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Artificial intelligence (AI) refers to computer algorithms used to complete tasks that usually
require human intelligence. Typical examples include complex decision-making and-
image or speech analysis. AI application in healthcare is rapidly evolving and it
undoubtedly holds an enormous potential for the field of solid organ transplantation. In
this review, we provide an overview of AI-based approaches in solid organ transplantation.
Particularly, we identified four key areas of transplantation which could be facilitated by AI:
organ allocation and donor-recipient pairing, transplant oncology, real-time
immunosuppression regimes, and precision transplant pathology. The potential
implementations are vast—from improved allocation algorithms, smart donor-recipient
matching and dynamic adaptation of immunosuppression to automated analysis of
transplant pathology. We are convinced that we are at the beginning of a new digital
era in transplantation, and that AI has the potential to improve graft and patient survival.
This manuscript provides a glimpse into how AI innovations could shape an exciting future
for the transplantation community.
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INTRODUCTION

Artificial intelligence (AI) refers to the use of algorithms (machine learning and deep learning) to
perform tasks that are usually associated with human intelligence, “such as the ability to reason,
discover meaning, generalize, or learn from past experience to achieve goals without being explicitly
programmed for specific action” (1, 2). AI is already changing industry through new forms of
interaction between man and machine. Driven by AI, this industrial revolution (known as I4.0)
brought intelligent factories where humans and cyber-physical systems interact through deep-
learning algorithms. These technologies are increasingly in demand in all industries which seek to
ensure manufacturing competitiveness.

Powered by increasing availability of healthcare data and rapid development of analytical
techniques, AI is also growing exponentially in all areas of medicine, including solid organ
transplantation. The pre- and post-transplantation patient care requires complex decision-
making. In this context, AI can drive a real paradigm shift as it enables analyzing and
synthesizing of huge amounts of data, and transforming them into clinical recommendations.
AI-based classifiers have been principally explored for the optimization of four key areas: organ
allocation and donor-recipient pairing, transplant oncology, real-time immunosuppression regimes,
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and precision transplant pathology. The aim of AI is to identify
hidden trends and complex relationships within large datasets to
obtain logical results while optimizing resources. AI is still in its
infancy and, so far, we lack validated algorithms that could
accurately drive organ selection, predict potential rejections or
attenuate postoperative complications. Nevertheless, in the last
few decades, AI applications have already contributed to lower
incidence of rejection, and fine-tuning of the transplantation and
organ preservation processes. In this review, we discuss emerging
AI, machine learning and deep learning strategies applied to solid
organ transplantation and their potential future applications
(Table 1).

AI IN ORGAN ALLOCATION AND
DONOR-RECIPIENT MATCHING
MODELING
From an exclusively mathematical point of view, transplantation
can be reduced to a list of problems in which the characteristics of
the donor must be combined with the variables of the recipient in
order to achieve one of the following three outcomes (2): the
survival of the graft and the recipient, the loss of the graft or the
loss of the graft and the recipient.

The allocation systems used by Eurotransplant in Europe, and
the United Network for Organ Sharing (UNOS) in the US, are
intended as objective and transparent procedures to make the
best possible match (3, 4). The allocation systems, which are one
of the cornerstones of transplantation, are based on two major
principles: expected outcome and emergency. Additionally, the
allocation (and donor-recipient matching) process depends on
the timeframe during which the organ remains viable once
harvested, which ranges from a few to 36 h, depending on the
organ (5). Organ-matching characteristics may differ between
organs, but they are crucial for the selection of the best possible
allocation and donor-recipient matching. The Child-Pugh
classification, the Model of End Stage Liver Disease (MELD),
the Kidney Allocation System (KAS) and the Lung Allocation
System (LAS) are the most important algorithms currently used
(6). Whilst well integrated into clinical practice, these systems
cannot prioritize recipients in real time and need constant
modifications (7) and addition of exceptions. AI could

