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Background: Immunotherapy has achieved remarkable success in treating

advanced liver cancer. Current evidence shows that most of the available

immune checkpoint inhibitor (ICB) treatments are suboptimal, and specific

markers are needed for patients regarded as good candidates for

immunotherapy. Necroptosis, a type of programmed cell death, plays an

important role in hepatocellular carcinoma (HCC) progression and outcome.

However, studies on the necroptosis-related lncRNA in HCC are scarce. In this

view, the present study investigates the link among necroptosis-related lncRNA,

prognosis, immune microenvironment, and immunotherapy response.

Methods:Gene transcriptome and clinical data were retrieved from TheCancer

Genome Atlas database. Pearson correlation analysis of necroptosis-related

genes was performed to identify necroptosis-related lncRNAs. The Wilcoxon

method was used to detect differentially expressed genes, and prognostic

relevant lncRNAs were obtained by univariate Cox regression analysis. Gene

Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were

utilized to perform functional enrichment analysis. Lasso–Cox stepwise

regression analysis was employed to calculate risk score, which was involved

in analyzing immune cells infiltration, immune checkpoints expression, and

predicting immunotherapeutic efficacy. Quantitative RT-PCR (qRT-PCR) was

performed to detect the expression pattern of lncRNA in cell lines.

Results: The 10 lncRNAs generated in this study were used to create a

prognostic risk model for HCC and group patients into groups based on risk.

High-risk patients with HCC have a significantly lower OS rate than low-risk

patients. Multivariate Cox regression analysis showed that risk score is an

independent risk factor for HCC with high accuracy. Patients in the high-risk

group exhibited a weaker immune surveillance and higher expression level of

immune checkpoint molecules. In terms of drug resistance, patients in the low-

risk group were more sensitive to sorafenib. The OS-related nomogram was

constructed to verify the accuracy of our model. Finally, quantitative RT-PCR

experiments were used to verify the expression patterns of candidate genes.
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Conclusion: The lncRNA signature established herein, encompassing

10 necroptosis-related lncRNAs, is valuable for survival prediction and holds

promise as prognostic markers for HCC.
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Introduction

Hepatocellular carcinoma (HCC) is a health challenge

nowadays, which has become the sixth most common

malignant tumor and the fourth-leading cause of cancer

death worldwide (Parkin et al., 2005). In addition, HCC is

a malignant tumor that ranks fourth for incidence and second

for mortality in China (Chen et al., 2016; Zhou et al., 2019).

Compared with different regions of Europe and the

United States, East Asia and Africa have the highest

incidence and mortality of liver cancer (Mcglynn et al.,

2015). According to the Surveillance Epidemiology and

End Result (SEER) report, liver cancer is expected to be

the third leading cause of cancer-related death by 2030

(Rahib et al., 2014).

Surgical resection is still the main method for the treatment

of early liver cancer. In pursuit of a higher 5-year survival rate

and lower perioperative mortality, surgical indications are

usually limited to single tumor, a well-preserved liver

function, no portal hypertension, and ECOG score of 0

(Zhou et al., 2001). As the standard therapy for the

intermediate stage is radiofrequency ablation and

transarterial chemoembolization (TACE), HCC has been the

most widely used treatment modality for patients with

unresectable HCC. However, HCC is a disease with

insidious onset, most patients were diagnosed in the

advanced stage and lost the opportunity of operation. At

this time, molecular targeted therapy, immunotherapy, and

other systemic therapies are of particular importance.

Immunotherapy for liver cancer is a promising research

direction. Over the past few years, immunomodulator,

tumor vaccine, and adoptive immunotherapy have been

proved to be effective in clinical practice of liver cancer

(Hong et al., 2015). The IMbrave150 study confirmed that

the combination of atrizumab and bevacizumab markedly

improve the overall survival rate of HCC patients, which has

been established as the standard first-line regimen for advanced

liver cancer (Finn et al., 2020). In the CheckMate 040 trial (El-

Khoueiry et al., 2017), nivolumab, a checkpoint inhibitor that

blocks programmed cell death protein-1, demonstrated durable

responses and prolonged long-term survival, which has been

approved by FDA for second-line therapy of HCC.

Nevertheless, cancer treatment, particularly immunotherapy,

is urgently in need of the identification of useful biomarkers, as

only some patients benefit from this treatment.

In recent years, programmed cell death has aroused great

interest in the field of cell death. Nowadays, three forms of cell

death including apoptosis, necroptosis, and pyroptosis have been

intensely studied. Necroptosis, a kind of programmed cell lytic

death, was first proposed by Degterev et al. (2005) to describe a

regular rather than accidental necrotic cell death, playing a key

role in the regulation of tumorigenesis, cancer metastasis, and

cancer immunity (Seehawer et al., 2018). The key molecules of

necroptosis promoted the metastasis and progression of cancer

alone or in combination with other molecules (Mccormick et al.,

2016). Necroptosis is usually regarded as a secondary cell death

response in which apoptosis was inhibited, mainly mediated by

receptor-interacting protein kinase (RIPK)1, RIPK3, and mixed

lineage kinase domain-like protein (MLKL). RIPK1 is a key

transcription factor that controls cell survival and death

(Christofferson et al., 2014; Weinlich and Green, 2014) and

mediates RIPK3-dependant necrosis and FADD-dependent

apoptosis (Micheau and Tschopp, 2003; Sun et al., 2012). The

morphological changes are characterized by rapid swelling of

cells and organelles. The pathway of necroptosis is canonically

triggered by the ligand-dependent cell surface death receptors,

such as Fas, TNF receptor 1 (TNFR1), IFN receptor (IFNR), and

Toll-like receptor (TLR). And necroptosis mediated by TNFR1 is

the most representative example (Choi et al., 2019). TNFR1 is

homotrimerized and recruits the TNFR-associated death domain

(TRADD) protein to its cytoplasmic death domain upon binding

of TNF (Hsu et al., 1995; Vandevoorde et al., 1997; Chen and

Goeddel, 2002; Gaur and Aggarwal, 2003). When FADD is

deficient, RIPK1/RIPK3/MLKL forms a complex called

complex IIb or a necrosome to induce necroptosis (Cho et al.,

2009; He et al., 2009; Zhang et al., 2009; Sun et al., 2012; Zhao

et al., 2012). Caspase-8 is the main inhibitor in the process of

necroptosis. When FADD and Caspase-8 were recruited into

TRADD and RIPK1 to form complex IIa, Caspase-8 was

activated (Mak and Yeh, 2002; Wallach et al., 2002). Activated

Caspase-8 induces apoptosis by inhibiting the activity of

RIPK1 and RIPK3 (Fritsch et al., 2019). The interactions

between RIPK1 and RIPK3 lead to auto-phosphorylate and

trans-phosphorylate and the assembly of the “necroptosis

complex” when Caspase-8 was inhibited or blocked, which

further initiates downstream signaling leading to necroptosis

(Cho et al., 2009; He et al., 2009; Zhang et al., 2009). RIPK3

plays a key role in the induction of necroptosis. Phosphorylated

RIPK3 activates and phosphorylates MLKL after

RIPK3 phosphorylation (Sun et al., 2012), phosphorylated
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MLKL translocated to the cell membrane leading to the

formation of MLKL oligomers, causing its rupture and

leading to the leakage of cellular contents and release of

DAMP, ultimately triggering the body’s immune response

(Gong et al., 2017). Increasing evidence suggests that

necroptosis is closely associated with carcinogenesis and

anti-tumor immunity. Deletion of MLKL in tumor cells

reduces spontaneous lung metastases in a breast cancer

model (Jiao et al., 2018). PK68, a kind of RIPK1 inhibitor,

significantly inhibits metastasis of mouse melanoma and lung

cancer cells (Hou et al., 2019). There is growing evidence that

lncRNAs are closely related to programmed cell death (PCD),

lncRNA TUG1 knockdown promotes apoptosis by regulating

the miR-132-3p–SOX4 axis in osteogenic sarcoma cells (Li

et al., 2018). lncRNA MALAT1 promotes colorectal cancer

cell proliferation and inhibits apoptosis by activating

autophagy (Si et al., 2019).

