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SUMMARY

The Rho family GTPase Cdc42 is a key regulator of
eukaryotic cellular organization and cell polarity [1].
In the fission yeast Schizosaccharomyces pombe,
active Cdc42 and associated effectors and regulators
(the ‘‘Cdc42 polarity module’’) coordinate polarized
growth at cell tips by controlling the actin cytoskel-
eton and exocytosis [2–4]. Localization of the Cdc42
polarity module to cell tips is thus critical for its func-
tion. Here we show that the fission yeast stress-acti-
vated protein kinase Sty1, a homolog of mammalian
p38 MAP kinase, regulates localization of the Cdc42
polarity module. In wild-type cells, treatment with la-
trunculin A, a drug that leads to actin depolymeriza-
tion, induces dispersal of the Cdc42 module from
cell tips and cessation of polarized growth [5, 6]. We
show that latrunculin A treatment also activates the
Sty1 MAP kinase pathway and, strikingly, we find
that lossofSty1MAPkinasesignalingprevents latrun-
culinA-induceddispersal of theCdc42module, allow-
ing polarized growth even in complete absence of the
actin cytoskeleton. Regulation of the Cdc42 module
bySty1 is independentofSty1’s role in stress-induced
gene expression. We also describe a system for acti-
vation of Sty1 kinase ‘‘on demand’’ in the absence of
any external stress, and use this to show that Sty1
activation alone is sufficient to disperse the Cdc42
module from cell tips in otherwise unperturbed cells.
During nitrogen-starvation-induced quiescence, inhi-
bitionofSty1converts non-growing, depolarizedcells
into growing, polarized cells. Our results place MAP
kinase Sty1 as an important physiological regulator
of the Cdc42 polarity module.

RESULTS AND DISCUSSION

Fluorescent-protein fusions with CRIB (Cdc42/Rac interactive

binding motif)-containing domains of Cdc42 effectors are widely
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used as reporters of active (GTP-bound) Cdc42 localization

in vivo in both budding and fission yeasts [7–9]. In fission yeast,

after treatment with the actin monomer-binding drug latrunculin

A (LatA), which leads to acute depolymerization of the actin

cytoskeleton, CRIB-3xGFP disperses from cell tips and forms

transient ectopic patches on cell sides, as does Cdc42 itself

and other components of the Cdc42 polarity module [5, 6, 10].

Because actin filaments can play a role, for example, in vectorial

transport of endomembrane-associated Cdc42 or its regulators

to cell tips or in endocytic recycling of Cdc42 from the plasma

membrane [4, 11–13], the most straightforward interpretation

of this result has been that dispersal of the Cdc42 polarity

module from cell tips is a direct consequence of the loss of actin

filaments [5, 6].

However, several years ago, in the context of a putative ‘‘spin-

dle orientation checkpoint’’ in fission yeast [14], it was briefly re-

ported that treatment with latrunculin B, a compound related to

LatA, leads to activation of the conserved mitogen-activated

protein (MAP) kinase Sty1 (also known as Spc1/Phh1 [15–17]).

Sty1 is the fission yeast homolog of budding yeast MAP

kinase Hog1 and of mammalian stress-activated protein kinase

(SAPK) p38 [18–20]. Although there is now considerable evi-

dence against the concept of a spindle orientation checkpoint

[21–23], the initial observation of Sty1 activation after latrunculin

B treatment was never investigated further. We therefore

decided to revisit the question of how the Cdc42 polarity module

disperses from cell tips after LatA treatment, and whether Sty1

plays a role in this behavior.

