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Abstract

Background: White matter hyperintensities (WMH) are an important biomarker of cumulative vascular brain injury
and have been associated with cognitive decline and an increased risk of dementia, stroke, depression, and gait
impairments. The pathogenesis of white matter lesions however, remains uncertain. The characterization of gene
expression profiles associated with WMH might help uncover molecular mechanisms underlying WMH.

Methods: We performed a transcriptome-wide association study of gene expression profiles with WMH in 3248
participants from the Framingham Heart Study using the Affymetrix Human Exon 1.0 ST Array.

Results: We identified 13 genes that were significantly associated with WMH (FDR < 0.05) after adjusting for age,
sex and blood cell components. Many of these genes are involved in inflammation-related pathways.

Conclusion: Thirteen genes were significantly associated with WMH. Our study confirms the hypothesis that
inflammation might be an important factor contributing to white matter lesions. Future work is needed to explore
if these gene products might serve as potential therapeutic targets.
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Background

Magnetic resonance imaging (MRI) has been frequently
used to identify abnormalities of white matter, detectable
as white matter hyperintensities (WMH) [1, 2]. The
prevalence of these white matter lesions increases with
aging [3-5], and they typically happen long before the
onset of clinically manifest neurological conditions [6].
WMH are observed in both apparently healthy individ-
uals [2, 7, 8] and in individuals with stroke and dementia
[9]. They have been associated with the risk of a variety
of neurological diseases and other adverse outcomes,
such as dementia [10-12], cognitive dysfunction [5, 9,
13-15], cardiovascular diseases [7], stroke [16—19], and
mortality [20, 21]. The progression of WMH has also
been used as a biomarker for predicting outcomes fol-
lowing stroke [22] and as a surrogate endpoint for clin-
ical trials of cerebral small-vessel disease [23].
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The pathophysiology of WMH remains poorly
understood. Cardiovascular disease risk factors such
as hypertension and diabetes are also risk factors for
WMH, and small vessel arteriosclerotic disease is
thought to be a key mechanism leading to WMH. In
recent years, increasing evidence has suggested that
chronic inflammation and glial proliferation might
also be involved in the pathogenesis of WMH [24].
Moreover, it has been shown that WMH is highly
heritable, with heritability estimates ranging from 55
to 73% [25-27]. Several genetic loci have been identi-
fied to be associated with WMH [28-31], however,
they explain only a small portion of the observed
heritability.

Gene expression has proved to be an important
intermediate phenotype that helps to bridge genetic
variations with many phenotypic traits [32-34]. Xu et
al. [35] examined the association of gene expression
in blood with WMH. Twenty participants with exten-
sive WMH and 18 participants with minimum WMH
were enrolled in the study. A total of 241 genes were
found to be differentially expressed (P < 0.005 and at
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least 1.2 fold difference), many of which are involved
in inflammation, oxidative stress, detoxification and
hormonal responses. Another study by Simpson et al.
[36] examined the association of gene expression in
postmortem central nervous system tissue with
WMH. Seven participants with WM lesions and 7
participants without lesions were enrolled in the
study, and 502 genes were found to be differentially
expressed, including genes involved in immunity and
ion transport.

These studies have demonstrated that differential gene
expression was associated with WMH. However, they
examined small samples of highly selected participants,
which limits their generalizability. The objective of this
study is to assess the association of gene expression with
WMH in over 3000 participants from the Framingham
Heart Study (FHS).

Methods

Study samples

The FHS is a community-based, prospective study ini-
tiated in 1948 that aimed to investigate cardiovascular
disease and its risk factors in the community. Three
generations of participants have been enrolled, and
multiple examinations have been performed with an
interval of 2 to 8 years [37-39]. At each clinical
examination, participants go through extensive phys-
ical examination, lifestyle and medical history inter-
view. This analysis is restricted to the second
generation (Offspring) of participants who attended
the eighth Offspring examination (2005-2008), and
the Third Generation participants who attended the
second examination (2008-2011). All participants
gave written informed consent, and the study was ap-
proved by the institutional review board at the Boston
University Medical Center.