Non-coding RNA (ncRNA) is a class of RNA longer than

200 nucleotides that do not encode proteins, including

microRNA and long non-coding RNA (lncRNA). In cancer,

lncRNAs functioning through a variety of mechanisms, such

as chromatin remodeling, chromatin interaction, ceRNAs, and

natural antisense transcripts (Fang and Fullwood, 2016).

LncRNA participates in tumorigenesis and development by

FIGURE 1
(A) Study Flow Chart. (B) a PCA plot for RNA-seq data.
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different mechanisms (Schmitt and Chang, 2016), a study has

shown that lncRNA CASC11 interacts with hnRNP-K to activate

the WNT/β-catenin pathway, promoting the growth and

metastasis of colon cancer (Zhang et al., 2016). LncRNA

HOTAIR is able to predict the sensitivity of ovarian cancer

patients by two kinds of platinum chemotherapy, guiding

clinical decision-making (Teschendorff et al., 2015). In

summary, the imbalance of lncRNA affected cell function,

promotion of metastasis, and resistance to chemotherapeutic

drugs (Brunner et al., 2012).

With the development of genomics, transcriptome, and next-

generation sequencing technology in biological research, the

prognostic model constructed by specific gene clusters showed

unique advantages in predicting the prognosis of cancer patients

and the efficacy of immunotherapy. For example, a prognostic

signature based on seven autophagy-related genes is eligible to

act as an independent prognostic indicator of poor prognosis

(Wang et al., 2021); m6A-associated regulators play a key role in

HCC prognosis, tumor microenvironment, and drug resistance

(Jin et al., 2021). However, no such study in necroptosis-related

lncRNA about HCC has been published yet. Therefore, more

studies are needed to explore the prognostic value of necroptosis-

related lncRNA in HCC. In this study, we use bioinformatic

methods to identify prognostic necroptosis-related lncRNA

based on TCGA public database, constructing a prognostic

model to verify the role of necroptosis-related lncRNA in

HCC. We aimed to identify suitable candidates for

immunotherapy and evaluate disease prognosis to better guide

therapeutic decisions.

Methods

Data acquisition and preprocessing

We downloaded transcriptome data (TCGA-LIHC-FPKM)

and corresponding clinicopathological information of 374 HCC

samples and 50 normal samples from The Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/). The transcriptome data

were converted from FPKM (Fragments Per Kilobase of

transcript per Million mapped reads) format to TPM

(Transcripts Per Kilobase Million) format by a Perl tool, the

human gene annotation file was downloaded from Ensemble

database (http://ensemblgenomes.org/). A PCA plot of RNA-

sequence data was constructed by “tidyverse” and “dplyr”

packages, visualization was prepared in “ggbiplot” package. In

this calculation, we included 374 HCC samples and 50 normal

samples, 1000 RNAs were detected randomly during this process.

One can see that the clustering and integrity of RNA-sequence

data were excellent (Figure 1B). Clinical data were preprocessed

as follows: Stage IIIA, IIIB, and IIIC were merged into stage III,

stage IVA and IVB were merged into stage IV. Samples missing

overall survival (OS) data were deleted, finally resulting in a total

of 376 samples for survival analysis. The inclusion criteria of this

study are as follows: 1) primary hepatocellular carcinoma

confirmed by pathology; 2) all patients were available of their

survival data; 3) there was complete data for all the samples. All

data were downloaded from the public databases; hence, it was

not required to obtain additional ethical approval for our study.

A total of 67 necroptosis-related genes were used to perform

analysis. Spearman’s analysis was conducted to identify

necroptosis-related lncRNAs with the identification criteria of

Spearman’s correlation coefficient with an absolute value of >0.
4 and p < 0.001.

Identification of DEGs

The “bioconductor limma” package was applied to identify

differentially expressed genes (DEGs) between cancer and

normal samples, |log2foldchange|>1 and the false discovery

rate (FDR) < 0.05 were the cut-off criteria for DEGs. The

volcano plot was further figured to show the DEGs of TCGA.

The results were presented as heatmap and volcano map.

Identification of prognostic-related
lncRNAs (PRlncRNAs)

Univariate Cox regression analysis was performed on DEGs

of the TCGA cohort to obtain prognostic-related lncRNA

(PRLncRNA). The relationship between PRLncRNA and

necroptosis-related genes was visualized by the “ggalluvial”

package.

Gene ontology (GO) and kyoto
encyclopedia of genes and genomes
(KEGG) analysis

GO and KEGG analyses of PRLncRNAs were performed

by R package “ClusterProfiler.” Enrichment analysis was

conducted by using the functions “enrichGO” and

“enrichKEGG.” The bubble diagram was generated by R

packages “ggplot2,” “enrichplot,” and “GOplot.” The

FDR value of p < 0.05 was considered significantly

enriched terms.

Consensus clustering analysis

Consensus clustering is a resampling-based clustering algorithm,

which quantifies the consensus between several clustering iterations

and provides means to estimate the number of clusters that best fit

data. In this study, data sets were clustered by k-means with k from

two to nine by using the “ConsensusClusterPlus” package. Survival
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analysis between clusters was conducted using the log-rank test and

Kaplan– Meier curve, and these analyses were performed with the

“ggsurvplot” function in the survival R package. Correlations between

clusters and clinical features were performed through the chi-square

test. *p < 0.05, **p < 0.01, and ***p < 0.001.

Construction and validation of the
prognostic risk signature

Least absolute shrinkage and selection operator (LASSO)-

Cox regression analysis of overall survival (OS) with a 10-fold

cross-validation was performed to screen for necroptosis-related

lncRNAs with prognostic values, which may preserve valuable

variables and avoid overfitting and delete highly correlated genes.

The optimal coefficient was determined and the deviance

likelihood was calculated by the “glmnet” package

(Supplementary Figure S3A). The optimal value of the

shrinkage parameter (lambda) was the minimum as selected

by 10-fold cross-validation (Supplementary Figure S3B). The risk

score of each sample was calculated based on the LASSO-Cox

regression co-efficiency through the following formula: Risk

score = β1*Exp1 + β2*Exp2 + βi*Expi, where β represents the

regression coefficient and Exp represents the gene expression

value (Supplementary Table S2).

A total of 370 patients with HCC were randomly divided into

training group (n = 186) and verification group (n = 184) in the ratio

of 1:1. There was no significant difference in clinical covariables,

including age, molecular subtype, grade, TNM stage, and survival

status between the two groups (Table 1). According to the median

risk score, each group was divided into high-risk subgroup and low-

risk subgroup. Univariate Cox regression was used to screen the

prognostic variables significantly related to OS in the training group,

verification group, and the whole cohort. Afterwards, statistically

significant variables were included in multivariate COX regression

analysis. Results were reported as hazard ratio (HR) with 95%

confidence interval (CI). The sensitivity and specificity of the

model for predicting the 1-, 3-, and 5-year survival rates of HCC

TABLE 1 Clinicopathlogical features of high- and low-risk group.

Variables Test cohort Training cohort p Value

Number of patients 190 187

Age ≤65 120 115 0.873

>65 70 71

Unknown 1 0

Gender Female 64 58 0.661

Male 127 128

Grade G1 27 28 0.227

G2 95 85

G3 56 68

G4 10 3

Unknown 3 2

T stage T1 102 83 0.480

T2 43 52

T3 38 43

T4 7 6

Unknown 1 2

M stage M0 139 133 0.931

M1 2 2

unknown 50 51

N stage N0 133 124 0.530

N1 1 3

Unknown 57 59

TNM stage I 98 77 0.412

II 41 46

III 39 47

IV 2 3

unknown 11 13
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patients were evaluated by an ROC curve constructed by the

“timeROC” package. In addition, to further compare the

predictive efficacy of risk scores compared with other clinical

features, we constructed an ROC curve for predicting 3-year OS

in HCC patients and calculated the AUC.

