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Abstract
Genetic association analyses of rare variants in next-generation sequencing (NGS) studies

are fundamentally challenging due to the presence of a very large number of candidate vari-

ants at extremely low minor allele frequencies. Recent developments often focus on pooling

multiple variants to provide association analysis at the gene instead of the locus level.

Nonetheless, pinpointing individual variants is a critical goal for genomic researches as

such information can facilitate the precise delineation of molecular mechanisms and func-

tions of genetic factors on diseases. Due to the extreme rarity of mutations and high-

dimensionality, significances of causal variants cannot easily stand out from those of non-

causal ones. Consequently, standard false-positive control procedures, such as the Bonfer-

roni and false discovery rate (FDR), are often impractical to apply, as a majority of the

causal variants can only be identified along with a few but unknown number of noncausal

variants. To provide informative analysis of individual variants in large-scale sequencing

studies, we propose the Adaptive False-Negative Control (AFNC) procedure that can

include a large proportion of causal variants with high confidence by introducing a novel sta-

tistical inquiry to determine those variants that can be confidently dispatched as noncausal.

The AFNC provides a general framework that can accommodate for a variety of models and

significance tests. The procedure is computationally efficient and can adapt to the underly-

ing proportion of causal variants and quality of significance rankings. Extensive simulation

studies across a plethora of scenarios demonstrate that the AFNC is advantageous for

identifying individual rare variants, whereas the Bonferroni and FDR are exceedingly over-

conservative for rare variants association studies. In the analyses of the CoLaus dataset,

AFNC has identified individual variants most responsible for gene-level significances. More-

over, single-variant results using the AFNC have been successfully applied to infer related

genes with annotation information.
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Author Summary

Next-generation sequencing technologies have allowed genetic association studies of com-
plex traits at the single base-pair resolution, where most genetic variants have extremely
low mutation frequencies. These rare variants have been the focus of modern statistical-
computational genomics due to their potential to explain missing disease heritability. The
identification of individual rare variants associated with diseases can provide new biologi-
cal insights and enable the precise delineation of disease mechanisms. However, due to the
extreme rarity of mutations and large numbers of variants, significances of causative vari-
ants tend to be mixed inseparably with a few noncausative ones, and standard multiple
testing procedures controlling for false positives fail to provide a meaningful way to
include a large proportion of the causative variants. To address the challenge of detecting
weak biological signals, we propose a novel statistical procedure, based on false-negative
control, to provide a practical approach for variant inclusion in large-scale sequencing
studies. By determining those variants that can be confidently dispatched as noncausative,
the proposed procedure offers an objective selection of a modest number of potentially
causative variants at the single-locus level. Results can be further prioritized or used to
infer disease-associated genes with annotation information.

This is a PLOS Computational BiologyMethods paper.

Introduction
Recent advances in next-generation sequencing (NGS) technologies have extended the focus of
genetic studies of complex traits from that of common to rare variants. Having low minor allele
frequencies (MAFs), usually defined to be less than 1% to 5%, rare variants are often evolved
from recent mutations that have not yet been subjected to the pruning mechanism of natural
selection and can potentially retain a larger proportion of inheritable variability than common
variants. [1–5] Recent studies have already implicated the relevance of rare variants on several
complex traits. [6–13]

Despite its potential to uncover genetic factors contributing to missing disease heritability,
the analysis of rare variants association studies bears fundamental challenges. As only a small
proportion of samples may carry variant alleles at each locus, associations of individual rare
variants are often underpowered. [1, 14, 15] Moreover, the number of candidate variants can
be extremely large in high-throughput sequencing studies, in which available multiple testing
strategies may impose excessively severe corrections, preventing the selection of potentially
causal variants. [16]

Recent proposals for rare variants association analysis often resort to collapsing or pooling
multiple variants in a gene or pathway. Examples include the combined multivariate collapsing
(CMC) [17], cohort allelic sum (CAST) [18], C-alpha [19], sum of squared scores [20–23],
sequence kernel association (SKAT) [24], quality-weighted multivariate score association
(qMSAT) [25], and similarity-based regression (simReg) [26] tests. The strategy increases
power by aggregating effects of low-frequency variants and decreasing data dimension in mul-
tiple testing. It has been successfully applied in several applications that identified functional
regions that may contain potentially relevant rare variants. [17–20, 23–26]
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Nonetheless, variants-pooling tests that aggregate over a gene or pathway do not provide
information at the individual locus and are ill-equipped to tap the full potential of NGS data in
identifying causative mutations at the single-nucleotide resolution. Pinpointing potentially
causal variants is a critical goal of genomic studies because such information would faciliate
precise delineations of molecular mechanisms and functions of genetic factors on diseases. [27]
Moreover, studies have shown that pooling over multiple variants may result in reduced
power, as the inclusion of many noncausal variants may dilute the effects of relevant variants
on a trait. [28–30] Thus, pooling over multiple variants can sometimes be inadequate for the
identification of functional genomic regions.

On the other hand, analysis of individual rare variants can provide practical advantages.
Information of single-variant association can be used to pinpoint a small number of potentially
causal variants for follow-up studies to facilitate the precise characterization of functions via
molecular modeling and genetic experimentation, which are often too expensive and time con-
suming to conduct for all variants in a gene. [27] Further, single-variant results can be utilized
a posteriori to objectively infer disease-related genes or pathways by comparing with annota-
tion and functional databases. [31–34] This is useful as gene-level results can oftentimes be
uninformative when the significance of a few causal variants are diluted by a large number of
noncausal ones in the same gene. In the Results section, we will illustrate both strategies for
applying single-variant results using the CoLaus data set.