significantly strengthen the decision-making, by automatically
harmonizing principles of optimal use (utility) and equal access
(equity) in a context of organ shortage and an ever-growing
waiting list. In 2019, Bertsimas and co-workers proposed a
machine learning-based model for alternative liver allocation
(8). This model, named Optimal Prediction of Mortality
(OPOM), predicts the probability of a patient’s 3-month
mortality or waitlist removal given their characteristics. Using
the Standard Transplant Analysis and Research dataset (1618966
observations), OPOM provided more accurate and objective
predictions than MELD. Additionally, the OPOM simulation
reduced mortality on average by 417.96 deaths for 6139 liver
transplantations by assigning different priority to liver transplant
candidates. External validation still needs to be performed.

Organ allocation could also benefit from the Internet of Things
(IoT). IoT refers to a network of interconnected smart devices
such as smartphones, tablets, and laptops, but also wearables,
cars, and data transmission devices (9). An IoT ecosystem of web-
enabled connected devices using sensors, processors and
communication hardware can be used to store, transmit and
react appropriately to data from the surroundings. During the
organ procurement and transplantation process, the distance
between the donor and the recipient is a key factor influencing
the time needed for organ transfer. Even if routinely preserved in
ice-cold preservation fluids, organs are sensitive to cold ischemia
time. IoT could be useful for real-time tracking of organs: during
transport, the organ packaging can be equipped with a global
positioning system (GPS) that can continuously track the organ’s
location and record shocks caused by rapid acceleration/
deceleration or barometric pressure incidents (10). These data
can be used to accurately approximate time of organ arrival in the
recipient’s transplant center, minimize downtime and optimize
the workflow (Figure 1).

Organ allocation is strictly connected to donor-recipient
matching. Although thoroughly analyzed and refined, the
traditional donor-recipient matching models still leave room
for improvement and could potentially benefit from AI. In
2013, Cruz-Ramirez et al. reported the use of AI artificial
neural networks (AI-ANNs) to improve donor-recipient
pairing. AI-ANNs analyzed data on 1,003 liver transplants
including donor/recipient matching, graft retrieval and pre-
transplant analysis (11). The following year, a large Spanish

TABLE 1 | AI Glossary table.

Term Definition

Computer Algorithms Computer algorithms are automated instructions
Machine Learning (ML) Machine learning is a subfield of artificial intelligence intended as a sets of automated computer algorithms
Deep-Learning (DL) Deep learning is a type of ML that imitates the way humans gain certain types of knowledge including statistics and predictive

modeling
Neural Networks (NN) Neural networks reflect the behavior of the human brain, allowing computer algorithms to recognize patterns and solve

common problems in the fields of AI, ML and DL.
Cyber Physical System Cyber Physical System is referred to computer-human networks, controlling physical processes, where physical processes

affect computations and vice versa
Internet of Things The Internet of Things represents a system of interralated computing devices, capable of operating without human-to-

human or human-to-computer interaction
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multicenter study (Model for Allocation of Donor and Recipient
in España [MADR-E]) documented the impressive advantages of
using AI-ANNs rather than standard algorithms (12). In their
work, Briceño et al. designed a 3-month graft mortality prediction
model based on 64 donor and recipient characteristics and
performed a binary analysis (graft survival/loss) for donor-
recipient matching via AI-ANNs. AI-ANNs’ new algorithms
predicted graft survival (AUC, 0.81) and graft loss (AUC,
0.82) better than the isolated donor/recipient scores. Similarly,
Rana and coworkers used the Organ Procurement and
Transplantation Network (OPTN)/Scientific Registry of
Transplant Recipients (SRTR) data to develop the Survival
Outcome Following Liver Transplant (SOFT) score that
integrates recipient and donor characteristics to predict liver
transplant 3-month prognosis (13). The SOFT score
demonstrated a predictive accuracy similar to those of other
models (14, 15) with a C-statistic of 0.70.

