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Abstract: Targeted gene delivery relies on the ability to limit the expression of a transgene
within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective
regulators of gene expression that act by binding to a specific sequence present in the corresponding
messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been
discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease
stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery
platforms with a diverse range of applications. Here, we summarize studies that have utilized
miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic
purposes. Additionally, we identify criteria that are important for the effectiveness of a particular
miRNA for such applications and we also discuss factors that have to be taken into consideration
when designing miRNA-regulated expression cassettes.

Keywords: gene delivery; gene therapy; targeted transgene expression; microRNA;
post-transcriptional targeting

1. Introduction

Cell/tissue specific gene delivery is important not only for gene therapy but also to study a range
of biological processes within a defined cell population. Targeted gene delivery can be achieved either
by application of the gene delivery vector at a specific site (optimizing route of administration),
by modification of the vector, or by modification of a transgene by exploiting gene regulatory
elements. Even though vector application at a particular site of interest can achieve some levels
of targeting [1], the suitability of this method for targeted therapeutic purposes is limited by potential
tissue injury and transgene expression in off-target cells [2,3]. Modification of the delivery vehicle,
also referred to as transductional targeting, aims to limit the vector entry into target cells by
modification of the capsid as in the case of viral vectors [4–7]. A number of strategies including
usage of alternate serotypes [8], insertion of antibodies or bi-specific fusion proteins with targeting
ligands, and capsid engineering either by directed evolution or rational design have been successfully
used in transductional targeting [5,9]. However, several limitations exist ranging from technical
difficulties in manufacturing efficient targeted vectors to problems with manufacturing high quantities
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of modified vectors when attached to fusion proteins. Additionally, an absolute reversal of natural
viral tropism might not be practical leading to some off-target expression of transgene. Another
approach that has been used for cell/tissue specific gene delivery is the modification of the therapeutic
cassette by transcriptional targeting [10,11]. However, transcriptional targeting with tissue specific
promoters is limited by the availability of efficient promoters that can effectively limit transgene
expression in the corresponding tissue and/or express and maintain adequate levels of transgene
expression [4,12]. Furthermore, promoters in gene therapy vectors often fail to recapitulate the activity
of endogenous promoters [13]. Moreover, a combinatorial regime incorporating multiple target layers
may provide a stringently controlled targeting platform required for certain applications.

In the past decade, post-transcriptional targeting by exploiting endogenous microRNAs (miRNAs)
has emerged as a powerful tool for targeted gene delivery. miRNAs are short, untranslated, regulatory
RNA molecules that tightly regulate the expression of a gene by binding to its target sequence (TS)
present in the corresponding messenger RNA (mRNA) [14,15]. The inclusion of TSs of endogenous
miRNAs, expressed in a particular cell/tissue type, into the UTR of a transgene in a gene vector
forms the basis of post-transcriptionally targeted gene delivery (Figure 1). In contrast to positive
targeting achieved with tissue specific promoters, miRNA-based targeting is negative as the miRNA
TSs are incorporated in expression vectors, thus, cells expressing the corresponding miRNA is
detargeted. Efficient miRNA mediated transgene regulation is dependent on the properties of
candidate miRNA, binding sites (TSs) as well as the cellular machinery. It is important to consider
that not all miRNAs might be useful for detargeting purposes and experimental validation is required
for individual applications. This review summarizes studies that have used endogenous miRNA to
achieve cell/tissue specific targeting, explores the applications of this method and finally provides
workflow for preliminary validation of a candidate miRNA for detargeting a particular cell/tissue type.
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Figure 1. Principle of miRNA mediated regulation of transgene. Construction of miRNA-regulated
gene delivery platform for negative targeting is accomplished by incorporation of the binding site (TS)
of a miRNA expressed in the target cell/tissue. Endogenous miRNA expressed by the target inhibits
transgene expression at post-transcriptional level, whereas transgene expression in non-target cells
remains unaffected.