Construction and validation of a predictive
nomogram

Based on the statistically significant factors of multivariate

Cox regression analysis, a prognostic nomogramwas constructed

to predict the survival probability of patients diagnosed with

HCC. Samples with missing entries were removed from this

analysis, a total of 240 patients were included in this analysis, the

overall survival time of 1, 3, and 5 years were used as the end

point. R package “RMS” was used to perform this process, the

predictive accuracy of this model was assessed by employing

concordance index (C-index). The 95% CI = (C-index ± 1.96)

*SE, the predictive accuracy of the proposed model was reflected

by the overlap between the calibration curve and the diagonal.

Tumor immune cells infiltration (TICL) and
correlation analysis between high- and
low-risk subgroups

In order to explore the lncRNAs signature whether plays a

key role in immune infiltration of HCC, we calculated the

abundance of 22 types of infiltrating immune cells in each

sample by CIBERSORT algorithm. The differential infiltration

levels of TICLs between high- and low-risk groups were

calculated by the Wilcox test, violin plots were generated

using the “vioplot” package. Single-sample gene-set

enrichment analysis (ssGSEA) was conducted by the “GSVA”

package. Correlations was analyzed by Spearman’s non-

parametric test. *p < 0.05, **p < 0.01, and ***p < 0.001.

Estimation of tumor immune
microenvironment (TIME)

The immune score and stromal score of each sample were

estimated using the ESTIMATE algorithm by “estimate”

package. Results were presented in violin and boxplot plots,

methods the same as before.

Differential expression of immune
checkpoint molecules between high- and
low-risk subgroups and correlation
analysis

The differential expression of programmed death receptor

1 (PD-1, also known as PDCD1), programmed death ligand 1

(PD-L1, also known as CD274), cytotoxic T lymphocyte

antigen 4 (CTLA-4), and indoleamine-1 (IDO-1) in high-

and low-risk subgroup were analyzed by the Wilcox test.

Spearman’s method was carried out for correlation analysis

between immune checkpoint molecules and risk score. The

“ggExtra” package, “ggplot2″ package, and “ggpubr” package

of R software participated in the production of box chart and

scatter chart.

Gene set enrichment analysis (GSEA)

Gene set “c2.cp. kegg. v7.5.1. symbols. Gmt” (downloaded

from http://www.gsea-msigdb.org/gsea/downloads.jsp) acted

as an input preparation file in GSEA analysis performed by

“clusterprofiler” package (p value cutoff = 0.01 and q value

cutoff = 0.05). |NES| > 1, adjust p-value<0.05 and FDR<0.
25 were considered to be a significant enrichment item.

Enrichment plots were displayed with the “enrichplot”

package.

Evaluation of sorafenib sensitivity in high-
and low-risk subgroups

The R package “pRRophetic” was used for predicting the

semi-inhibitory concentration (IC50) of patients in high- and

low-risk groups treated with sorafenib. The lower the number,

the stronger the binding affinity and the higher the drug

sensitivity.

Cell culture

Human hepatic cell line L-O2 and four humanHCC cell lines

(HepG2 cell, Hep3B, LM3, and Huh7 cells) were flashed frozen in

liquid nitrogen with 2 ml tubes and stored at −80°C. All cell lines

TABLE 2 Details of 58 PRLncRNAs.

Gene Coef

AL031985.3 0.351023768463183

SREBF2-AS1 0.0386144854777114

ZFPM2-AS1 0.0102274968460904

KDM4A-AS1 0.114565023598859

AC026412.3 0.167864746612448

AC145207.5 0.0920876812602594

DUXAP8 0.46617052054734

LINC01224 0.181433562593978

AC099850.4 0.00947324010819726

MKLN1-AS 0.262823244119484
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TABLE 3 q-PCR primer sequence.

Gene HR HR.95 L HR.95H p

AC009005.1 1.17110969344691 1.07429391453767 1.27665054742077 0.000333551251369458

AC018690.1 2.10384322910643 1.43080767874763 3.09346699657856 0.000156073183457983

LUCAT1 1.18189988087072 1.09837739997351 1.27177355291169 7.84559781562504e-06

AL117336.2 1.56655126336053 1.30183152048208 1.88510020085217 2.00524463719125e-06

AC010864.1 5.49638443883633 2.10858881432178 14.3272323623699 0.000490074433174014

AL031985.3 1.83467899783164 1.49647955721917 2.24931039575273 5.29468369207119e-09

SREBF2-AS1 1.45642902550033 1.16706193665077 1.81754321660702 0.000877895411678177

AC034229.4 1.97472355301551 1.40030533397342 2.78477344635196 0.000104567297347242

AC074117.1 1.46708753382555 1.19327667886859 1.80372739199687 0.000276371482958239

THUMPD3-AS1 1.36425983075505 1.16119422832644 1.60283683849706 0.00015843033051424

AC026401.3 1.08418641157238 1.03570125862827 1.13494134070575 0.00053473105754009

AC125437.1 2.5548070290898 1.58555156851862 4.11657311277797 0.000116331481881563

AL049840.4 2.0302971636625 1.36352982623686 3.02311434151197 0.000489306477985457

MED8-AS1 2.38264064141742 1.47164608808717 3.85756906642744 0.000412937020718624

AC131009.1 1.81743270484487 1.39795412601752 2.36278256572658 8.11473526933209e-06

BBOX1-AS1 1.26356802863024 1.10450153968093 1.44554272277225 0.000654722408806783

ZFPM2-AS1 1.09331071475861 1.05267666559006 1.13551326639881 3.90143830862613e-06

ZEB1-AS1 1.45367588907736 1.16714497469377 1.81054936302091 0.000838235675022376

DDX11-AS1 4.30711049547743 2.04855911473802 9.05573126339791 0.000117458622091245

MCM3AP-AS1 8.94040972369425 2.69227895856596 29.688946523618 0.000347151833494758

ZNF337-AS1 2.73367363684378 1.52991790481875 4.88455722312761 0.00068428899137241

AC012073.1 1.40901745291795 1.22743803553936 1.61745858050992 1.10884707035332e-06

LINC01094 2.00660050130517 1.39264200898897 2.89122800105769 0.000186022552058713

LINC01138 1.44794724338591 1.22020644496107 1.71819385833168 2.24120525795787e-05

AC100872.2 1.52447962710877 1.24327474005833 1.86928766312799 5.05641699168209e-05

AL355574.1 1.28242891205497 1.11158436232424 1.47953135202056 0.00064918759120028

KDM4A-AS1 2.86701953213825 1.90687848154453 4.3106055667503 4.14527699473686e-07

AC016394.2 1.57882015234359 1.23080436529767 2.02523905807191 0.000324985331627426

AC026412.3 15.090021090766 4.61045168516158 49.3896806797968 7.24800949113819e-06

AL365203.2 1.13673308566103 1.07468028025401 1.20236886428308 7.6533988362139e-06

AC145207.5 1.76721729739874 1.3628688724496 2.29153151807772 1.74349659249233e-05

AC107068.1 2.10949184257841 1.44055306556969 3.08906068111073 0.000125211421420502

AC012467.2 1.49459418738293 1.18257552681207 1.88893794460693 0.00076932764792714

AC025176.1 2.28280817121522 1.48702718115843 3.50445049868376 0.000160460084632489

DUXAP8 4.37169584194494 2.02781234526238 9.42479938004609 0.000167423690730116

TMCC1-AS1 2.56854719180891 1.77460682269685 3.71768810542686 5.72455165204052e-07

NCK1-DT 1.51326486674367 1.20122630200084 1.90636065253186 0.00043798957870755

LINC01224 1.92867470390563 1.44091805772471 2.58153896645535 1.00747168565781e-05

NRAV 1.23212492752684 1.12566307516838 1.3486556239805 5.97410050681252e-06

AL442125.2 3.83473706827137 2.04401302301756 7.19428311717178 2.82689097369676e-05

AP003392.4 7.36176131533239 2.58151629641687 20.9936810157455 0.000188653499478888

MIR210HG 1.14187648047771 1.06700456384948 1.22200217397766 0.000125916300801374

GHRLOS 3.47983906642121 1.79075574511339 6.76210586576923 0.000234274247349297

AC026356.1 4.01051373646868 2.129621086889 7.55262075935777 1.70265345012451e-05

AC099850.4 1.13959993843801 1.08696785648712 1.19478051897969 6.0760619159702e-08

AC026355.2 2.32443180244038 1.66331751099788 3.24831739488801 7.81777059889033e-07

AL928654.1 1.91049713067697 1.31021936911352 2.78579249579746 0.000768120091986322

POLH-AS1 2.56671257723233 1.7123957107321 3.84724944873056 5.00030914523686e-06

(Continued on following page)
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were cultured in 10% fetal bovine serum (FBS; Invitrogen,

Carlsbad, California, United States) in DMEM medium. All

cell lines grew in a humid environment of 37°C, 5% CO2,

99% relative humidity and did not contain antibiotics. The

cells were subcultured at a ratio of 1:2 or 1:3 when they

reached 80% confluence.

