporphyrin IX (PpIX)

fluorescence was evaluated as previously described [19]. To

spectrofluorometric determination of PpIX in samples, a standard

curve of commercial metal-free PpIX (Sigma Chemical Company,

St. Louis, Mo., USA) 0.01 mg/mL to 2 mg/mL was constructed.

The samples and standard curve was exciting in 405 nm and the

absorbance was measured between 610 nm and 730 nm by

Synergy Mx (BioTek Instruments, Inc). A standard curve of PpIX

was used to convert absorbance into concentrations of PpIX. Data

was presented as microgram of mg/ml.

Determination of indirect bilirubin
Indirect bilirubin was measured in plasma sample using

a commercial kit (Labtest, Lagoa Santa, MG, Brazil) following

the manufacturer’s protocol. Samples were read at 540 nm, and

the results were expressed as mg of indirect bilirubin per dl.

Bioplex
Kidney tissues were lysed in RIPA buffer with protease

inhibitor. A BioPlex mice Plex cytokine assay kit (BioRad

Laboratories, Inc., Hercules, CA, USA) was used to test samples

for the presence of 15 molecules. The assay was read on the

BioPlex suspension array system, and the data were analyzed using

BioPlex Manager software version 4.0. Standard curves ranged

from 32,000 to 1.95 pg/mL.

Measurement of TGF-b
Total TGF-b was measured in the plasma using ELISA assay,

according to the manufacturer’s instructions (TGFb1 EmaxH,

Promega, Madison, USA) previously used [20]. Results are

expressed as pg/mg of TGF-b protein.

Detection of hypoxia tissue
Pimonidazole (Chemicon International, Inc., CA, USA) was

injected (i.p.) 1h at a dose of 60mg/kg body weight before

euthanasia and hypoxic regions of the renal tissue was detected

by the Hypoxyprobe-1 Pab2627 (1:500) primary antibody as

described previously [21]. Immunohistochemistry with cleaved

caspase-3 antibody (diluted 1:1000 (Asp175), Cell Signaling

Technology, Beverly, MA, USA) was also performed as pre-

viously described [17]. The presence of pimonidazole-HCL in

renal tissue was calculated as a percentage in the cortex and

medulla using a computer program for image analysis (KS300,

Zeiss system). The average area of each sample was calculated in

each kidney.

RNA extraction and Real Time PCR quantification to gene
expression
Total RNA was isolated from kidney tissue using TRIzol

reagent (Invitrogen, USA). First-strand complementary DNAs

(cDNAs) were synthesized using a MML-V reverse transcriptase

kit (Promega, USA). Real Time PCR (qPCR) was performed using

the TaqMan real-time PCR assay (Applied Biosystem, USA).

mRNA expression was normalized to HPRT and the values are

Figure 2. Effect of P. berghei ANKA malaria infection in renal pro-inflammatory response. mRNA expression of (A) IFN-c, (B) ICAM-1 and
(C) iNOS in renal tissue of BALB/c mice infected with 106 parasitized erythrocytes by P. berghei ANKA. Renal tissue protein expression of (D) TNF-a, (E)
IL-1b and (F) IL-6. (G) Representative image and graphic quantification of bands expressed of an IKK western blot. The graphs of A to F represent the
average of 3–5 animals per group 6 standard deviation. One-way ANOVA with Bonferroni post-test was performed to mRNA expression and
quantification of IKK using GraphPad Prism. Unpaired Student-t test was performed to renal tissue protein expression using GraphPad Prism. *
P,0.05 vs the control group – day 0, ** p,0.01 vs the control group – 0 days.
doi:10.1371/journal.pone.0044004.g002
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expressed relative to a reference sample (the calibrator). The Ct

(threshold cycle) for the target gene and for the internal control

was determined for each sample. A triplicate of each sample was

done. The relative expression of mRNA expression was calculated

by 2-DDCT. All the experimental samples were expressed as n-fold

difference relative to the calibrator.