2. Biogenesis and Mechanism of Action of miRNAs

miRNAs are short, untranslated RNA molecules that regulate the expression of a gene at the
post-transcriptional level by binding to a particular sequence that is present in the corresponding
mRNA [16]. It is well established that miRNAs are involved in almost every aspect of cellular
function, thus playing important roles in development, homeostasis and disease development and/or
progression [17]. The canonical miRNA biogenesis involves transcription by RNA polymerase II
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in a majority of miRNAs followed by Drosha (RNase III enzyme) processing, which produces an
approximately 70 nucleotide long precursor miRNA (pre-miRNA) that is transported to the cytoplasm
via Exportins [18–23]. In the non-canonical pathway of miRNA production, pre-miRNAs are produced
via splicing, thus avoiding Drosha action [24]. In the cytoplasm, another RNase III enzyme Dicer cleaves
the pre-miRNA to produce mature miRNA, which forms a miRISC (miRNA-associated RNA-induced
silencing complex) with the Argonuate protein [19]. RISC complex is then guided to messenger RNA via
base pairing with the target sequence (TS) of the miRNA. Perfect complementarity at nucleotides 2–8 in the
5’- end of the miRNA is essential for a successful action of the RISC complex [25,26] (Figure 2). Depending
on the extent of complementarity and features of the sequences around the TSs, gene expression is
repressed either by inhibition of translation or by cleavage of the corresponding mRNA [27].
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Figure 2. Biogenesis and mechanism of action of miRNAs. miRNAs are produced by two major
pathways: canonical and non-canonical pathways. In the former, transcription by RNA pol II results
in the formation of primary miRNAs (pri-miRNAs) that are cleaved by RNaseIII enzyme Drosha
producing precursor miRNAs (pre-miRNAs) of approximately 70 nucleotide length. Transport molecule
exportin 5 then exports pre-miRNAs to the cytoplasm, where they are further processed by another
RNaseIII enzyme Dicer and mature miRNA duplex is formed. Following unwinding of the duplex,
the guide strand is loaded into a complex along with Argonuate proteins forming an miRNA-induced
silencing complex (miRISC). The the miRISC complex to then guided to the messenger RNA transcripts
via complementary base pairing between the miRNA and its target sequence (TS) present in the
transcript. Finally, depending on the nature of base pairing and other cellular factors, either inhibition
of translation or degradation of mRNA occurs.

3. miRNA for Targeted Gene Delivery and Its Applications

3.1. Targeted Gene Expression for Research and Therapy

The first step in post-transcriptionally targeted gene delivery is choosing an appropriate
miRNA that is dictated by the nature of the application (Figure 3). It is important to consider
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whether a particular study requires disease-specific dysregulated miRNA to prevent off-target effects
in normal tissues or detargeting of a certain cell/tissue suffices. For instance, miRNA122a, expressed
exclusively in liver and downregulated in hepatocellular carcinoma (HCC), can be utilized for
hepatocyte detargeting and thus be incorporated into vectors for targeted gene therapy of HCC [28–31].
miRNA122a binding sites have been utilized to target other cell/tissue types including cardiac [32],
melanoma [33], and adipose tissues [34] to reduce off-target effects in the liver and/or to reduce
liver-tropism of the vector. Targeted suicide gene therapy with herpes simplex virus thymidine kinase
(HSV-TK) for glioma has been shown to be efficient when incorporating miRNA128 binding sites
in the vector [35]. Similar to miRNA122a for HCC, miRNA128 is significantly downregulated in
glioma when compared to peripheral tissues, providing a rationale for detargeting normal brain
tissue [35]. Targeting of cancer stem cells (CSCs) within a tumor may also be possible with miRNA TSs,
as shown by Dhungel et al., where hepatocellular CSCs expressing reduced levels of miRNA122a could
be targeted and killed with miRNA122a-regulated cytosine deaminase suicide gene therapy [36].
Recently, miRNA-responsive clustered regularly interspaced short palindromic repeat (CRISPR)
and CRISPR-associated systems (Cas) systems have been developed by including TSs of miRNAs at
the 3’-UTR of Cas9 mRNA [37]. Incorporating TSs of miRNA21 and 302 at the 3’-UTR of Cas9 mRNA,
the investigators obtained attenuated Cas9 activities in HeLa (positive for miRNA21) and induced
pluripotent stem cells (miRNA302 positive) respectively. This study provides ground works for
precisely controlled cell targeted genome engineering. Some of the tissue/organ enriched candidate
miRNAs are presented in Table 1.
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Figure 3. Selection and validation of candidate miRNAs for targeted gene delivery: Depending on the
target site (TSs), and nature of application, a few candidate miRNAs are chosen. Generally, miRNAs
expressed at high levels in the target cells/tissues whereas at low levels in non-target sites are selected.
Generally, the process of optimization of expression cassettes incorporating TSs of candidate miRNAs
should include 3–6 TSs separated by 8-10 bps, in case of multiple miRNAs being used in the same
cassette, spacing could be decreased. Choosing an appropriate in vitro or ex vivo models expressing
candidate miRNAs at a level comparable to target site can bypass the need of in vivo models for
preliminary studies. After a successful preliminary evaluation targeted cassettes may be tested in vivo
for targeting efficacy, which is followed by the intended application of the targeted delivery system.
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Table 1. miRNAs specific to or enriched in organs/tissues.