Genome-wide association (GWA) studies, as the pre-eminent means for genetic discovery
over the last decade, have largely relied on statistical genomic tools that can identify common
variants at the individual single-nucleotide polymorphism (SNP) level. [35] Standard proce-
dures for GWA studies evaluate each variant individually. [36, 37] Potentially causal variants
are identified by multiple-testing control on significances at each locus. The simplest strategy
for multiple testing utilizes the Bonferroni correction that controls family-wise error rate, or the
probability of having one or more false positives. [38] However, the Bonferroni correction can
often be too conservative for GWA studies under the presence of thousands of SNPs. [39] To
address this issue, the false discovery rate (FDR) is often utilized that provides a more liberal cri-
terion by controlling the expected proportion instead of the presence of false positives. [40–42]

Despite being extremely successful for common variants in GWA studies [43–46], proce-
dures based on false-positive control are often underpowered in NGS studies involving rare
variants (as illustrated in Fig 1). New approaches are needed to provide a meaningful way for
powerful variants selection in large-scale sequencing studies. Fig 1 compares the statistical
landscape of rare variants analysis in NGS studies with that of common variants in GWA

Fig 1. Illustrations of regions of statistical inference for GWA and NGS studies. The Signals (“S”), Indistinguishable (“I”),
and Noise (“N”) regions are shown. False-positive control allows the selection of variants in the Signals region, whereas false-
negative control selects from both the Signals and Indistinguishable regions. In NGS studies with rare variants, the Signals region
often degenerates due to extremely low MAF and high dimensionality.

doi:10.1371/journal.pcbi.1004993.g001
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studies. In GWA studies, we observe three regions of statistical inference: the Signals (“S”)
region where strongly associated variants can be readily identified by controlling false positives,
the Noise (“N”) region where noncausal variants can be identified by controlling false nega-
tives, and the indistinguishable (“I”) region where causal and noncausal variants are inextrica-
bly mixed. [47, 48] We have recently developed theoretical characterizations for the three
regions in high-dimensional data analysis. [49] In NGS studies with rare variants, the Signals
region tends to be very narrow and can often degenerate due to extremely low MAF and high
dimensionality. Consequently, few causal variants can be identified by evaluating false posi-
tives, and results can be very unstable due to random perturbations of noncausal variants.

To address the challenge of rare variants association analysis at the single-locus level, we pro-
pose the Adaptive False-Negative Control (AFNC) procedure in order to allow a large proportion
of causal variants to be retained with high probability. Specifically, the AFNC applies a novel
metric called the signal missing rate (Eq 2), defined as the probability of having a nontrivial pro-
portion of false negatives among all causal variants (i.e., FN/s in Table 1), to achieve informative
variant selection by controlling the signal missing rate to be small (see Methods section). That is,
AFNC seeks to determine those variants that can be confidently dispatched as noncausal and
identifies variants from both the Signals and Indistinguishable regions. The results can provide
informative inference in NGS studies where the Signals region is very small or degenerate (Fig 1).

We note that this is quite different from classical methods that control false positives. For
example, the Bonferroni controls for the presence of any false positives (i.e., FP� 1), whereas the
FDR controls for the expectation of the proportion FP/R when R> 0 (see Table 1). Neither of
these involve the number of causal variants s; thus, they cannot be used for controlling the pro-
portion of causal variants selected. On the other hand, the AFNC, based on the proportion FN/s
or 1 − TP/s, allows powerful variants selection by controlling the type II error or 1 − statistical
power. Although there may exist a corresponding control level for the FDR (albeit very large) that
can include the variants selected by the AFNC at a given false-negative control level (see Results
section), this corresponding FDR control level is not known a priori and is expected to vary hap-
hazardly across different studies. An arbitrarily assigned FDR control level would be inefficient
for controlling false negatives in NGS studies, that can over- or under-select uncontrollably
depending on the size of the Noise region. A corresponding control level usually does not exist
for the stringent Bonferroni selection in large-scale sequencing studies (see Results section).

The AFNC provides a general framework that can accommodate for a wide spectrum of
models and test statistics, that may include biological prior knowledge and global genotype
information (see Methods section). Moreover, it readily adapts to the quality of statistical tests
employed. With improved quality of statistical tests, the Indistinguishable region (see Fig 1)
narrows, and the AFNC can, in turn, select a smaller set of potentially causal variants. Extensive
studies (see Results section) demonstrate that the AFNC can identify a modest number of
potentially causal variants while avoiding a deluge of noncausal ones for follow-up analyses

Table 1. Classifications of variants under multiple testing control.

Selected Not selected Total

Causal TP FN s

Noncausal FP TN d − s

R d − R d

TP, FN, FP, and TN are numbers of true positives, false negatives, false positives, and true negatives,

respectively. R is the number of variants selected.

doi:10.1371/journal.pcbi.1004993.t001
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that focus on targeted variants. Our proposal employs recent developments in ultra high-
dimensional statistical inference to derive a data-driven procedure that can readily adapt to the
underlying sparsity and effect sizes of the data. [50–53] It readily controls type I error rates (see
Results section). In addition, it is computationally very efficient and can be applicable for
whole-genome sequencing (WGS) and whole-exome sequencing (WES) studies.

Results
The AFNC provides a general framework for including a high proportion of causal variants. It
can accommodate for a spectrum of models and significance tests. The procedure (detailed in
the Methods section) consists of three major steps: (i) based on a given model and significance
test, obtain the test statistics and their p-values for each of the d variants and order them, (ii)
estimate the signal proportion among the d variants (denoted by p̂) using Eq 4, and (iii) com-

pute the AFNC cut-off position T̂ fn by controlling the signal missing rate at level β using Eq 3

and report the top T̂ fn variants as potentially causal. The AFNC is designed to allow researchers

to select a modest number of potential variants while encompassing the causal ones with high
confidence. Below we use simulation studies and data applications to illustrate the utility of
AFNC.