Latrunculin A Treatment Leads Both to CRIB Dispersal
and to Sty1 MAP Kinase Activation
We constructed a CRIB-3xmCitrine probe (referred to here sim-

ply as CRIB) for long-term time-lapse fluorescence imaging of

the Cdc42 polarity module (see the Supplemental Experimental

Procedures). Using this together with the F-actin reporter Life-

act-mCherry (here referred to as Lifeact) [24, 25], we confirmed

that LatA treatment leads both to actin depolymerization and

to CRIB dispersal from cell tips and ectopic patch formation

on cell sides (Figures 1A and S1A; Movie S1) [5, 6]. In parallel ex-

periments, the Cdc42 module scaffold protein Scd2 (Scd2-

3xmCherry) also dispersed from cell tips after LatA treatment

and colocalized with ectopic CRIB patches (Figure S1B)
mber 7, 2016 ª 2016 The Authors. Published by Elsevier Ltd. 2921
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Figure 1. Latrunculin A Treatment Causes Both CRIB Dispersal from

Cell Tips and Sty1 MAP Kinase Activation
(A) Still images frommovies of Lifeact-mCherry (LA-mCh) andCRIB-3xmCitrine

(CRIB-3mCit) in wild-type cells after addition of DMSO or 50 mM latrunculin A

(LatA). Asterisks indicate dispersal of CRIB from cell tips. Arrowheads indicate

examples of ectopic CRIB patches after dispersal. Nuclear CRIB signal is un-

related to Cdc42 (see the Supplemental Experimental Procedures).

(B) Anti-phospho-Sty1 western blot of wild-type cell extracts after addition of

DMSO, 50 mMLatA, or 0.6MKCl for the indicated times. Ponceau S stain of the

same region of the blot is shown below.

(C) Quantification of phospho-Sty1 (a.u.) from experiments of the type

shown in (B). Mean values are from three independent experiments. Error bars

indicate SEM.
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[6, 10]. CRIB dispersal from cell tips was considerably slower

than actin depolymerization itself, suggesting that dispersal

may not be a direct effect of actin depolymerization. In addition,

rather than appearing as spontaneous random patches, ectopic

CRIB patches generally moved in a concerted fashion away from

cell tips, toward the cell center.

In parallel with these experiments, we demonstrated in two

independent assays that LatA treatment leads to activation of

Sty1 (Figures 1B–1E). As a component of the fission yeast

SAPK pathway, Sty1 is normally activated through phosphoryla-

tion of Thr171 and Tyr173 by dual-specificity MAP kinase kinase

(MAPKK)Wis1 after a variety of stresses, including hyperosmotic

and oxidative stress [26, 27]. Western blotting revealed a strong

increase in Sty1 phosphorylation after LatA treatment, compara-

ble in amplitude and duration to that observed after a conven-

tional hyperosmotic salt stress (Figures 1B and 1C). Phosphory-

lation of Sty1 by Wis1 leads to increased Sty1 in the nucleus,

where Sty1 functions to promote stress-activated gene expres-

sion (although some Sty1 remains cytoplasmic) [26, 28]. We

found that after LatA addition, Sty1-mECitrine accumulated

in the nucleus with similar kinetics to those observed for Sty1

phosphorylation (Figures 1D and 1E). We conclude that LatA

treatment leads to Sty1 activation at a level comparable to that

seen after hyperosmotic salt stress.

Sty1 Activity Is Necessary for CRIB Dispersal after LatA
Treatment
We next asked whether Sty1 plays a role in LatA-induced CRIB

dispersal. We imaged CRIB and Lifeact in sty1D cells and

wis1D cells treated with LatA. Remarkably, in these cells, CRIB

remained at cell tips for the duration of imaging (several hours),

despite rapid and complete actin depolymerization (Figures 2A

and S1A; Movie S1). Scd2 also remained at cell tips (Figure S1B).