Organ/Tissue Type miRNA References

Eye miR124, miR204, miR181 [1,2]
Heart miR1, miR206, miR126, miR134, miR133, miR208, miR302 [3–9]

Brain/Nervous system
miR338, miR219, miR124, miR9, miR218, miR7, miR128,

miR125, miR138, miR132, miR212, miR137, miR31, miR127,
miR143, miR346, miR708

[10–18]

Kidney miR10, miR192, miR204, miR194, miR215, miR216 [9,19,20]
Liver miR122a, miR192, miR92a, miR483 [9,20]
Lung miR126 [9]

Hematopoietic
and pluripotent cells miR126, miR130, miR302, miR292 [21–23]

Pancreas miR216, miR217 [9]
Muscle miR133, miR1, miR206, miR134, miR193a, miR128a [9,10]

Immune system miR150, miR181a, miR155, miR142 [24,27]

3.2. Studying Cell Lineage and Differentiation State

Applications requiring the tracking of a specific population within a mixture of cell types often
require miRNAs that are lineage- or differentiation-stage-specific [38]. For instance, let7a, which
is specific to pluripotent cells, was used to track the reprogramming of somatic cells to induced
pluripotent stem cells (iPSCs) [39]. Furthermore, this particular study reported a system for positive
selection of pluripotent stem cells from patients with Rett syndrome and Parkinson’s disease using
let7 controlled neomycin resistance gene delivery [39]. Similarly, fluorescence sorting controlled by
pluripotent specific miRNA292 was used to separate embryonic stem cells (ESs) from differentiated
cells as well as neural stem cells (NSCs). This fluorescence sorting method was subsequently used
to isolate neural progenitors from differentiated ESs in order to address the issue of graft rejection
and tumor development resulting from contamination of immature cells in predifferentiated cell
suspensions after transplant [40]. To selectively target inhibitory neurons in the cortex of the brain,
Sayeg et al. incorporated TSs of miRNAs 128, 221, and 222 which are expressed at high levels in their
excitatory counterparts [41]. By studying the co-localization of markers of excitatory and inhibitory
neurons and reporter controlled by the aforementioned miRNAs, they observed both brain tissue as
well as neuron-specific targeting with their system [41]. In a similar approach to detarget a specific
tissue/compartment within an organ, Brown et al. exploited TSs of miRNAs 122a and 142 to restrict
transgene expression in hepatocytes and Kupffer’s cells respectively, while uninhibited transgene
expression was observed in other cells within the liver [38].