RNA extraction and quantitative real-time
PCR (qRT–PCR)

TRIzol reagent kit (Invitrogen) was used to extract the total

RNA from logarithmic growth cells. cDNA was synthesized

using PrimeScript RT reagent kit (Takara Biotechnology,

Dalian, China). Quantitative real-time PCR analysis was

conducted using TB Green Premix Ex Taq II kit (Takara

Biotechnology, Dalian, China) according to the instructions,

three replicates were set in each well. All operations were

carried out on ice. The 2−ΔΔCt method was used for

quantitative PCR analysis. The primers were designed using

the NCBI primer-BLAST tool (https://www.ncbi.nlm.nih.gov/).

The sequences of primers were showed in supplement Table S3,

ACTB was used as reference genes (Table 2).

Statistical analysis

All bioinformatics analyses were performed by R 4.0.2, p <
0.05 was considered significant in all analysis, unless indicated

otherwise. KM curve and log-rank test were used for survival

analysis. All continuous variables were tested byWilcoxon test or

independent sample t-test, all qualitative data were compared by

chi-square test, all tests were conducted as two-sided tests. Cox

proportional hazard regression analysis was used to determine

the independent predictors of HCC patients. SPSS

(IBMSPSS25.0, SPSS Inc.) and Graphpad prism 8 (GraphPad

Software, SanDiego, CA, United States) were used for statistical

analysis. In vitro experiment, each group repeated at least three

independent experiments (Table 3).

Results

Data acquisition and establishment of co-
expression network

The flow chart of this study is shown in Figure 1. RNA-Seq

data of LIHC samples were downloaded from TGCA database.

TABLE 4 LncRNAs constituting a prognostic model.

Gene Forward primer (5’→39) Reverse primer (5’→39)

ACTB CCTCGCCTTTGCCGATCC CGCGGCGATATCATCATCC

SREBF2-AS1 CAACGGGGATGTAGCCATCA ATCTCTCCGGGATGGAGACC

ZFPM2-AS1 TGGCAGAGTTGCACAGAAGA ACCACTCACACTTTCATCGCT

KDM4A-AS1 GAGGGTGAAAGGAACGTCCA AAGTACTTTGCCAGGTCCCA

AC026412.3 GCGTAGATCCCTTTGGCTCA GACCTCCATTGAAGGGCTCA

AC145207.5 GACTGGCCAAGCATTTGGTG TCTGGCCTACCTTAGGCTACAT

DUXAP8 CACCAGCCTCACTAGCACTC ACACCCGGCCAAGTTCTTTA

LINC01224 ACAGGATTGTTAATCTCATCTTGGA TCAGGTTCTACACAGAGGCA

AL031985.3 ACAACACATCAAGAGGCCCA TTCCCTGCCTGAGTATGGCT

MKLN1-AS TCTCTGAAAGCAGCGCTTGG AGTCCTCAAGGTATGGGGGA

TABLE 3 (Continued) q-PCR primer sequence.

Gene HR HR.95 L HR.95H p

C2orf27A 1.67756319510261 1.35037659748986 2.08402476671623 2.9600669059356e-06

SNHG4 1.47583880290837 1.27644304580875 1.706382575644 1.47410333621925e-07

BACE1-AS 1.21074284838357 1.09643625670793 1.33696622666723 0.000157124984312145

SNHG3 1.06757970081289 1.03740139549618 1.09863590172115 7.83216781994623e-06

AC073611.1 1.48893059282573 1.17720442829988 1.88320248969337 0.000896616489881415

SNHG10 1.29463387153636 1.12504691265138 1.48978397476709 0.000312461913317886

AC107959.3 1.38256463352294 1.15262199806244 1.65837973687959 0.00048225465968827

MKLN1-AS 3.36374917116319 2.23555078410734 5.06130684524757 5.91261812769369e-09

AC006252.1 4.77420311932314 1.95702613952842 11.6467608501372 0.000591250187772917

HMGN3-AS1 2.12745977534335 1.39332694836852 3.24840131815699 0.000472264012528417
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We adopted 67 necroptosis-related genes (FADD, FAS, FASLG,

MLKL, RIPK1, RIPK3, TLR3, TNF, TSC1, TRIM11, CASP8,

ZBP1, MAPK8, IPMK, ITPK1, SIRT3, MYC, TNFRSF1A,

TNFSF10, TNFRSF1B, TRAF2, PANX1, OTULIN, CYLD,

USP22, MAP3K7, SQSTM1, STAT3, DIABLO, DNMT1,

CFLAR, BRAF, AXL, ID1, CDKN2A, HSPA4, BCL2, STUB1,

FLT3, HAT1, SIRT2, SIRT1, PLK1, MPG, BACH2, GATA3,

MYCN, ALK, ATRX, TERT, SLC39A7, SPATA2, RNF31,

IDH1, IDH2, KLF9, HDAC9, HSP90AA1, LEF1, BNIP3,

CD40, BCL2L11, EGFR, DDX58, TARDBP, APP, and

FIGURE 2
(A) Co-expression network between necroptosis-related genes and lncRNAs. (B)Differential expression of DEGs in tumor and adjacent normal
pairs. (C) A volcano map shows DEGs. DEG: differentially expressed genes.
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TNFRSF21) and 14,086 lncRNA (Downloaded from Ensemble

database) in this study. At last, we obtained 1026 necroptosis-

related lncRNAs. We established a co-expression network to

visualize the relationship between necroptosis-related lncRNAs

and 67 necroptosis-related genes (Figure 2A).

Identification of DEGs

In this study, a total of 779 DEGs were obtained through the

calculation by the “limma” package. Because of the excessive

number of genes with significant differences, only the top

FIGURE 3
Identification of PRlncRNAs. (A) Differential expression of PRlncRNAs in tumor and adjacent normal pairs. (B–C) GO and KEGG enrichment
analysis results. PRlncRNAs: prognostic-related lncRNA; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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50 lncRNAs with significant differences are displayed in

Figure 2A. As shown in Figure 2B, most of the DEGs are

highly expressed in HCC and differentially expressed lncRNAs

were shown through volcano plot filtering (Figure 2C).