Moreover, cell elongation continued after actin depolymeriza-

tion, unlike wild-type cells, in which elongation ceased immedi-

ately (Figures 2A and 2B;Movie S1). These results lead to several

important conclusions. First, they demonstrate that the SAPK

pathway is required for CRIB dispersal after LatA treatment. Sec-

ond, and in contrast to interpretations of previous experiments

[5, 6], they show that the actin cytoskeleton per se is not required

for stability of the Cdc42 polarity module at cell tips. Finally, they

show that cell elongation can occur in the complete absence of

the actin cytoskeleton. Kymograph analysis revealed that cell

elongation in LatA-treated sty1D and wis1D cells gradually de-

clines over time (Figure 2B). This could be explained as follows:

(1) in the initial period after LatA treatment, tip-localized active

Cdc42 can drive cell elongation through positive regulation of

exocytosis [29]; (2) however, after LatA treatment, membrane

proteins involved in exocytosis would no longer be recycled

by endocytic retrieval from the plasma membrane, because
(D) Still images from movies of Sty1-mECitrine in wild-type cells after addition

of DMSO or LatA. LatA addition leads to net import of Sty1-mECitrine into the

nucleus.

(E) Quantification of Sty1-mECitrine nuclear fluorescence after addition of

DMSO or LatA. Values shown are mean relative intensity (a.u.) of nuclear

fluorescence above cytoplasmic fluorescence. Error bars indicate SD.

All times shown are relative to addition of DMSO, LatA, or KCl. Scale bars,

5 mm. See also Figure S1 and Movie S1.
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Figure 2. CRIB Dispersal by Latrunculin A Requires the Sty1 MAPK Pathway but Not Sty1-Dependent Gene Expression

(A) Still images frommovies of Lifeact-mCherry (LA-mCh) and CRIB-3xmCitrine (CRIB-3mCit) in sty1D andwis1D cells after addition of 50 mM latrunculin A (LatA).

Although LatA depolymerizes the actin cytoskeleton, CRIB does not disperse, and cells continue to elongate.

(B) Kymographs from movies of CRIB-3mCit showing rates of cell elongation in the indicated strains after addition of DMSO or LatA. The cartoon summarizes

kymograph construction (see also Supplemental Experimental Procedures). The orange curves and circle represent CRIB-3mCit fluorescence at cell tips and in

nucleus, respectively. The dashed box represents the region used for kymograph scans along the x-axis. Images used for kymograph analysis are z-projections,

and kymograph scans measured average intensity values along a line that is five pixels wide on the y-axis (line width corresponds to height of dashed box);

therefore, information from y- and z-dimensions is implicit in kymographs. Arrows indicate orientation of x and time (t) axes in kymographs. Left-hand panels in

each pair of kymographs represent cells shown in Figures 1A and 2A andMovie S1. Right-hand panels show additional cells. Arrowheads indicate time of DMSO

or LatA addition. Asterisks indicate disappearance of CRIB from cell tips in DMSO-treated cells due to cell division.

(C) Still images frommovies of LA-mCh andCRIB-3mCit in sty1-T97A cells pre-treatedwith 5 mM3-BrB-PP1 (3BrB) for 10min prior to addition of 50 mMLatA in the

continued presence of 3BrB.

(D) Still images from movies of CRIB-3mCit in atf1D cells after addition of 50 mM LatA. Arrowheads indicate examples of ectopic CRIB patches.

(E) Still images from movies of CRIB-3mCit in wild-type cells pre-treated with 100 mg/mL cycloheximide (CHX) for 10 min prior to addition of 50 mM LatA in the

continued presence of CHX. Arrowheads indicate examples of ectopic CRIB patches. CHX treatment causes contortions of nuclei to varying extents, and

therefore multiple example cells are shown.

All times shown are relative to addition of DMSO or LatA. Scale bars, 5 mm. See also Figures S1 and S2 and Movie S1.
endocytosis in yeasts depends on the actin cytoskeleton [30];

and therefore (3) such proteins will eventually be depleted from

cytoplasmic pools, ultimately leading to cessation of elongation.