Simulation studies
Simulation designs. We obtained 10,000 haplotypes for a 25Mb region simulated by

COSI 1.2 (http://www.broadinstitute.org/*sfs/cosi) according to a coalescent model that emu-
lates the linkage-disequilibrium (LD) pattern and history of the European population using
default parameters. [54] For each subject i, i = 1, � � �, n, we randomly drew two haplotypes with
replacement from the 10,000 haplotypes to form its genotypes Gij across variants j = 1, � � �, d,
where we assumed an additive genetic model such that Gij 2 {0, 1, 2} is the number of minor
alleles at locus j. For an experiment with sample size n, we focused on evaluating rare variants

with 0 < MAF < 1=
ffiffiffiffiffi
2n

p
, where the threshold 1=

ffiffiffiffiffi
2n

p
was derived from statistical theory and

has been employed in providing principled demarcations of rare and common variants in
recent literature. [52, 53, 55] It incorporates sample-size information of individual experiments
to determine if a variant is rare. For example, a variant with 1%MAF will be considered rare in
an experiment when n = 2000 and common when n = 10,000. There were at least 250,000 num-

bers of rare variants with 0 < MAF < 1=
ffiffiffiffiffi
2n

p
for randomly generated data at sample sizes

n = 1000, 2500, 5000, 7500, and 10,000. These variants were truncated to obtain subsets of the
data with different numbers of total variants d in various simulation scenarios. We randomly
generated phenotypes in each experiment from the Normal distribution
Yi � NðPs

j¼1 GijAj; s
2Þ, where s is the number of causal variants, Aj is the effect size of the jth

locus, and σ is the noise level fixed at 1. We selected the first s variants as causal so that the
causal variants in different simulation scenarios are nested. As in previous studies, we set the
effect sizes Aj = C�|log10(MAFj)| for variants j = 1, . . ., s and 0 otherwise. [24] Thus, a contin-
uum of effect sizes can be shown by varying the effect-size multiplier C.

The AFNC was compared with the Bonferroni and FDR controls, which are the most com-
monly used procedures for adjusting multiplicity in genomic studies. Bonferroni controls the
family-wise type I error [38], whereas FDR controls the expected proportion of false positives
among all discoveries [41]. Both essentially focus on the control of false positives with FDR
being less stringent than the Bonferroni. The Bonferroni and FDR threshold levels were both
set at 0.05. The AFNC threshold levels were set at a false-positive rate of α = 0.05 and a false-
negative rate of β = 0.1. When estimating π in Step (ii) of AFNC (Eq 4), the cd values, obtained
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from Eq 5, are 0.0488, 0.0305, 0.0150, and 0.0095 for d = 10,000, 25,000, 100,000, and 250,000,
respectively, based onM = 10,000 randomly generated samples under the global null hypothe-
sis of no causal variants.

For succinct presentation, we compared the AFNC with the Bonferroni and FDR using the
Wald test. In the following, we illustrate that the AFNC can perform well, even though signifi-
cance rankings based on the Wald test may not be optimal. Performances were comprehen-
sively evaluated via sensitivity, specificity, and g-measure [56], and success rates of inclusion of
a high proportion of causal rare variants. Sensitivity is defined as the proportion of causal vari-
ants that were correctly identified and provides the empirical power for s> 0 causal variants.
Specificity is the proportion of noncausal variants that were correctly rejected. Under the global
null hypothesis when all variants are noncausal (i.e., C = 0), the empirical type I error rate or
false-positive rate is defined as 1—specificity. The g-measure, defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity � specificityp

, is a composite performance measure of overall variant selection. [56,
57] A g-measure close to 1 indicates accurate variant selection, and a g-measure close to 0
implies that few causal variants or too many noncausal ones are selected, or both. Each experi-
mental scenario was randomly simulated 100 times. Median results are shown for sensitivity,
specificity, and g-measure, whereas success rates of inclusion of at least a given proportion of
causal variants were computed based on the 100 repetitions.

Comparison across different effect sizes and numbers of variants. We evaluated perfor-
mances across varying numbers of total variants d and effect-size multipliers C. We considered
s = 50 variants, which are causal when C 6¼ 0. Experiments were conducted with n = 2000 num-
ber of samples.

Fig 2 presents results of sensitivity, specificity, and g-measure. The AFNC consistently dom-
inates the FDR and Bonferroni across numbers of variants d and effect-size multipliers C in
terms of sensitivity or empirical power for C 6¼ 0. Success rates of including at least a given pro-
portion of the s causal variants are presented in S1 Fig. AFNC successfully selects at least 75%
of causal variants when C is relativley large, whereas FDR and Bonferroni usually cannot select
a large proportion of causal variants, especially for d large. In fact, the Bonferroni fails to select
more than 75% of causal variants in all scenarios. This suggests the advantage of considering
false-negative control procedures over false-positive ones for including causal rare variants.

AFNC underperforms the Bonferroni and FDR in terms of specificity in Fig 2. Nonetheless,
AFNC consistently dominates the Bonferroni and FDR in terms of overall performances with
the g-measure, especially at d large. This suggests that the AFNC can improve overall variant-
selection performance in large-scale sequencing studies. Specifically, the AFNC, at the cost of
mildly increased but controlled false positives, provides dramatic reduction in the number of
candidate variants while retaining a high proportion of causal ones for follow-up analysis.
However, variant screening with the AFNC comes with a cost. Although AFNC selects a small
proportion of variants, the actual number of selected variants can be large in high dimensions,
which can result in severely lower precision (i.e., the proportion of true positives among those
selected, TP/R) compared with the Bonferroni and FDR.