GO and KEGG analysis of PRlncRNAs

Among 779 DEGs, 58 necroptosis-related lncRNAs

(PRlncRNAs) were obtained by univariate Cox regression

FIGURE 4
Construction and validation of prognostic PRlncRNAs signatures in TCGA cohorts. (A) Risk factor curve, survival status of patients, and heatmap
of the differential expression of 10 PRlncRNAs in the TCGA training cohort. (B) Risk factor curve, survival status of patients, and heatmap of the
differential expression of six PRlncRNAs in the TCGA test cohort. (C–E) Kaplan–Meier survival curves of the TCGA training cohort, internal validation
cohort, and whole cohort.
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analysis (Supplementary Table S1). As shown, PRlncRNAs were

highly expressed in HCC samples (Figure 3A). In order to further

explore the potential biological pathways by which these genes

affect the prognosis of HCC patients, we carried out GO and

KEGG analysis. Biological process (BP), molecular function

(MF), and cellular component (CC) were the three categories

of GO analysis. The biological process analysis revealed that

“organelle fission (GO:0048285),” “nuclear division (GO:

0007088),” “chromosome segregation (GO:0051983),” and

“DNA replication (GO:0033260)” were the most abundant

FIGURE 5
Univariate and multivariate Cox regression model for prognostic risk. (A–C) The univariate and multivariate Cox analysis of patients OS-related
risks in TCGA training cohort, internal validation cohort, and whole cohort. (D) ROC curves of 1, 3, and 5 years based on the 10 PRlncRNAs signatures
in the whole cohort. (E) ROC curves of 1, 2, and 3 years based on the 10 PRlncRNAs signatures in the TCGA whole cohort. (F) ROC curves using
multiscale features. OS: overall survival.
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terms in the BP category. At the level of MF aspect, ATPase (GO:

1904949), small GTPase binding (GO:0031267), and Ras GTPase

binding (GO:0017016) were significantly enriched. The cellular

component (CC) indicated that these genes were predominantly

located in the chromosomal region (GO:0098687), microtubule

(GO:0005874), and spindle (GO:0005819) (Figure 3B). KEGG

FIGURE 6
Comparison of survival of patients by risk signature score within each subgroup.
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analysis showed that PRlncRNAs mainly localized to the Herpes

simplex virus 1 infection pathway (hsa05168), human

papillomavirus (HPV) infection pathway (hsa05165),

coronavirus disease—COVID-19 pathway (hsa05171), viral

carcinogenesis pathway (hsa05203), and cell cycle (hsa04110)

pathway (Figure 3C).

FIGURE 7
Relationship between risk score and clinicopathologic features. (A)Heatmap of relationship between risk scores and clinicopathologic features.
*p < 0.05, **p < 0.01, and ***p < 0.001. (B–C) Distribution of risk scores stratified by grade and cluster. (D) Comparison of risk score distributions
between G1–2 and G3–4. (E) Comparison of risk score distributions between cluster1 and cluster 2.
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Development and validation of prognostic
PRlncRNA signature

To further evaluate the prognostic value of necroptosis-related

lncRNAs, based on 58 candidate PRlncRNAs, we applied LASSO-

COX stepwise regression analysis to screen 10 PRlncRNAs which

were most correlated to the HCC patient’s OS. Based on this, we

constructed a risk signature based on 10 lncRNAs. All samples

were divided into training group (n = 186) and internal verification

group (n = 184) at about a ratio of 1:1 randomly, there were no

significant differences in age, gender, stage, grade, T stage, N stage,

and M stage between the experimental group and the verification

group (Table 1). According to the median of risk score, each group

was then divided into high-risk subgroup and low-risk subgroup.

Through LASSO-Cox stepwise regression analysis, AL031985.3,

SREBF2-AS1, ZFPM2-AS1, KDM4A-AS1, AC026412.3,

AC145207.5, DUXAP8, LINC01224, AC099850.4, MKLN1-AS

were considered to be the best predictors (Table 4). The

coefficient was calculated by LASSO-Cox regression. The risk

score formula was as follows: AL031985.3*0.351023768463183 +

FIGURE 8
Nomogram prognostic model. (A) Nomogram constituting stage and risk score for predicting 3- and 5-year overall survival probability. (B)
Calibration curves for the performance evaluation of the nomogram prognostic model. X-axis: nomogram predicts OS; Y-axis: actual OS. (C) GSEA
results of the high-risk group. (D) GSEA results of the low-risk group. GSEA: Gene Set Enrichment Analysis.
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SREBF2-AS1*0.0386144854777114 + ZFPM2-

AS1*0.0102274968460904 + KDM4A-AS1*0.114565023598859 +

AC026412.3*0.167864746612448 + AC145207.5*0.0920876812602594

+ DUXAP8*0.46617052054734 + LINC01224*0.181433562593978 +

AC099850.4*0.00947324010819726 + MKLN1-

AS*0.262823244119484. Compared with the low-risk

subgroup, the higher the mortality of the HCC patients in the

high-risk group, the shorter the OS. Also, the expression of lncRNAs

was positively correlated with the risk score (Figure 4A,B).

Kaplan–Meier survival analysis showed that the total survival

time of HCC patients in the high-risk group was significantly

shorter than that in the low-risk cohort, both in the training

cohort, validation cohort, and whole cohort (Figure 4C–E),

suggesting that the prognostic risk score is a valuable

predictor of prognosis.

In order to further screen factors that can be seen as

independent prognostic factors to predict OS in patients

with HCC, risk scores combined with common clinical

prognostic factors including age, gender, histological grade,

and pathological stage were included in the univariate Cox

regression analysis. Univariate (HR = 1.31; 95%CI =

1.20–1.43; p < 0.001) and multivariate COX (HR = 1.28;

95% CI = 1.17–1.40; p < 0.001) regression analyses were

conducted in the training cohort, suggesting that

prognostic risk score can be seen as an independent factor

affecting survival in HCC patients (Figure 5A). Furthermore,

risk score and pathological stage were both important

independent prognostic factors for OS in multivariate

regression analyses of internal validation cohort

(Figure 5B) and whole cohort (Figure 5C). In any case, it is

certain that the prognostic risk score based on necroptosis-

related lncRNAs was capable of predicting the OS of HCC

patients independent of other clinical factors.

The ROC curve showed that the area under the receiver

operating curve (AUC) of predicting the OS of 1-, 3-, and 5-year

HCC patients was 0.776, 0.773, and 0.657, respectively

(Figure 5D). Because of the low 5-year survival rate of HCC

patients, we chose to predict the 1- (AUC = 0.776), 2- (AUC =

0.754), and 3-year (AUC = 0.733) OS for further analysis

(Figure 5E). Also, compared with other clinicopathological

features (AUC of 3-year < 0.5), the prognostic risk score

(AUC of 3-year = 0.733) showed a superior prediction ability

(Figure 5F). ROC analysis showed that the accuracy of prognostic

risk score was higher than that of other clinicopathological

features, indicating that our risk signature showed excellent

predictive performance.

Subgroup analysis

In order to prove that the prognostic risk score was not subject to

differences between populations, we conducted subgroup survival

analysis of people with different clinical characteristics, including

population of <65 years old, ≥65 years old, male, female, Grade1–2,

Grade3–4, T1–2 stage, T3–4 stage, N0, and M0 stage. Considering

that the sample size of “M1” and “N1” subgroups was too small to be

representative, the two subgroups have not been further

validated. Because of the majority of TNM staging (AJCC)

focused on the T status, the population of “stage I–II” and

“stage III–IV” was not integrated into the study. In our study,

only four patients had M0 stage disease and four patients with

N0 stage, 233 patients were diagnosed as non-metastasis

(N0M0), and the two subgroups largely overlapped. To

avoid repetitive results, only those patients with M0 disease

were included in the survival analysis in our analysis. It was

worth noting that the OS of the low-risk group was better than

that of the high-risk group (Figure 6). These results suggested

that the suitability of prognostic risk model was not limited by

population differences.

Correlation between clinicopathological
features and risk score

We further analyzed the correlation between

clinicopathological features and prognostic risk score in the

whole cohort. The results showed that risk score is

significantly related to histological grade and clustering

classification (Figure 7A). Furthermore, patients with grade 3/

4 or cluster 1 tend to have higher risk score (Figure 7B–E).

The nomogram system improved the
prognostic risk score model

To establish a quantitative method for predicting the survival

probability of HCC patients, we integrated risk score and

pathological stage to develop a nomogram to predict the survival

probability of the 1-, 3-, and 5-year OS in the TCGA cohort

(Figure 8A). Based on the nomogram, the survival for patients

was predicted by calculating the set points based on each nomogram

score. The performance of the nomogramwas evaluated byHarrell’s

concordance index (C-index). The C-index value for the nomogram

calculated by “coxph” function of the R package “package”was 0.721

(95% CI: 0.656–0.786). Calibration plots suggested that our

nomogram performed well (Figure 8B).