Our results suggest amodel in which activation of Sty1 by LatA

treatment leads to dispersal of the Cdc42 polarity module from

cell tips. An alternative view, at least in principle, could be that

because Sty1 contributes to multiple cellular pathways [26],

sty1 deletion might lead to a long-term physiological adaptation

that fundamentally alters behavior of the Cdc42 module, even

prior to any stress (according to this view, LatA-induced activa-

tion of Sty1 would be purely coincidental). To rule out this possi-

bility, we imaged CRIB and Lifeact in sty1-T97A cells, in which

mutation of Thr97 within Sty1’s ATP-binding pocket allows ki-
nase activity to be specifically inhibited by ATP-competitive an-

alogs [31, 32] (T97A is the equivalent of an ‘‘as2’’ mutation). We

treated sty1-T97A cells with the analog 3-BrB-PP1 (4-Amino-1-

tert-butyl-3-(3-bromobenzyl)pyrazolo[3,4-d]pyrimidine) for less

than 10 min, so that no long-term adaptation could occur, and

then added LatA in the continued presence of 3-BrB-PP1. In

these cells, LatA addition led to actin depolymerization but

CRIB remained at cell tips, just as in sty1D and wis1D cells,

and cells also continued to elongate (Figures 2C and S2A).

Collectively, these results demonstrate that LatA-induced

CRIB dispersal is not a passive process (e.g., a simple conse-

quence of actin depolymerization) but rather an active process

that depends on the SAPK pathway and Sty1 kinase activity.
Current Biology 26, 2921–2928, November 7, 2016 2923
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Figure 3. Sty1 Activation Drives CRIB Dispersal in the Absence of

Any External Stress

(A) DIC images of SISA (wis1-DD sty1-T97A pyp1D pyp2D) cells grown in the

presence of 3-BrB-PP1 (+3BrB) and 24 hr after 3-BrB-PP1 removal (�3BrB).

(B) Cell-number growth curves of SISA cells in the presence of 3-BrB-PP1 and

after 3-BrB-PP1 removal. Error bars indicate SEM.

(C) Anti-Atf1 western blot of extracts from SISA cells in the presence of 3-BrB-

PP1 (+3BrB) and after removal (�3BrB). Times are relative to initiation of

3-BrB-PP1 removal. After removal, there is a discrete migration shift of Atf1

from 30 min onward, as well as increased levels of Atf1, especially at 90 and

120 min. Ponceau S stain of the same region of the blot is shown below.

(D) Quantification of Atf1 levels in SISA cells from experiments of the type

shown in (C). Mean values are from three independent experiments. Error bars

indicate SEM.

(E) Still images frommovies of Lifeact-mCherry (LA-mCh) andCRIB-3xmCitrine

(CRIB-3mCit) in SISA cells after 3-BrB-PP1 removal. Asterisks indicate CRIB

dispersal from cell tips. Arrowheads indicate ectopic CRIB patches. Times are

relative to initiation of removal.

(F) Still images from movies of LA-mCh and CRIB-3mCit in SISA cells after

3-BrB-PP1 removal and subsequent 3-BrB-PP1 re-addition 90 min later.
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To our knowledge, this is the first indication of such regulation of

the Cdc42 polarity module by a MAP kinase pathway.

The best-studied role of Sty1 in response to stress is in the

regulation of gene expression, and a key Sty1 substrate is the

conserved basic leucine zipper domain (bZIP) transcription fac-

tor Atf1 [26, 28, 33–35]. We found that LatA treatment in atf1D

cells still led to CRIB dispersal (Figure 2D), suggesting that

Sty1-dependent changes in gene expression are unlikely to be

required for CRIB dispersal. To strengthen these findings, we

pre-treated wild-type cells with cycloheximide to inhibit all pro-

tein synthesis prior to LatA addition and imaging. In these cells,

LatA treatment still led to CRIB dispersal (Figures 2E and S2B).

We conclude that the role of Sty1 in promoting CRIB dispersal

is independent of stress-induced gene expression.