WMH measurement

The details for the MRI protocol in FHS have been de-
scribed previously [9, 40]. In brief, MRI was performed
on a 1.5 Tesla Siemens Avanto scanner. Fluid attenuated
inversion recovery (FLAIR) sequences were used for the
measurement of WMH. The segmentation and quantifi-
cation of WMH was performed using a semi-automated
procedure [41], which has shown high inter-rater reli-
ability [42]. Total intracranial volume (TCV), based on
FLAIR, was quantified using the Quanta 2 software
package [41].

RNA extraction and gene expression profiling

Total RNA was isolated from frozen PAXgene blood tubes
(PreAnalytiX, Hombrechtikon, Switzerland) and amplified
using the WT-Ovation Pico RNA Amplification System
(NuGEN, San Carlos, CA) according to the manufacturers’
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standard operating procedures. The obtained cDNA was
hybridized to the Affymetrix Human Exon 1.0 ST Array
(Affymetrix, Inc., Santa Clara, CA). The raw data were
quantile-normalized and log2 transformed, followed by
summarization using Robust Multi-array Average [43]. The
gene annotations were obtained from Affymetrix NetAffx
Analysis Center (version 31). We excluded transcript clus-
ters that were not mapped to RefSeq transcripts, resulting
in 17,873 distinct transcripts (17,324 distinct genes) for
downstream analysis.

Given that the gene expression was measured from
whole blood, the proportion of different cell types
might affect gene expression. However, only 2181 par-
ticipants from the Third Generation cohort had mea-
sured cell counts, of which 1225 were included in the
current study. For the remaining participants, we used
the partial least square method to estimate the cell
counts from those with measured cell counts based
on the gene expression data [44]. The percentages of
each imputed cell type were then normalized, where
the negative predicted values were set to 0 and the
sum of the percentages for all cell types was set as
100%. Cross-validated estimates of prediction accuracy
(R2) were 0.61, 0.41, 0.25, 0.83, 0.83, 0.81, 0.89, and
0.25, for white blood cell counts, red blood cell
counts, platelet counts, neutrophil percent, lympho-
cyte percent, monocyte percent, eosinophil percent,
and basophil percent, respectively.

Statistical analyses

WMH mesures were log transformed to reduce the skew-
ness of its distribution. Linear mixed effects models were
used to test the association between gene expression and
WMH volumes, treating the expression of each gene as the
dependent measure, and the log-transformed WMH meas-
ure as the exposure. The analyses were adjusted for age,
sex, and TCV. We also adjusted for the differential cell
counts using a fixed effect factor, and for familial relatedness
by implementing a random variance-covariance matrix.

In our secondary analyses, we additionally adjusted for
smoking, body mass index, systolic blood pressure,
diastolic blood pressure, hypertension treatment, total
cholesterol, HDL cholesterol, and triglyceride.

In order to correct for multiple testing, we used false
discovery rate (FDR) [45], which is defined as the num-
ber of incorrectly rejected hypotheses divided by the
total number of rejected hypotheses. Significant associa-
tions were defined as those with FDR < 0.05. All the
analyses were performed using the “lmekin” R package
(www.r-project.org/).

Overlap with GWAS loci
The summary statistics of GWAS association was ob-
tained from a meta-analysis of participants from multiple
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ancestries [46]. Four genetic loci were significantly associ-
ated with WMH. At each locus, we obtained all SNPs with
P-value less than 5 x 1078 (defined as GWAS SNPs). We
then examined if any of GWAS SNPs was associated with
gene expression in blood using FHS expression quantita-
tive trait loci (eQTL) database [44]. An eGene was defined
if its expression was associated with at least one of GWAS
SNPs (FDR < 0.05). The association of each of the eGenes
with WMH was then examined as described in the previ-
ous section.

We also queried the GWAS catalog [47] and extracted
variants significantly associated with stroke or dementia
(P < 5 x 107®). For each of these variants, we searched
its eGene, and examined the association of eGenes as
described in the previous section.