Measurement of lipoprotein oxidizability
Oxidized low-density lipoprotein (ox-LDL) in plasma was

measured by ELISA kit (ox-LDL b2GP, Cayman, USA) following

the manufacturer’s protocol. Results were calculated against

a standard curve and expressed in serum ox-LDL (mg). The rate

of formation of conjugated dienes was measured at plasma as

previously described [22]. Briefly, whole plasma was diluted 150-

fold and the absorption of conjugated dienes performed by

spectrophotometer in a quartz plate at 37uC and measured at

234 nm.

Kidney histology analysis
To observe changes in the pathophysiology of the kidney

associated with severe malaria, kidney was fixed in 10% formalin

for further processing. Paraffin-embedded kidney sections was

stained with hematoxylin-eosin (HE) and examined in light

microscopy (Leica DM LB2, Leica Microsystems). Renal mor-

phometric analysis was performed in a blinded manner by a single

observer. The presence of acute tubular necrosis (ATN) was

estimated in 4-lm-thick hematoxylin and eosin-stained sections. All

microscopic fields of each slide were examined at final magnifi-

cation of 250x. Tubular injury was evaluated using a semi

quantitative scale, on which the percentage of cortical and outer

medulla tubules showing epithelial necrosis was assigned a score as

follows: 0 for 10%, 1 for 10–25%, 2 for 26–75%, and 3 for 75%.

The mean of all area analyzed was plotted and compared between

groups.

Malaria pigment detection in kidney sections
The presence of hemozoin was assessed at structures such as

the glomeruli, subcapsular cortex and large vessels observed

under polarized light. Photos of at least 5 different fields in each

slide were taken and the pictures digitalized at HP Scanjet 2400.

Synchronization and enrichment of parasitized
erythrocytes
Red blood cells were collected from infected animals with 30%

parasitemia by cardiac puncture and placed in culture medium

RPMI 1640 (Gibco) supplemented with 5% of fetal bovine serum

Figure 3. Assessment of products of oxidative stress during malaria-associated AKI. (A) Plasmatic quantification of toxic heme (B),
detection of conjugated dienes by Cooper and (C) quantification of plasma levels of oxidized low density lipoprotein in BALB/c mice infected with 106

parasitized erythrocytes by P. berghei ANKA. (D) mRNA expression of LOX-1 in renal tissue during infection in BALB/c mice. The results represent the
average of 5–10 animals per group 6 standard deviation. One-way ANOVA with Bonferroni post-test was performed using GraphPad Prism. * P,0.05
vs the control group – day 0, ** p,0.01 vs the control group – 0 days, *** p ,0.001 vs the control group – 0 days.
doi:10.1371/journal.pone.0044004.g003
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(FBS). To obtain mature forms (trophozoites/schizonts), P. berghei

ANKAGFP infected red blood cells (iRBC) were synchronized as

describe previously [23]. Briefly, the parasites were maintained in

vitro at 37uC for 18h in atmosphere containing 5% of CO2, 85%

of N2 and 10% of O2. The erythrocytes were then enriched by

magnetic separation column (MACS BEADS, Miltenyi Biotec,

USA), resulting in cell populations with approximately 95% of

iRBC.

Cytoadherence assays
To verify the capacity of erythrocytes infected with P. berghei

ANKAGFP to adhere to renal tissue, synchronized iRBC were

overlaid on frozen renal sections for 1h at 37oC. Fifty microliters of

synchronized iRBC suspension, at the concentration of 108/ml,

were overlaid on frozen renal sections for 60 minutes at 37uC in

a humid chamber. After washing the unbound cells, the slides were

mounted with Vectashield contained DAPI (Vector Lab. Bruglin-

game, CA, USA) and examined under fluorescence microscopy

(magnification 200X). The number of iRBC adhering to kidney

sections was determined in a blind fashion, counting 10 fields in

each section. As negative control, synchronized iRBC were pre-

treated with 40 mg/ml Proteinase K (Sigma) for 30 minutes at

37oC. After washing, iRBC were overlaid on renal sections as

described above.

Assessment of apoptosis
To detect apoptotic cells, the In situ Cell Death Detection Kit

TMR red (Roche Diagnostics GmbH, Mannheim, Germany) was

used (TUNEL technology).