3.3. Redirecting Tropism of Oncolytic Viruses and Construction of Safer Vaccines

Another important application of miRNA mediated regulation of transgene expression is to
control tropism of tumor specific oncolytic viruses (OVs) [42]. Viral proteins are highly immunogenic
and can lead to inflammation and cell death if expressed in normal cells. Controlled OV replication
without attenuation can be achieved by using miRNA TSs [43]. For instance, oncolytic adenovirus with
miRNA TS controlled E1A gene displayed superior antitumor activity and prolonged survival in glioma
mouse model when compared to attenuated adenovirus ONYX-015 with deleted E1B [44]. Multiple
tissue detargeting of the liver, brain, and gastrointestinal tract has been achieved for oncolytic measles
virus containing TSs of miRNAs 122a, 7, and 148a respectively [45]. Similarly, endogenous expression
of miRNA125 [46] and let7 [47] was used to control the replication of vesicular stomatitis virus (VSV).
Conditionally replicating oncolytic adenovirus have also been designed by utilizing TSs of a number of
miRNAs including miRNA122a [48,49], miRNA199a [50], miRNA143 [51], miRNA145 [51], let7a [51],
miRNA148a [52] and miRNA216a [52]. Similar approaches have been utilized to control the replication
of other oncolytic viruses such as herpes simplex virus [29], vaccinia virus [53], and Semliki forest
virus [54]. A similar approach of attenuating viruses by incorporating appropriate miRNA TSs can
increase the safety of viral vaccines [55]. This approach has been validated in poliovirus with miRNAs
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124 and let7a [56], influenza A virus with miRNAs 21 [57], 124 [58], 93 [58], and let7b [59], flavivirus
with miRNAs 124 [60], 184 [61], 128 [62], let7 [60,62] and 275 [61], and dengue virus with hematopoietic
specific miRNA142 [63].

3.4. Repressing Transgene Directed Immune Response

From the point of clinical gene therapy, miRNA-regulated vectors are important in the generation
of immune tolerance against the therapeutic gene in order to obtain a stable and long-term gene
expression [64]. The clearance of transgene expressing cells by the immune system represents one of
the biggest obstacle for long-term gene therapy [65,66]. Even though long-term transgene expression
has been achieved in immune privileged organs like the eye [67] and brain [68,69], applications
requiring interventions in immune competent organs require methods to induce immune tolerance
against the therapeutic gene. Induction of cellular immune response against the transgene and the
clearance of transgene expressing transduced cells is primarily the result of naïve T cell priming
by professional antigen presenting cells (APCs) including macrophages and dendritic cells. Using
miRNA142, which is expressed by cells of the hematopoietic lineage including APCs, reduced reporter
expression was observed in APCs and macrophages, resulting in a stable transgene expression [70].
Similarly, lower clearance of factor IX expressing cells transduced cells was observed in a mouse model
of hemophilia B when the expression cassette was regulated by miRNA142 TSs [38,71]. More recently,
lentivirus expressing factor VIII under the regulation of miRNAs 122a, 142, and 126 (detargeting
hepatocytes, hematopoietic cells, and plasmacytoid dendritic cells) was used to maintain long-term
expression and obtain therapeutic levels of the gene in a mouse model of hemophilia A [72].

3.5. Other Applications

Increasing the yield of viral vectors harboring cytotoxic genes during its manufacture is another
area where miRNA-based transgene regulation has been used. Reid et al. showed that HEK293 cells
express high levels of miRNA373 and constructed vectors including the TS of this miRNA at the 3’-UTR
of cytotoxic genes mitochondrial NADH–ubiquinone oxidoreductase chain and BCL2-associated X
protein to prevent expression in HEK293 cells, thereby significantly increasing the overall yield of
adeno-associated virus (AAV) [73]. In another study, a non-integrating lentivirus vector expressing
conversion factor ABM controlled with TSs of neuron specific miRNA124 was used for direct
conversion of fibroblasts into functional neurons providing a safer and clinically relevant cell type
conversion system [74]. Gene delivery vectors with TSs of a particular miRNA can also be used
as a decoy to saturate or inhibit the miRNA for therapy or to study its biological function [75,76].
Compared to synthetic miRNA inhibitors, which are prone to degradation and require repeated
administration to achieve a stable action [77], these vector decoys can provide a more stable option.
Moreover, the high production costs and lack of cell/tissue specificity are some limitations of using
synthetic miRNA inhibitors that can be addressed using the approached of transcriptionally targeted
vector-encoded miRNA inhibitors [75]. In contrast to above mentioned negative targeting, “miRNA-on”
systems have also been designed for positive targeting. In this system, two separate cassettes are used,
one encoding a repressor protein with miRNA TSs and the other containing transgene and repressor
binding site [78]. In the absence of corresponding miRNA, the repressor binding results in inhibition
of gene expression whereas mRNA degradation of the repressor in the presence of miRNA releases
inhibition of transgene expression. Similarly, induction of endogenous mRNA translation with miRNA
TSs has been described for some miRNAs like miR369 and let7 under cellular arrest in G0 phase of
cell cycle [79]. Additionally, miRNAs like 138, and 192 bind to TATA box of promoters and promote
translation rather than inhibition [80]. It remains to be seen whether similar rules apply to exogenously
inserted transgenes.
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4. Factors Affecting the Design of miRNA-Regulated Gene Delivery Cassettes