The reports on impact of diabetes on the outcome of liver
transplantation have been contradictory. Recently, Yasodhara
et al. demonstrated the value of AI for successful liver donor-
recipient matching, by including the metabolic status of the
recipient (16). Based on the SRTR registry, the authors used
machine learning to establish survival predictors in liver
transplant recipients with preexisting and/or post-transplant
diabetes. They tested survival models to predict general and
cardiovascular mortality and evaluated the effects of
preexisting and post-transplant diabetes on mortality. The
model performance achieved C-statistics between 0.58 and
0.66. Additionally, the model was externally validated on a
cohort of patients (University Health Network dataset from
Toronto, Canada). While the study had some limitations
(retrospective design, missing data on patients’ comorbidities,
unclear information regarding immunosuppression, unusually

few patients with steatohepatitis), it is nevertheless one of the
largest studies to address risk factors in liver transplant patients
with diabetes. AI and machine learning enabled the authors to
analyze the huge and heterogeneous dataset and conclude that
diabetes is a superior predictor of outcome than obesity, which
resulted in changes in practice in donor-recipient matching.

AI-ANNs algorithms have been also applied to donor-
recipient matching for kidney transplants. In 2019, Bae et al.
proposed an online tool (https://www.transplantmodels.com/
kdpi-epts/) (17) to maximize benefits form marginal kidney
donors. The authors estimated the 5-year patient survival
using a random survival forest (RSF), with the combination of
expected post-transplant survival (EPTS) score (variables: age,
diabetes, time on dialysis and previous solid organ transplant)
and Kidney Donor Profile Index (KDPI) (variables: age, race,
height, weight, hypertension, diabetes, serum creatinine,
hepatitis-C seropositivity and cause of death). The result of
the evaluation yielded a C-statistic of 0.637 for the RSF
algorithm, which is slightly higher than the Kidney Donor
Risk Index (KDRI) model’s 0.6. This prediction model could
support personalized decision-making on kidney offers in clinical
practice.

AI IN TRANSPLANT ONCOLOGY

Transplant oncology is defined as a combination of various fields
of transplant medicine and oncology, aiming to extend the
treatment limits of hepatobiliary cancer including
hepatocellular carcinoma (HCC), cholangiocarcinoma or
colorectal liver metastases (18, 19).

In the past this discipline relied on simple variables such as the
number of tumor lesions and their size. In recent years, transplant

FIGURE 1 | GPS tracking technology could be applied to organ transport, thus minimizing downtime and optimizing the workflow.
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oncology was refined and a multitude of new variables identified
as central, making AI a potentially important tool. Identification
of key clinical and pathological variables is a crucial step in the use
of AI for the prediction of tumor recurrence and graft survival
after transplantation (20). AI has been used by different groups
to predict oncological outcomes in patients undergoing liver
transplantation for HCC. Halazun KJ et al. developed a model
(MORAL - Model of Recurrence after Liver Transplant) which
identified predicting factors of tumor recurrence pre- and
post- liver transplantation (21). Specifically, neutrophil-
lymphocyte ratio ≤5, alpha-fetoprotein (AFP) > 200 ng/ml
and tumor size >3 cm have been classified as pre-
transplantation predictive factors of decreased recurrence-
free survival. Likewise, HCC grade 4, tumor size >3 cm, > 3
tumor lesions, and vascular invasion have been identified as
post-transplantation negative predictive factors. Both scored
(pre- and post-transplant) demonstrated predictive
superiority (C-statistic of 0.82 and 0.86, respectively) when
compared to Milan criteria for forecasting tumor recurrence
(C-statistic of 0.63). When combined, the two scores achieved
a C-statistic of 0.91.

The Metroticket 2.0 score proposed by Mazzaferro and
coworkers (22) predicts survival after liver transplantation for
HCC through competing-risk analysis. The authors enrolled 1018
patients from an internal cohort in Italy, while the score was
validated by an external Chinese cohort of 341 patients.
Preoperative characteristics such as AFP level, tumor volume
and number of tumors were included. The validation set showed
an accuracy of 0.721 (95% CI, 0.648%–0.793%) in predicting 5-
year survival after liver transplant. This model was compared to
Milan, Up-to-7 and UCSF criteria, demonstrating a superior
predictive ability.