Significant enrichment pathways of high-
and low-risk groups

To explore the potential molecular mechanisms of

prognostic risk signature, Gene Set Enrichment Analysis

(GSEA) was performed in high-risk and low-risk groups,

respectively. The top five significantly enriched pathways were

displayed, GSEA indicated that the high-risk group was highly
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enriched in cell cycle signaling pathway, DNA replication

signaling pathway, tumor signaling pathway, ECM receptor

interaction signaling pathway, and neuroactive ligand receptor

signaling pathway (Figure 8C), whereas the low-risk group was

FIGURE 9
Immune cell infiltration in high- and low-risk groups. (A) The infiltrating levels of 22 immune cell types. (B) Correlation of NK cell level with risk
score. (C) ssGSEA result of immune cell populations. (D) ssGSEA result of immune function. (E) Analysis of tumormicroenvironment in high- and low-
risk groups; Drug sensitivity result. (F) IC50 value of sorafenib in high- and low-risk groups. ssGSEA: Single-sample gene set enrichment analysis;
IC50: Semi-inhibitory concentration.
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mainly enriched in metabolic-related pathways (Figure 8D). In

conclusion, GSEA results showed that high-risk patients

preferred to carcinogenesis, which also provided favorable

evidence for the poorer prognosis of patients in the high-risk

group than the low-risk group.

Analysis of tumor immune
microenvironment and tumor immune
cell infiltration

The relationship between risk score and the infiltration levels

of immune cells was predicted by evaluating the infiltration levels

of 22 immune cells in the high/low risk groups. The results showed

that compared with the low-risk group, the activated natural killer

(NK) cell infiltration in the high-risk group was lower than that in

the low-risk group (Figure 9A). After further analyzing the

correlation between the risk score and NK cell infiltration, we

found a negative correlation between the two (R = − 0.33, p < 0.05,

Figure 9B). At the same time, single sample gene set enrichment

analysis (ssGSEA) was applied to the RNA sequencing data of liver

cancer tissues derived from TCGA to explore the differences of

16 kinds of immune cells and 13 kinds of immune functions in the

high- and low-risk groups. The results showed that the levels of

aDCs and macrophages infiltration in the high-risk group were

significantly higher than those in the low-risk group, the

infiltration levels of mast cells, neutrophils, and NK cells in the

low-risk group were significantly higher than those in the high-risk

group (Figure 9C). In terms of immune function, the scores of

cytolytic activity (CYT), type I interferon response, and type II

interferon response in the low-risk group were significantly higher

than the high-risk group (p < 0.01), whereas the major

histocompatibility antigen complex I score in the high-risk

group was higher than that in the low-risk group (p < 0.01)

(Figure 9D). Tumor microenvironment plays an important role in

the development of tumors, including tumor cells, immune cells,

stromal cells, extracellular matrix and so on. In this study, the

ESTIMATE algorithm was used to quantify the ratio of stromal

cells to immune cells in tumor samples from high- and low-risk

groups. “Stromal score” represents stromal cells in tumor tissue

and “immune Score” represents immune cells in tumor tissue. The

results showed that in the low-risk group, the scores of stromal

cells were significantly higher than immunocytes (Figure 9E).

Although there was no statistical difference in the immune cell

scores between the high-risk group and the low-risk group, the

comprehensive scores of stromal cells and immune cells in the low-

risk group were higher than the high-risk group.

Patients with high risk were insensitive to
sorafenib

To determine whether risk score affected tolerance to

sorafenib treatment and if the screened patients could benefit

FIGURE 10
Association between risk score and immune checkpoint. (A–D) The differential expression of PD-L1, PD-1, CTLA4, and IOD-1 in high- and low-
risk groups. (E–H) Correlation between PD-L1, PD-1, CTLA4, and IOD-1 and risk score were evaluated by Pearson correlation analysis. PD-1:
Programmed Death receptor 1; PD-L1: Programmed Death Ligand 1; CTLA4: Cytotoxic T Lymphocyte Antigen 4; IOD-1: Indoleamine-1.
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from sorafenib treatment, we determined the value of IC50 in

each group. Results suggested that patients with high risk were

less sensitive to sorafenib than patients of the low-risk group

(Figure 9F).

The prognostic model predicted
differential expression of immune
checkpoint

At present, immunotherapy has brought the dawn to liver

cancers. The expression of immune checkpoint molecules is an

important basis for determining whether patients could benefit

from immunotherapy. In this study, we evaluated the expression

levels of four key immune checkpoint molecules in high- and low-

risk groups. As presented in Figure 10A–D, the expressions of PD1,

PD-L1, CTLA4, and IDO-1 in the high-risk group were significantly

higher than the low-risk group. In addition, risk score was positively

associatedwith the expression of PD1 (r = 0.3; p< 0.001), PD-L1 (R =

0.27; p < 0.001), CTLA4 (R = 0.33; p < 0.001), and IDO-1 (r = 0.17;

p < 0.001). The higher the risk score, the higher the expression of

these four immune checkpoints.

The differential expression of PRlncRNAs
in cell lines and HCC tissues

In the preliminary work, a prognostic model based on

10 necroptosis-related lncRNA was constructed, internal

validation method was used to validate this model. Now, we

further verified these results in vitro, seven lncRNAs of the model

were subjected to quantitative reverse transcription PCR (qRT-

PCR). Compared with LO2 cell, the expression levels of seven

lncRNAs in four types of HCC cells were significantly differential

(Figure 11A–G). Based on the TCGA database, we further

verified the expression differences of AL031985.3, SREBF2-

AS1, ZFPM2-AS1, KDM4A-AS1, AC026412.3, AC145207.5,

DUXAP8, LINC01224, AC099850.4, and MKLN1-AS in

normal liver tissue and HCC tissue. As shown in the results,

the expression levels of these 10 lncRNA in liver cancer were

significantly increased compared with normal liver tissue

(Supplementary Figure S1).

Discussion

Liver cancer is one of the most common causes of cancer

death in the world. Most of the HCC cases are formed in the

context of chronic viral liver diseases. Despite the development of

effective antiviral therapy, liver cancer continues to rise. Non-

alcoholic fatty liver disease (NAFLD), alcohol-related liver

disease, and hereditary hemochromatosis are closely related to

the incidence of liver cancer. The global burden of HCC is

increasing, although about 40% of patients with primary

cancer can be diagnosed early due to primary prevention, but

after resection of the radical treatment, both surgery and liver

transplantation, the residual liver is still prone to recurrence. As a

result, almost half of liver cancer patients will eventually receive

systemic treatment. Sorafenib is a kind of tyrosine kinase

approved for patients diagnosed with advanced liver cancer

and recommended as a standard first-line systematic

treatment for patients with Child–Pugh A grade and BCLC-C

(Llovet et al., 2008). In recent years, lenvatinib, the new first-line

targeted drug, has been approved by FDA (Kudo et al., 2018),

regorafenib (Bruix et al., 2017), cabozantinib (Abou-Alfa et al.,

2018), and ramucirumab (Zhu et al., 2019) of the second-line

drugs have been shown to improve clinical prognosis, although

the median survival time is about 1 year. Therefore, we still need

to find a breakthrough in the treatment of advanced liver cancer.

In recent years, the field of immunotherapy has developed

rapidly. Immune checkpoint inhibitors could kill tumors and

prolong the prognosis of patients by awakening the immune

system to produce anti-tumor immune response against

progressive tumors, especially if a significant effect has been

achieved in metastatic melanoma immunotherapy (doi: 10.1016/

S1470-2045(0970334-1), Epub 2009 December 8).