Construction of gene interaction subnetwork associated
with WMH

A dense module searching strategy [48] was used to
identify modules enriched with WMH-related genes.
The experimentally validated interactions between genes
were obtained from the PINA database [49]. Before the
searching, each gene was assigned a score to represent
its association with WMH. The module searching
started with a seed gene that was significantly associated
with WMH (EDR < 0.05). Neighboring genes were then
added sequentially to the module if the addition in-
creased the overall module score [50], which was defined

as Z, = %, where k is the number of genes in the
module, and g; is the score of the gene i. The searching

stopped if no more genes could be added.

Results

The current study includes 1397 eligible participants
from the Offspring Cohort (mean age 66.4 + 9.0 years,
54.2% women) and 1851 participants from the Third
Generation Cohort (mean age 48.0 + 8.5 years, 54.0%
women) who had both gene expression and WMH mea-
sured. The descriptive characteristics of the participants
are provided in Table 1.

Association of Gene Expression with WMH volume

As shown in Table 2, a total of 13 genes were signifi-
cantly associated with WMH (FDR < 5%). Six of them
were upregulated, and the remaining seven genes were
down-regulated. Figure 1 is the volcano plot showing
the association between each gene with WMH. The
most significant gene was IL4R (P = 1.5 x 10~%), which
encodes the alpha chain of the interleukin 4 receptor.
The result was similar after excluding articipants with
stroke, dementia and vascular diseases (Additional file 1:
Table S1).
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Table 1 Baseline characteristics of the study participants

Characteristics Offspring cohort  Third generation

(n=1397) cohort (n = 1851)
Women, n (%) 757 (54.2%) 1000 (54.0%)
Age, years (mean * SD) 664 + 9.0 480 + 85
WMH, median (25th, 75th 241 (1.25, 4.69) 1.28 (092, 1.75)
percentile)
Ln(WMH + 1), median (25th, 123 (0.81, 1.74) 0.82 (0.65, 1.01)
75th percentile)
Total cranial volume, median 1222 (1143, 1307) 1254 (1170, 1344)
(25th, 75th percentile)
Current smoker, n (%) 97 (6.9%) 174 (9.4%)
Hypertension, n (%) 828 (59.3%) 135 (7.3%)

Body mass index (BMI), median 27.52 (24.52,30.78) 27.11 (23.98, 30.72)

(25th, 75th percentile)

Total cholesterol, median (25th, 185 (162, 210) 184 (163, 207)
75th percentile)
HDL, median (25th, 75th 56 (45, 68) 57 (47,71)

percentile)

In the secondary analysis, we adjusted the model for
additional clinical factors (see Methods). As shown in
Table 2, most of top hits were still significant, although
the association were slightly attenuated.

In order to assess potential effects of imputed cell
counts, we performed a sensitivity analysis by includ-
ing only individuals with measured cell counts, and
compared the association of gene expression with
WMH using either imputed or measured cell counts.
As shown in Additional file 1: Figure S1, the statistics
of associations were highly correlated using either the
imputed and measured cell counts (R2=0.98), suggest-
ing only marginal effect of imputed cell counts. We
also additionally adjusted for the RNA integrity number in
our statistical model, and found the results remained
largely unchanged (Additional file 1: Table S2). We then
performed another sensitive analysis by separating
Offspring and Third Generation participants and assessed
the association of gene expression with WMH separately.
As shown in Additional file 1: Table S3, all 13 top genes
had the same direction of association. In addition, the as-
sociation in Offspring cohort showed relatively stronger
effects than that in the Third Generation cohort, reflecting
relatively older participants and more WMH volumes
comparing to the Third Generation participants.

We also compared the top genes from the current
study with previous studies. Among the 13 WMH-
related genes, SEPT11 was also reported to be associ-
ated with WMH in brain [36].