Recently, the group lead by Prof. Sapisochin described the use
of AI for predicting the post-transplant recurrence of HCC based
on preoperative patient and tumor characteristics (23). To do
this, the group included HCC patients listed for liver
transplantation between 2000 and 2016 (n = 739). This AI-
based HCC-recurrence calculator (CoxNet-based) was then
compared to alternative available recurrence risk scores (AFP,
MORAL and HALT-HCC scores). The CoxNet-based algorithm
outperformed AFP by 0.118, MORAL by 0.130 and HALT-HCC
by 0.102. These findings confirm, pending an external validation,
that an AI-based calculator can generate a comprehensive
prediction of post-transplant HCC recurrence with higher
accuracy than alternative scores.

AI AND REAL-TIME ADAPTATION OF
IMMUNOSUPPRESSIVE THERAPY

The discovery of cyclosporine was a cornerstone of modern
transplantation (24) and constant refinement of
immunosuppressive regimens drastically improved outcomes
for transplant patients (25). However, immunosuppressive
regimens are burdened with adverse effects ranging from
nephrotoxicity to malignancies, and significantly reduce the
quality of life and life expectancy of transplant patients (26,

27). Furthermore, response to immunosuppressive therapy is
highly individual. While some patients do not require any
immunosuppression at all, others reject their organs on
maximum immunosuppression (28–30). The individual
optimization of immunosuppression is therefore of the utmost
importance.

Many factors come into play when choosing the optimal
immunosuppression regimen, and the decision-making is
complex. One relatively simple example of machine learning
use is to predict the stable dose of tacrolimus in kidney
transplant patients. Three studies compared the logistic
regression approach to machine learning algorithms (31–33).
All studies showed a superior predictive ability of machine
learning tools over the linear regression models, albeit with a
relatively small difference. Using combination of genomic data
and clinical factors was shown more important than the choice of
algorithm. The improved prediction performance highlights the
importance of integrating data from different sources (31).

Taking a more general approach, Nitski et al. analyzed large
retrospective datasets with machine learning algorithms to
predict mortality in liver transplant patients (34). The models
were longitudinally updated with patients’ data at every follow-
up. Interestingly, the model provided meaningful predictions
based on readily available data such as graft age, blood values,
donor age, and postoperative complications, making a potential
clinical implementation relatively straightforward. This dynamic
model could be a valuable tool for clinicians to personalize
immunosuppressive therapy based on the most likely
complication, and therefore reduce graft-related mortality (35).
Biomarkers surveillance plays an important role in predicting
transplant rejection in patients on immunosuppression.

Suthanthiran et al. used the transcriptomes of urinary cells
from 220 patients to predict acute rejection based on kidney
biopsies (36). The authors obtained an AUC of 0.85 with a three-
gene expression signature for the discrimination between acute
rejection and no rejection in their own cohort, and an AUC of
0.74 upon external validation. However, the authors used a
predefined gene set, while a genome-wide association study
would have likely revealed better gene candidates (37). Deep
learning tools could have been helpful in this big-data context to
not only find these candidates but also to further improve the
already working prediction model (38).

AI can integrate high-complexity information from many
sources into the decision-making tree used in individualized
immunosuppression. A wealth of information about donors
and recipients is still underutilized. Data from pre-
transplantation histology, recipient’s genome, gene expression
analysis, blood and urine analysis, and clinical observation can all
deliver important clues on the state of a transplanted organ
(39–41). AI can help us tap into this potential to fine-tune
immunosuppression, and optimize graft and patient survival.