The laboratory test including serum biomarkers,

histochemical biomarkers, and other biomarkers are of great

significance for early diagnosis, treatment decision-making, and

prognosis prediction of HCC patients. Nowadays, AFP, AFP-L3,

and DCP have become the most widely used serum biomarkers

for early diagnosis of liver cancer (Yamamoto et al., 2010). AFP

plays a guide role in the diagnosis of liver cancer, but its

sensitivity and specificity are poor (Tzartzeva et al., 2018). In

recent years, many scholars have devoted themselves to looking

for new potential molecular markers. A previous study found

that TP53 gene mutation is related to vascular invasion, poor

prognosis, angiogenesis, metastasis, and drug resistance

(Calderaro et al., 2017). The high expression of TERT can be

used as an important prognostic index for intrahepatic metastasis

of advanced hepatocellular carcinoma after radical resection (Yu

et al., 2017). Biomarkers are helpful for guiding individualized

targeted therapy, which could improve prognosis. Sorafenib

resistance is frequently encountered in clinical practice, but

there is still lack of suitable and validated biomarkers.

Therefore, development of new biomarkers has important

implications for clinical practice.

Previous studies have shown that RIPK3, RIPK1, and MLKL

are the most important factors involved in necroptotic, playing

important roles during cancer progression (Gong et al., 2019; Tan

et al., 2020; Wu et al., 2020; Martens et al., 2021). It was found that

the downregulated expression of RIPK3 occurs in

M1 macrophages and facilitates tumorigenesis (Wu et al.,

2020). RIPK1 leads to excessive activation of Caspase-8 and

promotes hepatocellular carcinoma progression (Tan et al.,

2020). Necrosome formed by RIPK1, RIPK3 and MLKL
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causing cells are susceptible to necroptosis by enhancing

reactive production of oxygen species (Weinlich et al.,

2017; Gong et al., 2019). In addition, it has been proved

that some drugs inhibited the progression of liver cancer

through PIPK1/PIPK3/MLKL signal. For example, triptolide

(TPL) loaded into MP-LP has been proved to inhibit tumor

growth effectively (Zheng et al., 2021). In summary,

necroptotic affects the occurrence and development of liver

cancer, especially necroptotic-related genes can serve as

potential prognosis predictive biomarkers for HCC patients.

Nowadays, some studies focus on the construction of

prognosis model based on lncRNAs with different

characteristics. For example, ferroptosis-related lncRNAs

were associated with the prognosis and immune landscape

of HCC patients (Xu et al., 2021). A prognostic model

constructed by seven immune-related lncRNAs could be

used as an independent prognostic evaluation index for

HCC patients. Chen G. et al. (2021) identified three

autophagy-associated lncRNAs (MIR210HG, AC099850.3,

and CYTOR) as poor prognostic factors for HCC,

demonstrating a shorter OS in high-risk groups. LncRNA-

related prognostic models have been piled up in the literature,

but there are no researches on necroptotic-related lncRNAs in

HCC. Therefore, we constructed a necroptotic-related

lncRNA prognostic model in this study, aimed to explore

prognostic factors and a novel model to better guide

immunotherapy and optimize patient outcomes.

In this study, we downloaded liver cancer transcriptome data

and clinical data from TCGA database, converted the

transcriptome data into TPM format by R language, and

calculated the expression of each sequenced gene in each

sample. In our study, 58 DEGs affected prognosis were

significantly obtained by univariate Cox regression analysis.

Then, we applied Lasso-Cox method to filter the collinear

factors and obtained 10 candidate lncRNAs (AL031985.3,

SREBF2-AS1, ZFPM2-AS1, KDM4A-AS1, AC026412.3,

AC145207.5, DUXAP8, LINC01224, AC099850.4, and

MKLN1-AS), from which the prognostic risk model was

constructed. All the samples were randomly divided into

experimental group and verification group, then each group

was divided into high-risk subgroup and low-risk

subgroup. By comparing the OS of patients in the high-risk

group and the low-risk group, we found that the patients with

high-risk score exhibited a shorter survival rate. The internal

verification group verified the results again, we concluded that

the risk score is a poor prognostic factor for HCC patients. In the

clinical correlation analysis, risk score was significantly

correlated with histological grade and cluster classification.

ROC analysis further revealed that the risk signature we

constructed could function as a sensitive indicator predicting

FIGURE 11
(A–G) The expression differences of KDM4A-AS1, LINC01224, MKLN1-AS, ZFPM2-AS1, AC145207.5, AL031985.3, and DUXAP8 in normal liver
tissue and HCC tissue.
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1-, 2-, and 3-year survival rates for the HCC patients. At the same

time, we further compared the predictive effectiveness of the

prognostic risk score with other clinical prognostic factors, we

can see that among selected candidate factors, risk score

performed optimally. At the same time, results of multivariate

Cox regression analysis proved that the risk score is an

independent risk factor in predicting the prognosis of HCC

patients. Among all candidate lncRNAs in our model,

AL031985.3 and AC145207.5 have been proved to play an

important role in glycolysis-related prognostic models of liver

cancer (Xia et al., 2021). The value of SREBF2-AS1 in HCC

remains to be confirmed, but a study has found it can be used as

ferroptosis-related lncRNA to predict the prognosis and immune

activity of HCC (Chen Z. A. et al., 2021). ZFPM2-AS1 is highly

expressed in HCC, which promotes the proliferation and

migration of HCC cells by up-regulating hypoxia-inducible

factor (HIP-1a) (Song et al., 2021). KDM4A-AS1 promotes

HCC progression by activating the AKT pathway to promote

the expression of a2KPNA2 (Chen T. et al., 2021). AC145207.5,

as an immune-related lncRNA, could predict tumor immune

infiltration cell and response to immunotherapy in HCC patients

(Zhou et al., 2021). Hu et al. (2020) found that

DUXAP8 promotes varieties of malignant phenotypes in HCC

and resistance to PARP inhibitors by up-regulating FOXM1.

There is growing experimental evidence that LINC01224 plays a

role in promoting tumor progression in melanoma and colon

cancer and shows resistance to radiotherapy (Chen L. et al., 2021;

Cui et al., 2022). MKLN1-AS acts as an endogenous sponge of

miR-654-3p to promote the progression of HCC (Gao et al.,

2020). There is a paucity of studies with AC026412.3 to date,

relevant researches about AC026412.3 need further excavation.

Most of existing studies on the prognosis lncRNAs we obtained

are remaind at the level of prognostic model, there are few studies

have further explored the mechanism of these genes in vivo and

in vitro, hence those lncRNAs may be clinically valuable and are

worth further studied. Hence, the studies of the biological

function and potential mechanism of lncRNAs in liver cancer

are extremely important for the exploration of new therapeutic

targets for liver cancer.

In terms of mechanism, in order to further explain the

mechanism of DEGs, all DEGs were subjected to GO and

KEGG enrichment analyses. Firstly, results revealed that the

biological functions of the majority of the DEGs are closely

related to the process of cell cycle, including organelle division,

mitosis, and chromosome segregation. Secondly, chromosome,

microtubule, and spindle structure were the most dominant

terms in the cellular component. While “ATP enzyme

activity,” “small GTP enzyme binding activity,” and “RASGTP

enzyme binding activity” were the most abundant terms in the

molecular function category. From the above results, it can be

concluded that DEGs play an important role in the process of cell

division. We do know that the occurrence and development of

tumors are usually related to the abnormal accumulation of

genes, these abnormal mutations usually occur when cell cycle

processes were disrupted (Stratton et al., 2009; Suski et al., 2021).

The results of KEGG analysis suggested that DEGs are mainly

enriched in viral infection-related pathways, especially the

pathways of “herpes simplex virus,” “human papillomavirus,”

and “coronavirus-COVID-19,” which have attracted worldwide

attention in the past 3 years. It is well known that hepatitis B virus

infection is a main risk factor of HCC in China (Levrero and

Zucman-Rossi, 2016), so it can be speculated that DEGs may be

involved in the process of “hepatitis B-liver cirrhosis-liver cancer

trilogy.”At present, few people studied the role of other viruses in

the occurrence and development of liver cancer. HPV disrupts

the normal cell cycle and promotes the accumulation of genetic

damage, leading to tumorigenesis (Araldi et al., 2018;

Szymonowicz and Chen, 2020). Previous studies have

confirmed that persistent infection of papillomavirus will lead

to the occurrence of cervical cancer (Araldi et al., 2018). As with

hepatitis B virus, human papillomavirus is a DNA virus, which

integrated into the host genome after invading human body

(Szymonowicz and Chen, 2020). The results of KEGG gave us

new enlightenments: DEGs may be involved in the viral infection

pathways and this process may occur to hepatocarcinogenesis.