Overlap with GWAS loci
In our recent GWAS that included more than 20,000
participants from diverse ancestries, we identified 4
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Table 2 Most significant genes associated with WMH (FDR < 0.05)
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Gene Primary analysis® Secondary analysis®
Effect size SEP P-value FDR® Direction of effect® Effect size SEP P-value Direction of effect®

IL4R —-0.055 0.010 1.5E-08 2.6E-04 1 —-0.050 0.010 3.6E-07 l
CD79A -0.069 0.013 2.78-07 2.5E-03 1 -0.067 0.014 1.0E-06 |
FCRL6 0.068 0013 5.2E-07 3.1E-03 1 0.064 0014 2.8E-06 i
PAX5 —-0.052 0011 3.1E-06 14E-02 ! —-0.049 0011 1.6E-05 l
FCRL1 —-0.066 0.014 4.8E-06 1.7E-02 l -0.059 0.015 5.8E-05 1
BANKT —0.060 0014 8.6E-06 2.1E-02 ! —-0.057 0014 34E-05 l
ARHGAP10 0.029 0.007 9.4E-06 2.1E-02 1 0.028 0.007 1.9E-05 i
YY1 0.018 0.004 9.5E-06 2.1E-02 1 0.019 0.004 3.5E-06 1
TGFBR3 0.047 0011 1.8E-05 3.6E-02 1 0.044 0.011 6.4E-05 i
ILTRL2 0.021 0.005 22E-05 3.7E-02 1 0.020 0.005 6.1E-05 i
SEPTT1 0.033 0.008 2.3E-05 3.7E-02 T 0.034 0.008 1.2E-05 1
TREML2 -0.029 0.007 2.6E-05 39E-02 l -0.026 0.007 2.2E-04 !
ARLT7A —-0.100 0.024 32E-05 44E-02 ! -0.097 0.025 7.8E-05 l

@Primary analysis was adjusted for age, sex, total cranial volume and cohort, whereas secondary analysis was additional adjusted for smoking, body mass index,
systolic blood pressure, diastolic blood pressure, hypertension treatment, total cholesterol, HDL cholesterol, and triglycerides

bSE: standard error
FDR: false discovery rate

Direction of effect: | indicates decreased gene expression was associated with increased WMH, whereas 1 indicates increased gene expression was associated

with increased WMH

genetic loci that were significantly associated with
WMH [46]. As shown in Table 3, GWAS SNPs at
these loci were associated with the expression of 17
genes (FDR < 0.05); three of them was nominally as-
sociated with WMH (SEMA4A, UNCI13D and WBP2).
As an example, the risk allele of rs2984613 was asso-
ciated with decreased expression of SEMA4A, which
was associated with increased WMH. We then
searched all eQTLs for the 13 WMH-related genes,
and found that these eQTLs were significantly
enriched with variants associated with WMH [46]
(P < 2.2e-16 by Kolmogorov—Smirnov test). Our re-
sults suggest that gene expression might serve as an
intermediate phenotype that bridges genetic variations
and WMH.

We also examined if previously reported genetic loci
for stroke and dementia were associated with 13 WMH-
related genes in the current study. GWAS catalog was
queried, and 142 genome-wide significant variants
(P < 5 x 1078) were found to be associated with demen-
tia or stroke. We then searched these variants in FHS
eQTL database [44] and found that they were associated
with the expression of 70 eGenes; 7 of them were nom-
inally associated with WMH, including ARLI17A, SYTL2,
PTGDR, POLR2E, MS4A6A, GPRI141, and RIN3. Among
them, ARLI7A was the most significant one and it was
associated with SNP rs2732703, which was recently
found to be associated with Alzheimer’s disease among
individuals without APOE €4 allele [51].

Pathway analysis

In order to examine the integrative effects of differen-
tially expressed genes on the biological systems, we
examined the enrichment of WMH-related genes in
biological pathways using WebGestalt [52]. Given that
only 13 genes reached the significance cutoff after
correction for multiple testing, we expanded the
selection and examined the enrichment of top 1% of
genes associated with WMH (including 179 genes).
Table 4 shows the top enriched biologic pathways
(FDR < 0.05). Many of them are involved in the
immune responses and apoptosis, such as antigen
processing and presentation (FDR = 0.0019) and
apoptosis (FDR = 0.0338).