Table 2 presents empirical type I error rates at the global null hypothesis C = 0 when no vari-
ants are causal. The AFNC is shown to control type I error rates well at below α = 0.05. This is
due to the adaptivity of the AFNC procedure that allows it to accommodate for varying propor-
tions of causal variants (see Methods section). On the other hand, Bonferroni and FDR have type
I error rates at 0, suggesting them to be much too conservative for rare-variant association studies.

We repeated the same evaluation with s = 25 variants, which are causal when C 6¼ 0. Results
are presented in S2 Fig (for sensitivity, specificity, and g-measure) and S3 Fig (for success rates

Locus-Level Rare Variant Association Analysis
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Fig 2. Comparisons across varying effect sizes and numbers of variants at s = 50. Performance of AFNC, FDR, and Bonferroni is
evaluated in terms of sensitivity, specificity, and g-measure. Results are shown for s = 50 number of causal variants whenC 6¼ 0 and
n = 2000 number of samples.

doi:10.1371/journal.pcbi.1004993.g002
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of inclusion). The relative performance among AFNC, FDR, and Bonferroni is similar to what
is observed for s = 50.

Comparison across different sample sizes and numbers of causal variants. We com-
pared performances across different sample sizes n and numbers of causal variants s. An effect-
size multiplier C = 0.5 is considered at d = 100,000 total number of variants.

Fig 3 shows that the AFNC consistently outperforms the FDR and Bonferroni across num-
bers of causal variants s and sample sizes n in terms of sensitivity or empirical power. Success
rates of inclusion are shown in S4 Fig, where the AFNC can select at least 75% of causal vari-
ants for sample size n large. The FDR and Bonferroni usually select a small proportion of causal
variants with the Bonferroni consistently selecting less than 50% of causal variants in nearly all
scenarios. Due to low MAFs, selection of causal variants is more difficult for rare variants at
small sample sizes. For example, at n� 2500, the procedures usually cannot identify more than
90% of all causal variants. Fig 3 shows that the AFNC dominates the FDR and Bonferroni for
overall variant selection in terms of g-measure with underperformance in terms of specificity.
Moreover, S1 Table presents empirical type I error rates at varying sample sizes n, where the
AFNC is shown to control type I error rates at 0.05 while the FDR and Bonferroni are over-
whelmingly over-conservative with type I error rates at 0. S5 and S6 Figs further present results
at C = 0.25, where the AFNC is shown to be even more advantageous at smaller effect sizes.

Analysis of CoLaus cardiovascular diseases dataset
We considered the Cohorte Latusannoise (CoLaus) sequence study [58–61], where almost
6000 unrelated Caucasian residents of Lausanne, Switzerland were assessed for risk factors of
cardiovascular diseases (CVD). Targeted sequencing genotypes on 202 drug-targeted genes
(human genome build 36) were obtained for n = 1769 of these subjects. Cholesterol levels were
collected for each subject to evaluate risk of CVD, along with 12 clinical factors—age, gender,
and 10 ethnicity covariates using the first 10 principal components [62]. We considered
d = 9665 autosomal rare variants from the sequencing study with

0 < MAF < 1=
ffiffiffiffiffi
2n

p ¼ 0:0072.
For each variant, t-statistic was obtained by linear association with log cholesterol levels as

the response while adjusting for the 12 clinical covariates. The AFNC, FDR, and Bonferroni
were, then, applied on significances of t-statistics to identify potentially causal variants. At
threshold levels of 0.05, Bonferroni and FDR only identified 4 variants. At α = 0.05 and β = 0.1,
AFNC identified 56 candidate rare variants. The AFNC algorithm obtained cd = 0.0494 based
onM = 10,000 randomly generated samples under the global null of no causal variants and
p̂ ¼ 0:001784 (Eqs 4 and 5). As CVD tends to be influenced by multiple factors [63, 64] and
the study focused on genes having clinical relevance, one expects a larger number of causal var-
iants than those identified by the FDR and Bonferroni. Our estimated number of signals,
ŝ ¼ p̂ � 9665 ¼ 17:244, suggests that at least 18 variants need to be selected, and potentially

Table 2. Empirical type I error rates across varying numbers of variants.

Number of variants Bonferroni FDR AFNC

d = 10,000 0 (0) 0 (4.03 × 10−4) 0 (0.092)

d = 25,000 0 (0) 0 (0.002) 0.006 (0.053)

d = 100,000 0 (0) 0 (0) 0.010 (0.030)

d = 250,000 0 (4.00 × 10−7) 0 (1.96 × 10−5) 0.014 (0.032)

Standard errors are included in parentheses. Results are shown at the sample size n = 2000.

doi:10.1371/journal.pcbi.1004993.t002
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Fig 3. Comparisons across varying sample sizes and numbers of causal variants atC = 0.5. Performance of AFNC, FDR, and
Bonferroni is evaluated in terms of sensitivity, specificity, and g-measure. Results are shown for the effect-size multiplier C = 0.5 and
d = 100,000 number of variants.

doi:10.1371/journal.pcbi.1004993.g003
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much more due to signals dispersed in the Indistinguishable region, to encompass a high pro-
portion of causal variants. That is, false-positive control procedures can be much too conserva-
tive in NGS studies, where the Signals region tends to be degenerate (see Fig 1). In the
following, we illustrate potential applications of the AFNC for pinpointing individual variants
in candidate genes and inferring disease-related genes with annotation information.