Polo kinase Plo1, a downstream target of the Sty1 SAPK

pathway (phosphorylated on Ser402 after some, but not all,

types of stress [36]), has been implicated in regulation of cell

polarity [36, 37]. We used 3-BrB-PP1 together with analog-sen-

sitive plo1-as8 cells [37] as well as plo1-402A and plo1-S402E

mutants [36] to test whether Plo1 is involved in LatA-induced

CRIB dispersal. In all cases, LatA treatment led to CRIB dispersal

(Figures S1C and S1D), suggesting that Plo1 is not a critical Sty1

target for CRIB dispersal.

Sty1 Activation Is Sufficient for CRIB Dispersal in the
Absence of External Stress
Thus far, our results show that Sty1 is activated by LatA treat-

ment and that Sty1 activity is necessary for LatA-induced CRIB

dispersal from cell tips. We next asked whether Sty1 activation

alone (without LatA treatment) is sufficient to drive CRIB

dispersal.

To test this, we developed a system to rapidly switch on Sty1

activity in vivo in the absence of any external stress. We com-

bined a constitutively active MAPKK allele (wis1-DD [38]) with

the analog-sensitive sty1-T97A allele, together with deletion of

two genes encoding tyrosine phosphatases, pyp1+ and pyp2+,

which normally attenuate Sty1 MAPK signaling via dephosphor-

ylation of Sty1 Tyr173 [15, 16] (see the Supplemental Experi-

mental Procedures). For simplicity, we will refer to this combina-

tion of mutations as SISA (stress-independent Sty1 activation).

We reasoned that in SISA cells grown in the presence of

3-BrB-PP1, Sty1 will be ‘‘poised’’ to be active (because it

is phosphorylated by constitutively active Wis1-DD) but never-

theless inhibited by 3-BrB-PP1. Accordingly, upon removal of

3-BrB-PP1, Sty1 activity should rapidly increase.

SISA cells displayed normal growth and morphology when

grown in 5 mM 3-BrB-PP1 but stopped dividing upon removal

of 3-BrB-PP1, eventually becoming large and swollen in themid-

dle (Figures 3A and 3B). SISA cells were also unable to form

colonies on solid media lacking 3-BrB-PP1. To confirm that

these phenotypes were associated with increased Sty1 activity,

we assayed Atf1 in SISA cells by western blotting. Removal of

3-BrB-PP1 led to a small but reproducible shift in Atf1 migration
Asterisks indicate CRIB dispersal from cell tips. Red arrowheads indicate

ectopic CRIB patches. Yellow arrowheads indicate recovery of CRIB to cell

tips upon 3-BrB-PP1 re-addition. Times are relative to initiation of removal.

Scale bars, 5 mm. See also Figure S3 and Movie S2.
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Scale bar, 5 mm. See also Movie S4, in which ectopic CRIB patches are more

apparent.
on SDS-PAGE, as well as significantly increased Atf1 levels,

matching what occurs after stress-induced Sty1 activation (Fig-

ures 3C and 3D) [34, 39, 40].

We next imagedCRIB and Lifeact inSISA cells (Figures 3E and

3F; Movie S2). In the presence of 3-BrB-PP1, CRIB and Lifeact

distributions were indistinguishable from wild-type cells. How-

ever, upon removal of 3-BrB-PP1, CRIB dispersed from cell

tips within �30 min, and ectopic CRIB patches appeared on

cell sides, as in LatA-treated wild-type cells. Other components

of the Cdc42 polarity module also dispersed from cell tips and

formed ectopic patches (Figures S3A and S3B), and concomi-

tantly the actin cytoskeleton became depolarized (but not depo-

lymerized; Figures 3E and S3C). These results indicate that an

acute increase in Sty1 activity is sufficient to promote dispersal

of the Cdc42 polarity module from cell tips, even in the absence

of any external stress. In conjunction with our previous observa-

tions, this provides extremely strong evidence that the Cdc42

polarity module is specifically regulated by the Sty1 MAP kinase

pathway.