AI IN TRANSPLANT PATHOLOGY

AI has proven highly efficient in image processing. An image
contains a high density of structured and unstructured
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information that is often inaccessible to the untrained eye (42).
A pathologist has the experience and the training to recognize
subtle patterns and interpret them in the context of a particular
patient and their disease. Unfortunately, trained pathologists
are in short supply. This is where AI steps in to extract, process,
analyze and even learn from the wealth of information
contained in pathological slides (1), that can guide therapy
or improve diagnostic accuracy. More than 2 decades ago,
Furness et al. developed a machine learning algorithm that
diagnosed the acute kidney allograft rejection more accurately
than expert pathologists (43). However, the algorithm was not
fully automated—it relied on manual extraction of
pathological features from histological slides. This method
of data collection illustrates why AI did not find a more
widespread application in transplant pathology sooner:
collecting raw data is a prerequisite for downstream
analysis. Commercial digital pathology slide scanners for
high-throughput imaging have only recently become
available (44, 45). Advances in computer performance, data
storage and network speed enable increasingly efficient
analysis. The I4.0 now provides us with the tools to fully
exploit the potential of AI in transplant pathology. In a
recent study, Hermsen et al., successfully implemented a
deep learning algorithm to divide kidney biopsies from
different centers into their anatomical components (46).
The authors developed a convolutional neural network that
classified each anatomical component. While the algorithm
performed well in identifying healthy glomeruli, it struggled to
identify more challenging structures such as sclerotic
glomeruli or atrophic tubuli. Nevertheless, this study
provides important groundwork and paves the way for
further image analysis of kidney transplant biopsies. Most
importantly, the authors proved that the same algorithm
worked on histological samples from different centers,
thereby addressing the issue of reproducibility.

In liver transplantation, quick and reliable assessment of liver
steatosis during procurement still presents a challenge. Recently,
several groups have developed deep learning algorithms to assess
the degree of steatosis in liver biopsies (47–49). Perez-Sanz et al.
developed a quick and easy workflow to quantify steatosis content
in Sudan-stained frozen sections of procurement biopsies
through machine learning. Their algorithm, available as an
open-source interactive web platform (50), proved highly
accurate in comparison with the assessment of an expert
pathologist. This tool could be extremely valuable for the
decision-making in remote procurement locations, where an
expert pathologist is not readily available.

Automated image analysis, feature recognition, data extraction
and deep learning models are everyday reality for the tech giants
but have only partially reached precision pathology (51–53).
Radiology is one step ahead and shows what is possible with
the emerging field of radiomics—the extraction of data from
radiograms to diagnose cancer, predict outcomes or guide
therapy (54–56). Transplant pathology needs to follow this

example with a concerted, multidisciplinary effort of
pathologists, computational biologists and healthcare
administrators. Challenges that lie ahead are the
implementation of digital workflows to routinely scan
histological slides, and collaboration between centers to
establish image databases and bring the existing AI tools to
transplant pathology (57).

CONCLUSION: AI CURRENT PITFALLS
AND FUTURE PROMISES

The true potential of AI in healthcare has yet to be fully exploited
and its application in solid organ transplantation is mostly under
development. Some important limitations exist (58). Several
algorithms have been developed in a single institution and still
need an external validation to prove their robustness. Secondly, in
some cases, the use of AI cannot provide significant
improvements over current models (58–60). Moreover, the
creation of a more comprehensive AI-based decision model
(which includes characteristic of all organs as well patient-
specific alternative therapeutic strategies) should be targeted.
On the one hand, this could bring new insights to potentially
enlarge the pool of transplantable organs and, on the other,
improve patient outcomes. Implementing AI into daily clinical
practice is an ongoing challenge and the best strategy forward is
unclear. While most physicians are unconvinced that can AI play
a weighty role in medicine, it is naive to think that this technology
will not develop further. Moreover, while this manuscript focuses
on the use of AI in transplantation, many other domains could
benefit from it. Precision medicine (genetic-based solutions, drug
discovery and development) (61), AI-assisted computer vision
(62), augmented and virtual reality (63) and the AI-assisted
integration and collection of patients’ records (64, 65) are just
few examples of how AI can be applied to medicine. AI is on a
trajectory of exponential growth, and has the potential to improve
how we experience our lives and to extend life itself.
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