4.1. Expression Level of the miRNA

The level at which an endogenous miRNA is expressed by cells/tissues is vital to achieve an
efficient inhibition of transgene expression [15]. Real time quantitative PCR methods are usually
employed to determine levels of endogenous miRNA and these levels can be compared between
target and non-target cells. It has been shown that a threshold of 100 copies of a certain miRNA/pg
small RNA is required to achieve repression of a transgene with its TS [38]. However, it should
be noted that two different miRNAs expressed at similar levels in the same cell, can have vastly
different effects on transgene expression. Similarly, miRNAs that differ by several folds in expression
levels, can have similar effects on transgene repression [81]. Additionally, some TSs require higher
miRNA levels compared to others, even when perfectly complementary, while others don’t. There
are factors, other than expression levels of miRNA, that play important roles in miRNA mediated
repression of gene expression including efficient functioning of the RISC complex that is mediated by
the action of Ago proteins [82] and the number of competing binding sites of the miRNA in the target
cell [83,84]. Nevertheless, for selection of candidate miRNA to detarget transgenes, high endogenous
expression levels above a certain threshold is a requirement. An ideal miRNA candidate is expressed
at high levels in tissues where detargeting is intended whereas at levels below the threshold where
positive expression is required. Comparison of miRNA landscape between the two tissues using high
throughput studies can reveal such candidate miRNAs [85,86]. It should be noted that inclusion of
TSs of multiple miRNAs in the same vector can allow detargeting of the same or multiple tissues
in a cooperative manner [84,87]. Lastly, it has recently been observed that some miRNAs induce
translation induction rather than inhibition in quiescence cells, which are cells reversibly arrested
at phase G0 of the cell cycle [88]. miRNAs including let7 and miR369 induce upregulation of target
mRNAs in the nucleus of G0 cells while repressing its expression in the cytoplasm of dividing ones [79].
Similar observations have been made for miR1 during muscle differentiation, where it enhances
mitochondrial DNA translation while suppressing the same in cytoplasm [89]. Although the number
of G0 cells in target tissues might not be large enough to have a significant impact in the detargeting
outcomes, studying this translational activation of target mRNAs by miRNAs in G0 cells could help
better understand the mechanisms of miRNA-induced RNA activation (RNAa) [90].

4.2. Configuration, Number, and Position of miRNA Binding Sites

For most of the targeted gene delivery applications, perfectly complementary TSs of miRNA are
incorporated at UTR region of a transgene [91]. However, some studies have reported an increased
repression activity of endogenous miRNA with imperfectly complementary TSs [84,92]. Geisler et al.
observed an increased repression activity of miR206 with 8 out of their 14 mutated TSs suggesting
site-directed mutagenesis as a strategy to increase the effectiveness of miRNA mediated transgene
regulation [92]. In the same study, the authors observed a cross reaction of miRNA1 having the same
seed sequence as miRNA206, which led to inhibition of transgene in unintended tissue. A single
nucleotide mutation at the putative AGO2 protein cleavage site inhibited the action of miRNA1
while transgene inhibition by miRNA206 was unhindered [92]. These observations indicate that
it is necessary to consider the expression of miRNAs from the same family in the tissues where
detargeting is not intended when choosing putative miRNA candidates. In spite of the reports of
usefulness of imperfectly complementary TSs, perfect complimentary is preferred for gene therapeutic
applications as imperfectly paired TSs inserted exogenously can saturate its corresponding miRNA
even at lower concentrations of the transcript, thus affecting normal cellular function of the miRNA [93].
Additionally, perfect complementarity induces RNA degradation allowing miRNA to have a quicker
turn over [94,95]. It should be also be noted that some miRNAs including le7i, miR138, miR92,
miR181d enhance translation rather than repress it by direct binding with the TATA box motifs present
in promoters [80].