Western blotting analysis
Primary mouse IKKa antibody (SC-166231, Santa Cruz

Biotechnology, Inc) was used following manufacturer-recom-

mended dilutions, followed by a peroxidase-conjugated anti-mouse

IgG antibody (Jackson ImmunoResearch Laboratories, West-

Grove, USA). Mouse primary anti–b-tubulin or anti-b-actin
antibody (Sigma, St. Louis, USA) was also used to confirm and

estimate the loading and the transfer. We used the software

GeneSnap (Syngene, USA) and Gene Tools (Syngene, USA) to

analyze the bands.

Statistical analysis
The data are presented in graphs showing average and standard

deviation (SD). Unpaired Student-t test and ANOVA with on

ranks tests were used to compare the data. The PCR results are

presented as a ratio of the calibrator gene HPRT and presented in

arbitrary units (AU). Differences were considered statistically

significant with p less than 0.05. All statistical analyses were

performed with the aid of GraphPad PRISMH.

Results

Malaria–associated acute kidney injury development
during P. berghei ANKA infection
At day 14 after infection, parasitemia reached 65%, (Figure 1A),

and none of P. berghei-infected mice became moribund, suggesting

that they are resistant to development of cerebral malaria

(Figure 1B). Next, we observed that serum creatinine and blood

urea nitrogen (BUN) levels were markedly increased in infected

BALB/c mice (Figure 1C and D). Additionally, we observed

a decrease of total erythrocyte PpIX concentration in infected

mice (Fig. 1E).

P.berghei ANKA infection increase the proinflammatory
profile during renal injury
The P. berghei ANKA infection significantly increases gene

expression of IFN-c on days 5 and 7 after infection (Fig. 2A).

Analysis of mRNA expression of ICAM-1 showed a progressive

increase in the response to the presence of the parasite, which

reached significant values on 6 and 7 after infection (Fig. 2B).

The mRNA expression of iNOS was also increased from day 3

after infection, although these differences were not statistically

significant (Fig. 2C). These data are in agreement of increase of

protein expression of IL-1b, IL-6 and TNF-a detected in renal

tissue, induced by P. berghei ANKA (Fig. 2D–F). Corroborating

those data, we observed that NF-kB pathway was activated in

renal tissue from day 3 after infection by P. berghei ANKA

(Fig. 2G).

Pro-oxidant activity of oxidative stress during P. berghei
ANKA malaria infection
The participation of the products generated by oxidative stress

in the development of malaria-associated AKI was assessed by

analysis of presence of heme and lipoprotein oxidation. We

observed that plasma levels of toxic heme in BALB/c mice were

significantly higher at days 7 and 12 after infection (Figure 3A).

The conjugated dienes formation (Figure 3B) and plasma levels

of oxidized LDL (Figure 3C) were significant up regulated during

Figure 4. P. berghei ANKA malaria infection induces endothe-
lium injury and changes in renal architecture. (A) Renal
microvascular permeability change assessed by Evans blue dye and
(B) representative pathophysiology of renal tissue stained with
hematoxylin-eosin (HE) and examined in light microscopy (Leica DM
LB2, Leica Microsystems). Each graph represents the mean of 5–10
animals per group 6 standard deviation. One-way ANOVA with
Bonferroni post-test was performed using GraphPad Prism. * P,0.05
vs. the control group – day 0, ** p,0.01 vs. the control group – day 0,
*** p,0.001 vs. the control group – day 0.
doi:10.1371/journal.pone.0044004.g004

Oxidative Stress and Malaria Associated – AKI
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infection by P. berghei ANKA. In addition, we observed that P.

berghei ANKA modulates a late expression of lectin-like oxidized

LDL receptor-1 (LOX-1) mRNA expression in kidney tissue of

BALB/c mice from day 5 after infection (Figure 3D).

P. berghei ANKA infection compromise Renal Endothelial
Permeability
Next, we investigated the changes in renal vascular endotheli-

um, assessed by Evans Blue albumin dye protein leak [24]. We

observed that infection with P. berghei ANKA induced a progressive

increase of renal vascular permeability, as compared to non-

infected controls (Figure 4A). Indeed, the histological examination

of kidney sections showed that infection with P. berghei ANKA led

to changes in renal architecture that ranges from a mild mono-

nuclear cell infiltration at day 7 after infection to outstanding

proinflammatory hypercellularity at day 15 after infection

(Figure 4B). The morphological analysis of kidney sections showed

changes that characterize acute tubule-interstitial nephritis (TIN).