Pinpointing individual variants in candidate genes for follow-up analysis. To obtain a
set of candidate genes, we conducted gene-based analysis using the SKAT with the linear kernel
and variant weights 1/MAF. [24] The SKAT performs gene-level analyses via variance compo-
nent test. The SKAT with the linear kernel is equivalent to the SimReg [26] and the sum of
squared scores [20–23] tests. Gene-based analysis did not identify any significant gene when
controlling the FDR at the 0.05 threshold level. For illustrative purposes, we focused on the top
5 genes (APH1A, TRPM8, SLC10A2, SP110, SIRT6) with gene-set p-values<0.01. These genes
have been related to CVD in the literature. [65–74]

Table 3 presents variants selected in the top 5 candidate genes by the AFNC, along with
their p-values and annotation information. The Bonferroni and FDR only selected 2 variants,
chr1_148504677 from APH1A and chr2_234559154 from TRPM8. They did not identify any
variant from SP110 and SIRT6. Both are relevant genes, where SP110 has been associated with
venous obstruction [67] and SIRT6 has been known for its therapeutic potential towards the
prevention of CVD [72–74]. Moreover, TRPM8, from which the FDR and Bonferroni only
identified a single variant, regulates functions of the pulmonary artery via complex systems.
[68–70] No individual variants were selected from SLC10A2, whose most significant variant
has a p-value of 6.32 × 10−3.

The AFNC, based on global hypothesis tests, provides an objective selection of a modest
number of potentially causal variants at the single-locus level. Investigators may further priori-
tize variants using annotation information. For example, in Table 3, one may first target vari-
ants at non-synonymous coding and splice sites that can disrupt protein structures before
analyzing 3’/5’UTR and downstream/upstream variants that may regulate gene expression.
[75] Synonymous coding and intron variants may also impact gene expression, protein folding,
and fitness. [76–78] Nonetheless, they are usually considered as low-priority and may represent
irrelevant variants that were mixed indistinguishably with the causal ones due to extremely low
MAF and high dimensionality.

Inferring disease-related genes with single-variant results. Gene-based analysis using
variants pooling can sometimes result in limited power due to the inclusion of many noncausal
variants. For example, gene-set analysis using the SKAT did not identify any candidate genes

Table 3. Annotation of AFNC-selected variants of candidate genes in the analysis of CoLaus data.

Gene (gene-set p-value) Variant ID Variant p-value Variant type

APH1A (1.90 × 10−3) *chr1_148504677 5.15 × 10−6 downstream

TRPM8 (3.54 × 10−3) *chr2_234559154 5.15 × 10−6 non-synonymous coding

chr2_234543736 6.21 × 10−5 non-synonymous coding

chr2_234556441 6.44 × 10−4 synonymous coding

chr2_234591833 6.63 × 10−4 downstream

SP110 (4.14 × 10−3) chr2_230785852 6.12 × 10−4 non-synonymous coding

chr2_230745800 1.17 × 10−3 splice site

SIRT6 (6.68 × 10−3) chr19_4125175 2.06 × 10−4 3’ UTR

Gene-set p-values are computed using the SKAT. Genes are sorted in increasing gene-set p-values, and variants are sorted by their individual p-values
among each gene. Variants marked with (*) are also selected by the Bonferroni and FDR at the 0.05 level.

doi:10.1371/journal.pcbi.1004993.t003
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in this study when controlling the FDR at the 0.05 level on gene-set p-values for risk of CVD, a
multifaceted disease. To provide an alternative approach, we consider the utilization of single-
variant results to infer candidate genes. Specifically, among the 56 AFNC variants, we further
focus on non-synonymous and splice-site variants that are often considered as prime candi-
dates for causal variants due to their capacity to influence protein coding and structure. [75]
Table 4 presents non-synonymous and splice-site variants selected. The Bonferroni and FDR
only selected a single variant, chr2_234559154 from TRPM8, whereas the AFNC selected 16
variants from 14 genes. The number of non-synonymous and splice-site variants selected by
AFNC is at the same magnitude as our estimated number of causal variants ŝ ¼ 17:244. SP110
and TRPM8, that contain 2 AFNC-selected non-synonymous and splice-site variants, have
been related to venous obstruction [67] and pulmonary functions [68–70], respectively. More-
over, genes with a AFNC-selected non-synonymous or splice-site variant have been associated
with CVD (BRD2 [79], CNR2 [80–82], KCNN4 [83–86],MME [87, 88], NLRP1 [89], SDHB
[90], TACR3 [91, 92], TNNI3K [93–95]) or related conditions, such as diabetes (CLEC16A
[96]), obesity (OPRM1 [97, 98]), chronic obstructive pulmonary disease (PDE4A [99–102]),
and diabetic peripheral neuropathy (SCN9A [103, 104]). The full annotation of FDR- and
AFNC-selected variants are shown in S2 Table.

Comparison with Bonferroni and FDR at varying control levels. Table 5 presents num-
bers of variants selected by the Bonferroni and FDR at different control levels. The Bonferroni,
based on the stringent family-wise type I error rate, cannot select more than 10 variants even at
the maximum control level of 1. That is, when more than 10 variants are selected, a false posi-
tive will almost surely be included with probability 1. In this particular analysis, FDR at the
0.55 control level can select the 56 variants obtained by the AFNC at α = 0.05 and β = 0.1. How-
ever, we note that the FDR control level corresponding to the AFNC is not invariant and can
vary dramatically across different studies. Intuitively, a larger (or smaller) FDR control level

Table 4. Annotation of AFNC-selected non-synonymous and splice-site variants in the analysis of CoLaus data.