Gene interaction network associated with WMH

We applied a dense module searching strategy [48] to
construct a WMH-specific subnetwork and examined
the interaction between top genes associated with
WMH. Note that during the construction of subnet-
work, genes with weak or no association with WMH
might be also added to the subnetwork if the genes
could interact with other significant genes, thus their
inclusion would increase the overall score of the
subnetwork (see Methods). As shown in Fig. 2, the
subnetwork is consisted of 40 nodes and 57 edges,
where each node represents one gene, and each edge
represents the interaction between two genes. Many
of these genes are involved in B cell receptor
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Fig. 1 Volcano plot of gene expression associated with WMH. Each dot represents one gene. The x-axis represents the beta estimation () of each

gene, whereas the y-axis represents the log;o(P). Positive effects represent that genes were positively associated with WMH, whereas negative
effects represent that the genes were negatively associated with WMH. The red dash line indicates FDR < 0.05. The 13 genes that reached

signaling pathway and Epstein-Barr virus infection.
CASP3 appears to be one of the pivotal genes in the
network that was connected with 9 other genes, al-
though itself was not associated with WMH
(P = 0.79). Previously studies also have found that the
activation of CASP3 was observed in brain with ische-
mic lesions [53-55].

Association with neuropsychological performance

The standardized neuropsychological performance
testing was described previously [56—58]. Seven matri-
ces were tested, including Hooper Visual Organization
Test score, Logical Memories Delayed Recall score,
Logical Memories Recognition score, Similarities Test
score, Trails Test A score, Trails Test B score, and
Trails B—A score. As shown in Additional file 1:
Table S4, four genes were significantly associated with
at least one cognitive matrix, including BANK1 for lo-
gical memories recognition (P = 4.5 x 107*), TGFBR3
for Trails B—A score (P = 1.8 x 107°) and Trails Test

B score (P = 1.9 x 107%), FCRLI for Hooper Visual
Organization Test (P = 2.9 x 107) and FCRL6 for
Trails B-A score (P = 3.4 x 107°). Our results sug-
gest potential shared mechanisms between WMH and
cognitive function.

Discussion

Increasing evidence has suggested that WMH is an
important surrogate of aging and cerebrovascular
diseases [26, 28]. However, molecular mechanisms
underlying WMH are still poorly understood. In this
study, we performed transcriptome profiling on
participants who lie across a wide age-range and were
ascertained without specific clinical characteristics.
We identified 13 genes that were significantly associ-
ated with WMH (FDR < 0.05) and examined their
integrative effect by the network analysis. CASP3 ap-
pears to be one of pivotal genes that interact with
multiple genes associated with WMH.
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Table 3 Association of GWAS loci with gene expression. Three genes, SEMA4A, UNC13D, and WBP2 were nominally associated with

WMH
GWAS SNP Risk Locus P value (GWAS Association of SNPs with gene expression Association of eGene expression with
allele® association by eQTL WMH (current study)
with WMH) [46] analysis [44]
eGene P value Direction on gene Effect size® SEC P value
expression
154072479 C 17925.1 4.6E-14 WBP2 1.0E-10 1 -0.020 0.010 4.6E-02
rs8067275 T 17925.1 1.9E-13 MYO15B 23E-05 i 0.003 0.005 052
rs9894244 A 179251 52E-10 GALK1 2.9E-06 l 0.001 0.004 0.79
159894244 A 17925.1 5.2E-10 [TGB4 2.9E-06 1 —-0.001 0.003 0.79
rs7216615 @ 17925.1 1.1E-09 H3F38 9.2E-29 l —-0.007 0.008 038
rs34143128  C 179251 24E-09 ACOX1 9.1E-50 l 0.003 0.009 0.75
rs1135889 A 17925.1 8.8E-09 UNCI13D 4.5E-11 | -0.010 0.004 6.1E-03
rs1135889 A 17g25.1 8.8E-09 EXOC7 9.1E-05 l —0.009 0.006 0.86
rs1135889 A 179251 8.8E-09 ZACN 9.1E-05 l —-0.001 0.005 0.86
152984613 C 1922 2.0E-08 Clorf85 6.5E-23 | -0.003 0.007 0.65
rs2984613 @ 1922 2.0E-08 TMEM?79 6.5E-23 l 0.005 0.007 0.65
rs2984613 C 1922 2.0E-08 SMG5 33E-20 l 0.002 0.005 0.72
152984613 C 1922 2.0E-08 PAQR6 1.6E-16 1 0.001 0.006 0.89
rs2984613 @ 1922 2.0E-08 PMF1 7.3E-10 i —-0.001 0.005 091
rs2984613 C 1922 2.0E-08 SEMA4A 24E-08 l —-0.022 0.006 3.4E-04
rs10883865 G 10g24.33  4.6E-08 ASSMT 7.9E-26 | 0.011 0.010 0.30
rs10883865 G 10g24.33  4.6E-08 USMG5 7.7E-07 1 0.015 0.011 0.19