The bioplex analysis revealed a downregulation of vascular

endothelial growth factor VEGF (Figure 5A) and an increase of

KC, MCP-1 and MIP-1a point to neutrophils, macrophages and

polymorphonuclear leukocytes as the most abundant leukocyte

infiltration during malaria infection (Figure 5B, C and D).

Sequestration and adhesion of infected red blood cells
into the kidney
When kidney section was exposed under polarized light [25], we

observed a marked deposition of malaria pigment hemozoin

dispersed mostly at glomeruli and vascular endothelium

(Figure 6A). Moreover, pigment was also observed at clusters of

inflammatory infiltration (data not show). The granules of the

pigment hemozoin were not observed at H&E standard micros-

copy (Figure 6A). The measurement of total brightly birefringent

granules of the pigment was detected from day 3 after infection,

the first time point assessed (Figure 6B). Quantitative approach by

real time RT-PCR showed an upregulation of mRNA of P. berghei

ANKA parasite at renal tissue from day 3 after infection confirmed

the presence of parasite at renal tissue (Fig 6C). Further, using a set

of ex vivo adherence assay, we verify that iRBC adhesion was

increased on renal tissue sections from infected mice (7th day pos

infection) when compared with sections from the control group

(Figure 7).

Renal hypoxia and apoptosis during infection by P.
berghei ANKA
In order to evaluate the extension of tissue damage during

infection, we quantified renal tissue hypoxia and cellular apoptosis

during malaria infection. Indeed, we observed a progressive

increase of tissular hypoxia in kidney of infected mice (Figure 8A

Figure 5. Monocytes, neutrophils and polymorphonuclear leukocytes are recruited to renal tissue in P. berghei ANKA malaria
infection. Renal tissue protein expression of (A) VEGF, (B) KC, (C) MCP-1 and (D) MIP-1a during P. berghei ANKA infection. Each graph represents the
mean of 5–10 animals per group 6 standard deviation. Unpaired Student-t test was performed using GraphPad Prism. * P,0.05 vs. the control group
- day 0, ** p,0.01 vs. the control group - day 0, *** p,0.001 vs. the control group – day 0.
doi:10.1371/journal.pone.0044004.g005

Oxidative Stress and Malaria Associated – AKI
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and B) and mRNA expression of HIF1-a (Figura 8C). Moreover,

apoptosis was detected in renal tissue of infected mice when

compare with non-infected control (Figure 8D).

Heme detoxification and production of cytoprotective
molecules during malaria-associated AKI
As oxidative stress mediated by toxic heme triggers an

upregulation of cytoprotective and anti-inflammatory molecules,

we determined the contribution of HO-1 as a mediator of the

protection against malaria-associated AKI through modulating of

anti-inflammatory response. We found a down-regulation of

mRNA expression of HO-1 in renal tissue (Fig. 9A), as well as

a decrease of plasma level of indirect bilirubin (Fig. 9B), a product

of catabolism of toxic heme, TGF-b (Fig. 9C) and IL-10 (Fig. 9D)

when compare with respective controls on day 0 after infection.

Discussion

In the current study, we provide evidence that describe changes

in the pathophysiology of kidney in an experimental model of

severe malaria resembling to malaria-associated AKI in P.

falciparum malaria. Impairment of renal function during malaria

infection has been notified by clinical reports [26,27] and it is an

important life-threatening complication of malaria infection that

goes beyond the classical clinical symptoms of plasmodium. The

adversities to access of medical services, or delay in diagnosis in

their place of origin, are implicated in the severity of disease [28].

The onset of kidney injury in BALB/c infected mice come out

from day 4 after infection and the incidence of renal failure was

confirm through manifestations such as increased of plasma

creatinine and blood urea nitrogen (BUN) levels, as well as

a decrease of total erythrocyte PpIX concentration in infected

mice. This data reinforces the idea that the decrease of

fluorescence emission of erythrocyte protoporphyrin IX, an

intermediate product in the biosynthesis of heme, may be set up

as a marker of several diseases as renal injury [19].