Gene (gene-set p-value) Variant ID Variant p-value Variant type

BRD2 (0.281) chr6_33053682 2.08 × 10−3 non-synonymous coding

CLEC16A (0.0902) chr16_11125133 2.06 × 10−4 non-synonymous coding

CNR2 (0.139) chr1_24073736 2.27 × 10−3 non-synonymous coding

KCNN4 (0.456) chr19_48965473 6.44 × 10−4 non-synonymous coding

MME (0.387) chr3_156315473 1.03 × 10−3 splice site

NLRP1 (0.303) chr17_5425965 2.73 × 10−3 non-synonymous coding

OPRM1 (0.627) chr6_154454129 5.06 × 10−4 non-synonymous coding

PDE4A (0.313) chr19_10439268 2.06 × 10−4 non-synonymous coding

SCN9A (0.291) chr2_166845210 6.21 × 10−5 non-synonymous coding

SDHB (0.674) chr1_17232220 9.24 × 10−4 non-synonymous coding

SP110 (4.14 × 10−3) chr2_230785852 6.12 × 10−4 non-synonymous coding

chr2_230745800 1.17 × 10−3 splice site

TACR3 (0.0149) chr4_104859945 2.06 × 10−4 non-synonymous coding

TNNI3K (0.537) chr1_74701758 1.25 × 10−3 non-synonymous coding

TRPM8 (3.54 × 10−3) *chr2_234559154 5.15 × 10−6 non-synonymous coding

chr2_234543736 6.21 × 10−5 non-synonymous coding

Gene-set p-values are computed using the SKAT. Genes are sorted in alphabetic order, and variants are sorted by their individual p-values among each

gene. Variants marked with (*) are also selected by the Bonferroni and FDR at the 0.05 level.

doi:10.1371/journal.pcbi.1004993.t004
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would be needed when the Indistinguishable region is larger (or smaller) (see Fig 1), and this
cannot be determined a priori.

Discussion
We have proposed a novel bioinformatic approach that allows the identification of individual
rare variants in large-scale sequencing association studies. Extensive studies based on simulated
data generated with COSI at realistic population parameters have been used to compare our
method with the Bonferroni and FDR across various scenarios. [54] Results have suggested that
the AFNC can provide informative variant selection by including a large proportion of causal
variants while avoiding a deluge of noncausal ones. On the other hand, the Bonferroni and FDR
are shown to be excessively over-conservative under extremely lowMAFs and high dimension-
ality. Analyses of the CoLaus dataset for cardiovascular diseases using the AFNC have pin-
pointed individual variants most responsible for explaining significances of genes identified in
gene-level aggregation tests. Moreover, single-variant results have been successfully applied to
objectively infer potentially relevant genes when cross-referenced with annotation information.
The R package ‘AFNC’ for performing the AFNC is publicly and freely available at https://
github.com/zjdaye/AFNC or http://sites.google.com/site/zhongyindaye/software.

The AFNC provides a unified framework to accommodate for a wide spectrum of models,
test statistics, and data scenarios. To achieve a succinct presentation, we focused on quantita-
tive traits using p-values obtained from linear association tests in this paper. The AFNC can be
easily adopted for case-control studies [23–25, 105], family-structured data [106, 107], and
many other scenarios. Moreover, empirical p-values, as from permutation or bootstrap, can be
employed for improved significance ranking. [108] Clearly, performance results of the AFNC
using p-values based on associations with quantitative traits, shown in this paper, can be
extended to those obtained under a spectrum of models and data scenarios. Moreover, the
analysis of large-scale genomic data is a dynamic and fast-evolving field. The AFNC, that read-
ily adapts to the quality of statistical tests employed, will be able to provide increasingly effi-
cient inclusion of causal variants as ever more accurate and computationally efficient means
for assessing significances are developed.

A few very recent works have sought to identify individual rare variants by incorporating
prior-knowledge information in statistical inference. [109, 110] These methods typically
upweight individual variants predicted to be most likely to be causal based on prior GWA stud-
ies, functional annotation, sequence conservation, and other computational means. The AFNC
can be readily utilized with models and test statistics that incorporate biological prior knowl-
edge. In the Results section, we illustrated an alternative way to incorporate this bioinformatic
knowledge. Specifically, we started with an agnostic interrogation of each variant and obtained
a set of statistically promising variants using AFNC. We then compared the selected variants
with prior-knowledge information to allow investigators to form educated hypothesis in
designing follow-up studies. Statistically promising variants, that are selected objectively by
AFNC, can also be explored in follow-up studies without comparing with annotation

Table 5. Number of variants selected in the analysis of CoLaus data at different control levels.

Control level 0.01 0.05 0.5 0.9 0.99 1

Bonferroni 0 4 4 10 10 10

FDR 0 4 45 493 7442 9665

At each level, Bonferroni controls the family-wise type I error, whereas the FDR controls the expected proportion of false positives among all discoveries.

doi:10.1371/journal.pcbi.1004993.t005
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information, such as when prior knowledge is not available for novel variants or believed to be
inaccurate.