We also used SISA cells to investigate how Sty1 inactivation

affects CRIB localization in cells containing already-dispersed

CRIB. Sty1 was activated by 3-BrB-PP1 removal and then

inactivated 90 min later by re-addition of 3-BrB-PP1 (Figure 3F;

Movie S3). Strikingly, upon re-addition of 3-BrB-PP1, the

dispersed CRIB rapidly returned to cell tips, and this preceded

the return of actin to cell tips. This suggests that key polarity

landmarks are retained at cell tips after Sty1-activated CRIB

dispersal and that, upon Sty1 inactivation, the Cdc42 polarity

module can follow these cues independent of the polarization

of the actin cytoskeleton.

Inhibition of Sty1 during Quiescence Leads to Cell
Repolarization
The experiments described thus far involve activation of Sty1

either via external stress (LatA) or by use of SISA cells. We there-

fore investigated a role for Sty1 in cell polarity in an additional

physiological setting, nitrogen starvation (N starvation), which

is a prerequisite to mating and meiosis in fission yeast [41, 42].

Upon N starvation, cells normally divide twice in succession

without significant interphase cell elongation, leading to the gen-

eration of four small cells (Figure 4A). Homothallic (self-mating)

cells then mate, whereas heterothallic cells in the absence of a

mating partner enter a long-term, quiescent G0-like state [43]

in which the Cdc42 polarity module appears to become depolar-

ized [44]. Because sty1Dmutants are partially sterile [17, 34], we

hypothesized that Sty1may be involved inmaintaining this depo-

larized state, which might be important for an exploratory phase

of cell polarity when mating partners are present [44].

We imaged CRIB in N-starved heterothallic wild-type and

sty1-T97A cells before and after addition of 3-BrB-PP1 (Fig-

ure 4B; Movie S4). In the absence of 3-BrB-PP1, all cells showed

disperse, dynamic patches of CRIB, and these patches re-

mained dynamic, without any cell elongation, for the duration

of imaging (4 hr; Movie S4). This dynamic behavior was un-

changed by addition of 3-BrB-PP1 to wild-type cells. However,

after 3-BrB-PP1 addition to sty1-T97A cells, CRIB rapidly

localized to cell tips, and cells resumed elongation, even

though this is futile, as sty1D cells rapidly lose viability upon N

starvation [15–17].
Current Biology 26, 2921–2928, November 7, 2016 2925



The recovery of CRIB to cell tips and resumption of cell elon-

gation upon Sty1 inhibition demonstrate that Sty1 activity is crit-

ical for maintaining a non-polarized Cdc42 module in N-starved

quiescent cells. Although many mutants in the SAPK pathway

have defects in mating and meiosis, this result may help to

explain why sty1D and wis1D mutants in particular continue to

elongate upon N starvation, unlike other mutants in the pathway

[45, 46].

The Fission Yeast SAPK Pathway in Regulation of Cell
Polarity
The fission yeast SAPK pathway is activated by a wide variety of

stresses, including hyperosmotic stress, oxidative stress, tem-

perature stress, nutritional stress, heavy metals, and hypergrav-

ity [26, 27]. Our demonstration that Sty1 activation is sufficient for

CRIB dispersal independent of any external stress is particularly

important because each type of SAPK-activating stress is likely

to have additional type-specific effects on cell physiology. With

the exception of oxidative stress, in essentially all cases the route

from initial stress to Sty1 activation is poorly understood [27].

Currently, it is not clear exactly how LatA treatment leads to

Sty1 activation. One interesting possibility is that LatA treatment

provokes a specific ‘‘actin stress response’’ that signals to the

SAPK pathway; this certainly merits further investigation, as it

would suggest the possibility of a checkpoint that disrupts cell

polarity in response to cytoskeleton depolymerization. Alterna-

tively, the pathway from LatA treatment to Sty1 activation could

involve additional, non-actin targets of LatA, independent

of actin depolymerization, although this would not affect our

conclusions concerning Sty1 regulation of the Cdc42 polarity

module. Future work will help to illuminate how LatA activates

the SAPK pathway.