The pathophysiology of severe malaria are usually associated

with a polyclonal activation of the immune system and

comprehends a complex network with production of reactive

oxygen and nitrogen species, exacerbated production of proin-

flammatory cytokines such as IFN-c, TNF-a, IL-6, IL-1 and IL-8,

as well by nuclear translocation of NF-kB [29–31]. In agreement

with this notion, our study demonstrated that malaria infection

markedly increase IFN-c mRNA expression, as well protein

expression of IL-1b, IL-6 and TNF-a in renal tissue of P. berghei

ANKA infected mice, consistent with a previous study [6]. The up-

regulation of protein expression of IKK in renal tissue support the

idea that NF-kB pathway is required for this proinflammatory

profile, as well as iNOS gene expression during malaria infection

[32,33].

Malaria-associated AKI is proposed to be a consequence of

parasite adhesion as well as exacerbated immune response against

products of oxidative stress released during infection [1]. The

destruction of erythrocytes during blood stage of infection

Figure 6. Analysis of sequestration of infected red blood cell in renal tissue. (A) Representative figure of presence of malaria pigment
hemozoin in renal tissue sections visualized by hematoxylin and eosin, or under polarized light. Detection of hemozoin at glomeruli (i) and vascular
endothelium (ii). (B) Hemozoin quantification in histological section of renal tissue. (C) P. berghei ANKA mRNA quantified by qPCR in renal tissue of
BALB/c infected mice. Each graph represents the mean of 5–10 animals per group 6 standard deviation. One-way ANOVA with Bonferroni post-test
was performed using GraphPad Prism. *** p,0.001 vs. the control group – day 0, # p,0.01 vs. day 12.
doi:10.1371/journal.pone.0044004.g006

Oxidative Stress and Malaria Associated – AKI
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accumulates high levels of toxic free heme in circulation that, in

turn, has the ability to induce oxidative stress from production of

hydroxyl radicals via the Fenton/Haber-Weiss reaction [34].

Moreover, heme-derived oxidative stress is considered to be a main

factor in the iron-induced lipid peroxidation resulting in the

formation of oxidized LDL (ox-LDL) [8]. The results presented

here strongly suggest that plasma oxidizability in BALB/c infected

mice may results to free radicals generated from increased plasma

levels of heme. Therefore, our data might add new insights to

previous findings demonstrating the lipid peroxidation mediated

by heme-induced oxidative stress during infection by P. berghei

ANKA. Plasma oxidation assay measured by dienes absorption at

234 nm provide results as observed at ox-LDL plasma levels and it

is a well-known index to determine oxidizability of plasma

lipoproteins [22]. In addition, the mRNA expression of lectin-

like oxidized LDL receptor (LOX-1) was also marked increased in

renal tissue of infected mice. LOX-1 could be rapidly expressed in

endothelial cells, macrophages, vascular smooth muscle cells and

glomerular mesangial cells induced by products of oxidative stress,

as well as pro-inflammatory cytokines [35–37]. The overproduc-

tion of ox-LDL triggers adverse effect in the progression of

vascular lesions, generation of reactive oxygen species during

infection and glomerulosclerosis [38]. The maintenance of pro-

inflammatory state by ox-LDL plays an important role to

modulate the up-regulation of ICAM-1, that induces adverse

outcomes on renal microvascular permeability through leukocyte

adherence, sequestration and adhesion of infected red blood cells

(iRBC) to renal endothelial cells [24,39,40]. Addionally, ox-LDL

also increases iNOS expression in renal tissue, during an intestinal

ischemia/reperfusion injury [41]. iRBC sequestration at the

microvascular site is an important feature of severe malaria. It

has been shown that P. falciparum iRBC cytoadherence occurs via

interactions of parasite surface antigen to endothelial receptor

including ICAM-1 and CD36 [42,43]. In this work we found an

Figure 7. Ex vivo adherence of P. berghei ANKAGFP iRBC to renal tissue. (A) Representative microscopic image of the ex vivo adherence assays
showing iRBC adhering to renal tissue sections from control (right) and infected (left) mice (200X magnification). (B) Adhesion of iRBC treated or not
with proteinase K prior incubation with the frozen kidney sections. All data represent the number of bound iRBC per area. (mean6s.e.m). Two-way
ANOVA with Bonferroni post-test was performed using GraphPad Prism. *P,0.05; **P,0.01. (n.d.: not-detected).
doi:10.1371/journal.pone.0044004.g007