Due to extremely low MAFs, rare variants do not usually exhibit strong linkage disequilib-
rium. [1, 111] Thus, we designed the AFNC for rare variants association studies, in which
dependence among test statistics is assumed to be weak. The AFNC procedure is also applica-
ble in the situation when causal variants are dependent, but noncausal variants are indepen-
dent. [112] In other applications where noncausal genetic factors are expected to be strongly
dependent, the AFNC procedure can be adapted to account for arbitrary dependence using sev-
eral recent techniques for multiple testing. [113, 114]

One potential limitation of AFNC is that it may underperform when the signal intensity of
the causal variants is too low. The signal intensity of a causal variant depends on the effect sizes
and sample size. As shown in Figs 2 and 3, the sensitivity of AFNC deteriorates as effect size or
sample size becomes smaller. Indeed, low effect sizes and small sample size are fatal limitations
to all methods. In single-variant analysis of rare variants, such challenges may arise from iden-
tifying the extremely rare causal variants (e.g., singletons in the data). Although effect size is
believed to be high for rare causal variants, the overall signal intensity may still be low given
the extremely low sample size. Under this scenario, gene-based tests coupled with functional
annotation would have better potential to identify these causal variants. Therefore, gene-based
tests, functional annotation and AFNC should be used in an integrated fashion in the detection
of rare causal variants: as we have illustrated in our analysis of the CoLaus data, AFNC coupled
with gene-based tests can help to pinpoint potential causal variants that lead to gene-level sig-
nificance; AFNC coupled with functional annotation can help to identify causal genes that are
insignificant at gene level due to a few causal variants mixed with a large number of noncausal
variants; finally, gene-based tests coupled with functional annotation can facilitate the identifi-
cation of extremely rare causal variants.

Recent developments in the multiple testing literature have introduced the false nondiscov-
ery rate (Fndr). [115–117] We note that this is quite different from the AFNC control proce-
dure. The Fndr controls for the expectation of the proportion FN/(d − R), which do not involve
the number of causal variants s (see Table 1). Moreover, this is not a sensitive measure and will
be very close to zero in large-scale NGS studies, as the number of variants that are not selected
d − R will be very large. On the other hand, the AFNC, based on the proportion FN/s, allows
robust variants selection in large-scale sequencing studies, as the number of causal variants s is
expected to be small and the proportion FN/s is receptive to changes in the number of false
negatives. In S7 Fig, we compared the AFNC with the Fndr at a threshold level of β = 0.1.
Results suggest that the AFNC dominates the Fndr in terms of overall performances of g-mea-
sure and the Fndr performs poorly in terms of specificity.

Innovative technological advances have imposed new bioinformatic and statistical chal-
lenges by introducing genomic data at ever increasing resolution and dimensions. The prolifer-
ation of GWA studies in the last decade has largely led to the development and adaptation of
the FDR as a conventional genomic tool. [42–46] In this paper, we introduced the AFNC to
enable the identification of rare variants in large-scale sequencing studies. It is computationally
efficient for applications in WGS andWES studies and can provide informative results for
investigators charged with the task of analyzing large-scale sequencing studies.

Methods

Adaptive false-negative control of individual rare variants
The proposed procedure is general and can accommodate a spectrum of models and signifi-
cance tests. Suppose that we have test statistics for each variant T1(G, Z), T2(G, Z), . . ., Td(G, Z)
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based on i = 1, 2, . . ., n subjects, such that G = {Gij} is a matrix of vectors of genotypes across all
variants j = 1, 2, . . ., d and Z = {Zik} is a matrix of vectors of additional covariates across various
clinical factors and prior biological knowledge k = 1, . . ., K. Examples for Tj(G, Z) include the
classical t-test statistic that depends only on genotypes of the jth variant and the local FDR sta-
tistic that utilizes genotypes across all variants in an empirical Bayes construction. [108] Fur-
ther, prior knowledge from functional annotation can be incorporated, such as by using a
generalized linear mixed-effects model. [110] We assume that the test statistic Tj(G, Z) for
j = 1, 2, . . ., d is drawn from the mixture distribution

ð1� pÞF0 þ pF1; ð1Þ

where π = s/d is the signal proportion, s is the number of causal variants, F0 is the null distribu-
tion of Tj(G, Z) when the jth variant is noncausal, and F1 is the alternative distribution when
the jth variant is causal. [52, 53, 118] Let T(1)(G, Z)� T(2)(G, Z)� . . .� T(d)(G, Z) be the
ordered test statistics at decreasing significances.

To evaluate false negatives in NGS studies, we introduce the signal missing rate (SMR) for
selecting the top j ranked variants as

SMR�ðjÞ ¼ P FNðjÞ=s > �ð Þ; ð2Þ

where FN(j) is the number of causal variants missed by selecting the top j ranked variants and �
> 0 is a small constant. The SMR can be interpreted as the probability of neglecting at least a
small proportion of causal variants among the top j ranked variants. By controlling the SMR,
potentially causal variants can be included from both the Signals and Indistinguishable regions
while dispatching with a very large number of irrelevant variants in the Noise region (see
Fig 1). Compared to another possible measure of false negatives, P(FN(j)>0), SMR provides a
more liberal control as it allows some, instead of zero, false negatives. SMR is also substantially
different from the control of false nondiscovery rate (Fndr), which is an analog of FDR in
terms of false negatives. Fndr is defined as the expectation of the proportion of false negatives
among the accepted null hypotheses. [115, 119] In the analysis of data with extremely high
dimensions and relatively small number of causal variants, Fndr is very close to zero and hence
not an informative measure.

To provide informative analysis of rare variants in NGS studies, we propose the false-nega-
tive control screening (AFNC) procedure as follows.

1. Obtain ordered p-values from the test statistics T(1)(G, Z)� T(2)(G, Z)� . . .� T(d)(G, Z)
such that p(1) � p(2) � . . .� p(d).