“Risk allele respresnts the allele that was associated with increased risk of WMH

PDirection of effect: |indicates the risk allele was associated with decreased gene expression, whereas 1 indicates the risk allele was associated with increased

gene expression
SE standard error
Genes with P-value less than 0.05 were marked in bold text

Many of the WMH-related genes are involved in
the immune response pathway, including the most
significant gene, IL4R (P = 15 x 107®) and others
such as CD79A, TGFBR3 and ILIRL2. A variety of
studies have suggested a role of inflammatory pro-
cesses in the development of cerebral large- and
small-vessel disease [59, 60]. A high infectious burden
is also associated with an increased risk of stroke
[61]. Inflammatory markers, such as interleukin-6 and
C-reactive protein, have been associated with the
presence and progression of white matter lesions
across multiple ancestries [24, 62]. Some of top genes
are involved in tumorigenesis and Alzheimer type
neurodegeneration, which is consistent with prior
GWAS.

We found a single gene in the current study over-
lapping with those reported previously [35, 36]. The
lack of overlapping might dues to several reasons.
The gene expression in the current study was mea-
sured by the Affymetrix Exon 1.0 ST array instead of
Affymetrix HU133 Plus 2.0 array, which interrogated
different sets of genes with different probesets. In
addition, our study focused on whole blood samples

but with much larger sample size. Moreover, partici-
pants of current study are relatively young and gener-
ally healthy, which might represent the WMH burden
in the general population. It should be noted that the
expression in brain would be more relevant to WMH.
However, it is impractical to examine the brain ex-
pression in a community-based cohort. We have de-
veloped a brain donation program [63], which will be
a valuable resource to study brain gene expression
profile in future.

We acknowledge several limitations of our study.
Gene expression could vary from tissue to tissue
over time, but we only measured it in whole blood
during a single examination. So we could not study
longitudinal changes in gene expression over time,
and how this might be related to WMH. Less than
half of the studied samples had measured cell
counts, and the remaining samples used imputed cell
counts, which could introduce some additional varia-
tions to our results. In addition, in this cross-
sectional study of observational data, we could not
infer causal relationships between gene expression
and WMH; the observed gene expression changes
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Fig. 2 WMH-related subnetwork derived from protein-protein interaction. Each node represents one gene, wheras each edge represents the
interaction between two genes. The nodes were colored to represent their association with WMH: red color represents strong association, and
white color represents no association. The node size is proportional to the number of edges that the node connects to

could be a consequence of vascular injury, both sys-
temic and in the brain. Moreover, all participants in-
cluded in this study were exclusively adults of
European descent. Thus it is unclear if our findings
could be generalized to other ethnicities/age groups.

Conclusions

In conclusion, we performed a large-scale profiling of
gene expression in whole blood in a large community-
based cohort, and identified 13 genes whose expression
was associated with WMH. Our results are consistent
with earlier reports that the immune response might be
an important pathway to link gene expression and
WMH. We also identified genes in glial proliferation
and Alzheimer neurodegeneration pathways as potential
links to WMH. Future studies with larger sample sizes
and better techniques for measurement of gene expres-
sion such as RNA sequencing [64, 65] might uncover
additional WMH-related genes and novel preventive and
therapeutic targets for white matter lesions.
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