The system of SAPK-dependent cell-polarity regulation in

fission yeast described here does not appear to have a direct

counterpart in budding yeast. Hog1, the budding yeast homolog

of Sty1 and mammalian p38, is strongly activated by osmotic

stress but only weakly/moderately by several other stresses

(and with significantly different kinetics [19]). Consistent with

this, LatA treatment does not activate Hog1 [47]. In addition, in

spite of extensive genetic and biochemical analysis over many

years, there is currently no evidence that the Hog1 pathway reg-

ulates the Cdc42 polarity module, mating efficiency, or re-

sponses to nutrient deprivation [18, 19]. Treatment of budding

yeast with the related compound latrunculin B has been shown

to activate a different MAP kinase, Slt2 (also known as Mpk1

[48]), but it is not clear what relation, if any, this system bears

to our work. Both the kinetics and other qualitative aspects of

Slt2 activation after latrunculin B treatment [48] are markedly

different from what we observe for Sty1 after LatA treatment.

Moreover, Slt2 is part of the cell-integrity MAPK pathway—a

different pathway altogether from the SAPK pathway—and

rather than regulating cell polarity, Slt2 promotes G2 cell-cycle

arrest. We speculate that in spite of a largely conserved ‘‘parts

list’’ for MAPK signaling and cell-polarity regulation in budding

and fission yeast, the different modes of polarized growth spe-

cific to each yeast [3] have led to different wiring patterns for

MAP kinase activation and downstream targets. Further under-

standing of SAPK-dependent control of cell polarity in fission

yeast may help to determine whether similar control exists in
2926 Current Biology 26, 2921–2928, November 7, 2016
metazoan cells. An additional consequence of our results is

that, for some cell types, it may be necessary to re-evaluate ex-

periments that use LatA to investigate how the actin cytoskel-

eton contributes to various cellular functions, because observed

effects may be the result of a stress response rather than actin

depolymerization per se.

Although the molecular mechanisms by which Sty1 regulates

theCdc42 polaritymodule remain to be elucidated, two observa-

tions in particular provide some insight. First, although Sty1 acti-

vation leads to dispersal of CRIB and other components of the

Cdc42 module from cell tips, these nevertheless remain largely

concentrated in patches on the plasma membrane [5]. This indi-

cates that the Cdc42 module is at least partially intact under

these conditions, albeit misplaced and more dynamic. Second,

in our experiments in which 3-BrB-PP1 is first removed from

SISA cells and then later added back, the recovery of CRIB to

cell tips is very rapid, occurring within a few minutes. Collec-

tively, these results suggest that Sty1may act to negatively regu-

late the coupling of the Cdc42 module to cell-polarity landmarks

[3], some of which may remain at cell tips under stress condi-

tions. Further confirmation of this view will rely on the identifica-

tion of the proteins involved in coupling, together with an under-

standing of how they are directly or indirectly regulated by Sty1.

EXPERIMENTAL PROCEDURES

Standard fission yeast genetics and imaging techniques were used

throughout. Detailed descriptions of strain construction, physiological experi-

ments, and microscopy methods are provided in the Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2016.08.048.
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2. Rincón, S.A., Estravı́s, M., and Pérez, P. (2014). Cdc42 regulates polarized

growth and cell integrity in fission yeast. Biochem. Soc. Trans. 42,

201–205.

3. Martin, S.G., and Arkowitz, R.A. (2014). Cell polarization in budding and

fission yeasts. FEMS Microbiol. Rev. 38, 228–253.

4. Martin, S.G. (2015). Spontaneous cell polarization: feedback control of

Cdc42 GTPase breaks cellular symmetry. Bioessays 37, 1193–1201.
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