2. Compute an estimate p̂ of the signal proportion and compute ŝ ¼ p̂d.

3. Retain the top f1; 2; . . . ; T̂ fng variants with

T̂ fn ¼
ŝ if ŝ � ta

ŝ þ min fj � 1 : pðŝþjÞ � F�1
ŝ ;ðjÞðbÞg if ŝ > ta

8<
: ; ð3Þ

where F�1
ŝ ;ðjÞ is the inverse cumulative distribution function of the jth ordered p-value among

the d � ŝ null (i.e., noncausal) variants; Fŝ ;ðjÞ follows the Beta distribution with parameters j

and d � ŝ � jþ 1; tα is the cut-off position of the Bonferroni procedure at α significance
level, and β is a pre-fixed level for controlling the signal missing rate. We set α and β at con-
ventional levels of 0.05 and 0.1, respectively, in this paper. Smaller value of β corresponds to
more stringent control on false negatives.
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Step 2. Estimating π. To estimate the signal proportion π in Step 2, we employ the effi-
cient estimator [50], based on empirical processes of p-values,

p̂ ¼ max
1<j<c0d

j=d � pðjÞ � cd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðjÞð1� pðjÞÞ

q

1� pðjÞ
; ð4Þ

where 0< c0 � 1 is pre-fixed to accelerate the algorithm for large d by searching through only
c0 fraction of the ranked variants. Conceptually, Eq (4) seeks for the largest difference between
the observed, ordered p-value (i.e., p(j)) and the expected quantile under the global null (i.e., j/
d). The largest difference typically occurs among the top proportion of the ranked p-values as
causal variants tend to have small p-values. To ensure that we look through sufficient amount
of top c0 d ordered variants (and hence the speed-up will have little impact on the results), we
set a sufficiently large value for c0 d, i.e., at least 5000 or d/10, or equivalently, c0 d = max{5000,
d/10}. The quantity cd > 0 is pre-computed empirically to control the Type I error rate under
the global null hypothesis that no causal variants exist. Specifically, we randomly simulateM
sets of p-values, p01;m; p

0
2;m; . . . ; p

0
d;m, from the uniform distribution under the global null hypoth-

esis form = 1, 2, . . .,M. For setm, we order the p-values to obtain p0ð1Þ;m � p0ð2Þ;m � . . . � p0ðdÞ;m,

standardize them, and compute Vm by taking the maximum, i.e.,

Vm ¼ max
1<j�d

j=d � p0ðjÞ;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðjÞ;mð1� p0ðjÞ;mÞ

q
2
64

3
75: ð5Þ

Then, cd is obtained as the (1 − α) quantile of the extreme values Vm’s. Estimation of the signal
proportion has been rigorously evaluated in the statistical literature. [50, 51, 120] In particular,
under high dimensionality, statistical consistency of the estimator in Eq 4 does not depend on
strict statistical normality assumptions and can be expected to perform well even when the pro-
portion of causal variants π is very small. [50] It readily adapts to the underlying sparsity of the
data in large-scale association studies.

Step 3. Obtaining the AFNC cut point T̂ fn. The AFNC procedure evaluates statistical sig-

nificance along the ordered p-values and retains the top T̂ fn variants of Eq 3 as important vari-

ants. When ŝ � ta, Eq 3 simplifies to T̂ fn ¼ ŝ (which is�tα). In this case, if ŝ > 0, the

Bonferroni cut-off position tα already encompasses the estimated number of causal variants.
Such scenarios occur when the effect sizes are so strong that the Indistinguishable region
degenerates in Fig 1 and nearly all causal variants can be identified in the Signals region. If
ŝ ¼ 0, all variants are expected to be noncausal, which occurs under the global null hypothesis
when both the Signals and Indistinguishable regions degenerate.

The more interesting scenario of ŝ > ta occurs in NGS studies of rare variants when the Sig-
nals region is very small or degenerates and the Indistinguishable region may ensconce causal
variants. In this case, we need to search further along the ordered test statistics, bypass some of
the noncausal variants in the Indistinguishable region, and then stop when the number of false
negatives is small relative to the total number of causal variants. The search starts at ŝ and ends
at the smallest j, j ¼ 1; . . . ; d � ŝ, such that the observed p-values, pðŝþjÞ, is no greater than the

β-th quantile of the j-th ordered p-value, P0
ðjÞ, among the d � ŝ null variants. The rationale is

that when not all causal variants rank before ŝ þ j, the number of noncausal variants among
the top ŝ þ j variants, denoted by n½̂s þ j�, would be greater than j. Then the observed pðŝþjÞ,

which is in essence� P0
n½̂sþj�, would be greater than P0

ðjÞ. In other words, pðŝþjÞ > P0
ðjÞ is implied

by the event that the top ŝ þ j variants still do not contain all causal variants. Therefore, our
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search should continue until the first time pðŝþjÞ � P0
ðjÞ. In the extremely ideal case, one would

wish that PrðP0
ðjÞ � pðŝþjÞÞ 	 1. In real practice, we set PrðP0

ðjÞ � pðŝþjÞÞ > 1� b by looking for

the j such that pðŝþjÞ is less than or equal to the β-th quantile of P0
ðjÞ to achieve a better balance

between a small false-negative proportion and a reasonable total number of variants selected.

When this event occurs (i.e., pðŝþjÞ � β-th quantile of P0
ðjÞ), the AFNC threshold T̂ fn asymptoti-

cally controls SMR� at level β for an arbitrarily small constant � (i.e., � is not changing with the
total number of variants d).

In summary, using the cut-off position T̂ fn, AFNC can adaptively encompass a large propor-

tion (1 − �) of the causal variants with high probability (	1 − β). In the case where the causal

and noncausal variants are better separated, T̂ fn of AFNC will become closer to the Bonferroni

cut-off position tα. The AFNC procedure controls the signal missing rate with any consistent
estimator of π (and in this paper, we employ the estimator of Eq 4). Finally, our procedure has
a very low computational complexity O(d log d) and can be applied under extreme high
dimensionality for WGS andWES studies.
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