Molecules 2018, 23, 1500 8 of 14

Next, the number of binding sites present in the vector plays a vital role in the repression level
of a transgene expression. It has been observed that the level of transgene repression increases with the
number of TSs available for the miRNA to bind until a certain point, after which none or low effects
are observed [91]. For instance, miRNA122a-regulated transgene delivery to HuH7 with one TS was
12.2% lower than with three, while only a 2.6% increase in repression of expression was observed
when it was regulated with six TSs [32]. Interestingly, miRNA181-regulated delivery system with
two or four TSs showed similar repression levels of transgene in thymocytes but not in peripheral T
cells [96]. Although increasing the number of TSs usually increases the level of transgene repression,
it should be noted that above a certain threshold of the number of transcripts with the miRNA TSs,
target derepression ensues due to saturation, delayed turnover, and/or target RNA-induced miRNA
degradation [97–99]. To overcome this problem, TSs of different miRNAs expressed in the target
tissue at levels above the threshold have been used with success [38,87]. In fact, using multiple TSs
of two different miRNAs co-expressed in the target have a better regulatory effect than using TSs of
the same miRNA in the context of muscle cells [100]. For targeted delivery platforms, it might be
important to compare transgene repression levels achieved by vectors with different numbers of TSs;
usually three to six or eight should be considered as a number higher than those can increase the
decoy properties of the vector [93,101]. Moreover, having multiple TSs may not be suitable for vectors
like AAV with a limited packaging ability [102] as well as increase the possibility of the formation of
secondary structures reducing the accessibility of TSs to RISC complexes [103].

Similarly, the space between the TSs has been shown to impact the action of miRNAs [104].
We and others have observed an efficient transgene repression even without spacers for perfectly
complementary TSs [36,105,106], however, when using imperfectly complementary TSs and achieving
best cooperative effects of multiple RISCs, not having some space between the TSs might cause steric
hindrances and affect accessibility of target sites reducing transgene inhibition [84,106,107]. Again,
long spacers might increase the probability of formation of secondary structures. Generally 3–6 TSs
separated by 4–10 nucleotides is recommended, although this number can be lowered when using TSs
of multiple miRNAs in the same cassette. The accessibility of miRNA TSs to the RISC complex also
depends on the sequences surrounding the binding sites [103]. TSs should be incorporated at sites
with a minimal chance of secondary structure formation (is usually the 3’-UTR) [108], even though TSs
have been incorporated at 5’-UTR successfully for some miRNAs [48,109]. It has been observed that
the efficacy of a binding site increases with the local AU content within the UTRs [103], whereas TSs
too close to the stop codon are found to be less effective [100].

5. Conclusions

The ability to limit the expression of a therapeutic gene at specific sites is a prerequisite for
targeted clinical gene therapy; similarly, regulated reporter expression is needed for studying a range of
biological processes within defined cell populations. miRNA mediated post-transcriptional regulation
of gene expression is an extremely powerful and versatile tool to achieve targeted gene expression.
Unlike the delivery of therapeutic miRNAs, which can cause adverse side effects and possible off-target
effects affecting normal cellular physiology, the use of miRNA binding sites (TS) to inhibit the
expression of a therapeutic gene in defined cell types harnesses post-transcriptionally targeted gene
regulatory machinery in a safe and effective manner [110].

After the pioneering studies performed by Brown et al. [38,70], TSs of several miRNAs have been
used to achieve cell/tissue specific inhibition of transgene expression. The applications of this system
have ranged from inhibition of transgene directed immune response, targeted gene expression for
therapeutic purposes, studying lineage and differentiation states of cell populations, redirecting vector
tropism to construct safer viral vectors, and novel applications are being engineered. The range of its
application when combined with the ease of using this system with virtually any delivery platforms
adds to its versatility. Careful selection of candidate miRNA and construction of gene delivery cassettes
following certain criteria can provide an efficient targeting platform.
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miRNAs are master regulators of gene expression, exploiting their robustness and versatility by
combining them with other targeting strategies like transcriptional targeting with tissue-specific
promoters and transductional targeting with capsid-modified viral vectors or surface-modified
non-viral vectors can provide a tightly controlled gene expression system which may limit the off target
effects of traditional gene therapy, thereby increasing the safety of gene therapy in clinical applications.
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