Oxidative Stress and Malaria Associated – AKI
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increase of ICAM-1 expression on renal tissue from P. berghei

infected mice at day 7 post infection. Interestingly, ex vivo adhesion

assays using sections from renal tissue from infected mice at this

time-point show increased iRBC adhesion. Taken together, these

results suggest that P. berghei interaction with the renal tissue can

occur via ICAM-1. Therefore, we assume that exposition of

endothelial cells to products of oxidative stress and parasite load

plays a crucial role to endothelial activation and microvascular

dysfunction in infected kidneys, concomitant with a markedly up-

regulation of ICAM-1 in renal tissue. The cytoadherence of

infected erythrocytes as well recruitment of monocytes, neutrophils

and polymorphonuclear leukocytes, during pathogenesis of

malaria-associated AKI could potentially contribute to renal

hypoxia. In addition, an up-regulation of hypoxia inducible

factor-1a (HIF-1a) mRNA and decrease of angiogenic factors

protein expression (VEGF) in renal tissue can further induce

morphological modifications. Changes in vascular permeability

observed were quite expected, since microvascular dysfunction has

been described before in the pathogenesis of ischemic-induced

AKI. Recruitment of inflammatory cells during pathogenesis of

malaria-associated AKI is in line with previous observations about

involvement of infiltrating cells to increase vascular permeability

[24]. This proinflammatory state also contributes to increase the

occurrence of apoptotic events [44].

Usually, the exposition of host endothelial cells to free heme

triggers an up-regulation of HO-1, an inducible enzyme that

catalyzes the degradation of toxic heme [45]. In response to

oxidative stress, HO-1 limits inflammation-associated tissue

damage through the generation of product of catabolism of toxic

heme as molecules of CO, bilirubin and ferritin[8]. Previous

reports from our group have demonstrated a cytoprotective role of

HO-1 in models of renal injury and ischemia and reperfusion

events [20,46,47]. Moreover, HO-1 also prevents the development

of experimental cerebral malaria (ECM), modulates the pro-

inflammatory response during liver stage of P. berghei ANKA

infection, as well as prevents hepatic injury in a noncerebral severe

malaria infection [48–50]. Despite of above observations, we have

found an impairment of mRNA expression of HO-1 in renal

tissue, even as a decreased plasma level of indirect bilirubin. Anti-

inflammatory and cytoprotective molecules were also down-

regulated.

Taken together, our data suggest that both, proinflammatory

molecules and products of oxidative stress have a central role to

development of the pathogenesis of malaria-associated AKI. Our

results also suggest that the loss of integrity of the renal vascular

endothelium during infection are multifactorial in origin and may

be related to increased toxic heme levels, reactive oxygen and

nitrogen species, as well high levels of proinflammatory molecules.

Modifications in the permeability of renal vascular endothelium,

the final event of the combination of oxidative insult generated

during infection, decreased O2 delivery to cells and tissues and

contributed to increase hypoxic microenvironments. Moreover,

the extent of ROS-induced oxidative damage can be exacerbated

by decreased efficiency of antioxidant and cytoprotetive defense

mechanisms.

Figure 8. Evaluation of hypoxia, HIF-1a in renal tissue and apoptosis during malaria-associated AKI. (A) Representative
immunohistochemistry, and (B) quantification of renal hypoxia in control and P. berghei ANKA infected mice. (C) mRNA expression of HIF-1a in
renal tissue. (D) Evaluation of apoptosis in kidney section of control and P. berghei ANKA infected mice. Each graph represents the mean of 5–10
animals per group 6 standard deviation. One-way ANOVA with Bonferroni post-test was performed using GraphPad Prism. * P,0.05 vs control group
– day 0, ** p,0.01 vs control group – day 0.
doi:10.1371/journal.pone.0044004.g008
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