Liver is an organ that plays a dual role of metabolism and

immunoregulatory. There are a large number of immune cells in

the liver, including macrophages (Kupffer cells), liver sinusoidal

endothelial cells (LSECs), and natural killer cells (Jenne and

Kubes, 2013), LSECs act as antigen-presenting cells (APCs) along

with Kupffer cells and dendritic cells (DCs) (Thomson and

Knolle, 2010). In addition, the liver contains a large

population of liver-resident lymphocytes, encompassing NK

cells and T cells, exerting innate immune responses against

viruses, intracellular bacteria, tumors, and parasites (Gao

et al., 2008), which play a protective role in the liver by

exerting cytotoxic activity. Tumor microenvironment is a

complex and constant evolution, in addition to stromal cells,

fibroblasts, and endothelial cells, TME also includes innate and

acquired immune cells. Increasing evidence suggests that innate

immune cells and acquired immune cells promote tumor

progression in tumor microenvironment. Studies have shown

that “hot tumors” recognize and attack tumors by abundant

CD4+ and CD8+ tumor infiltrating lymphocytes, which are

generally associated with better prognosis as well as improved

response to ICB (Chen and Mellman, 2017). Therefore, the level

of immune infiltrating cells in tumor microenvironment has

implications for host anti-tumor response and immunotherapy.

In this study, we explored the differences in the level of immune

infiltrating cells between high- and low-risk groups. The level of

NK cells infiltrated in the high-risk group was significantly lower

than that in the low-risk group. By further analyzing the

correlation between the level of NK cell and risk score, it was

found that there was a significant negative correlation. NK cells

are known to play a key role in innate immune surveillance

against tumors. NK cells account for half of the number of liver
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lymphocytes, they are cytotoxic killer cells with the function of

anti-tumor, leading to an efficient antitumor activity mediated by

releasing of cytotoxic granules, TRAIL, and Fas-L (Robinson

et al., 2016). Such studies have shown that exocrine

circUHRF1 inhibits the function of NK cells by degrading

miR-449c-5p and up-regulating the expression of TIM-3,

resulting in drug resistance to anti-PD-1 immunotherapy in

HCC patients (Zhang et al., 2020). In our study, patients with

high risk score to be the lower level of NK cell infiltration.

Therefore, we speculated that patients in the high-risk group

presented with weak immune surveillance ability, triggering the

initiation of cancer in susceptible individuals and be more likely to

develop drug resistance to treatment. Other studies have shown

that approximately 25% ofHCC patients with a high inflammatory

score showed high or moderate levels of lymphocyte infiltration

(Sia et al., 2017). Tumor infiltrating lymphocytes (TILs)

constituted the main component of solid tumor

microenvironment and mediated anti-tumor response (Qin,

2012). However, such cellular response could be dysfunctional

due to the increased CD4+/CD8+ T cells, which leads to immune

tolerance and confers an even poorer prognosis (Fu et al., 2007).

Similar results were observed in our analysis: The infiltration

levels of activated dendritic cells, tumor-associated macrophages,

and Th2 cells in the high-risk group were significantly higher

than the low-risk group, while the infiltration levels of mast cells,

neutrophils, and NK cells in the low-risk group were significantly

higher than the high-risk group. It has been found that

chemotherapy-induced immunogenic cell death results in the

release of stimulators, enhancing DC subsets cross-present

antigen to CD8 + T cells, and thus augmenting CD8 + T cell

responses (Sánchez-Paulete et al., 2017). Moreover, a recent

report showed that the infiltration level of DC is associated

with the ICB-based immunotherapy (Barry et al., 2018). At first,

it is believed that macrophages played an anti-tumor effect. After

years of clinical trials and fundamental studies, it has been

proved that macrophages promote cancer progression in most

of the cases. In a meta-analysis, more than 80% of studies found

that the density of M2 phenotype macrophages is correlated with

poor prognosis (Bingle et al., 2002). Neutrophils reflect the

inflammatory state of the host, which is one of the hallmarks

of cancer (Hanahan andWeinberg, 2011). The high expression of

neutrophils is related to the poor prognosis of several solid

tumors, some researchers believe that neutrophils promote the

occurrence and development of tumors by releasing reactive

oxygen species (ROS) and reactive nitrogen species(RNS)

(Antonio et al., 2015), they also facilitate tumor cell metastasis

by inhibiting function of natural killer and promoting tumor cell

extravasation (Welch et al., 1989; Spiegel et al., 2016). However,

in a prospective clinical study, univariate COX regression

analysis of potential prognostic factors showed that

neutrophils are significantly associated with superior overall

survival in gastric cancer subjects (Caruso et al., 2002). In

conclusion, we evaluated immune cells in the tumor

microenvironment of patients with different risk scores, our

result has important practical implications in predicting

prognosis and therapeutic.

In the course of cancer occurrence and development, with the

evolution of the tumor, tumor cells have acquired a variety of

mechanisms to evade immune surveillance and inhibited anti-

tumor immune response to escape attacks from the host immune

system. Immune checkpoint inhibitors have brought

considerable clinical benefits to patients and promoted the

development of oncology greatly. Despite immune checkpoint

inhibitors for the clinical treatment of cancer has led to durable

responses for some patients, only a small fraction of patient

response to immune checkpoint inhibitors. There are many

factors that are involved in the efficacy of immune checkpoint

inhibitors treatments, including infiltration of cytotoxic T cells

(Van Allen et al., 2015), neoantigen load and mutation frequency

(Snyder et al., 2014), serum PD-L1 levels (Nishino et al., 2017),

and mismatch repair deficiency (Le et al., 2015). Indoleamine

2,3 dioxygenase 1 (IDO1) as an immune checkpoint molecule

converts tryptophan to kynurenine, which is associated with

tumor immunosuppression. In a phase II clinical study, it was

found that most sarcoma cells were infiltrated by IDO1-

expressing M2 macrophages, resulting in a low response to

PD-(L) 1 inhibitor (Munn and Mellor, 2016; Li et al., 2017;

Toulmonde et al., 2018). However, none of these factors are

sufficient to achieve accurate prediction. At present,

identification of immunotherapy biomarkers and regulators

modulating resistance is a critical challenge in this field. In

this study, we analyzed the expression levels of four immune

checkpoint molecules in high- and low-risk groups. The results

showed that the expression of immune checkpoint molecules in

the high-risk group were higher than that in the low-risk

group. High expression of immune checkpoints is usually

associated with immune escape and drug resistance (Peng

et al., 2019; Lv et al., 2021), suggesting that patients in the

high-risk group might be more likely to immune escape and

drug resistance, andmay not be suitable for immunotherapy. The

treatment options of patients with advanced liver cancer are

limited, immunotherapy may bring hope to some patients, but

our study found that patients with high-risk are more likely to

develop drug resistance, which speculated that the prognosis of

patients with high-risk is worse.

In the end, we analyze lncRNA expression in normal hepatic

and HCC cells to verify the accuracy of our model. Our RT-qPCR

data showing that the expressions of seven lncRNAs were

significant different in HCC cells compared to the normal

hepatic cells. All these data suggested that our signature has a

crucial role in HCC development and progression. All in all, this

work has developed a prognostic prediction model for

necroptosis-related lncRNAs by analyzing data from the

TCGA public database, providing references for patients’

prognosis and clinical guidance, the limitations of this study

should be considered. Although results were validated in the
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TCGA cohort, its reliability needs to be further verified in other

independent cohorts. In addition, the ability of the necroptosis-

related lncRNAs improving the efficacy of immunotherapy in

HCC patients has not been proved, we need to further confirm it

by in vivo and in vitro experiments in the future. Secondly,

expression levels of necroptosis-related lncRNAs in biological

specimens have not been clearly validated. Finally, in the future,

we need to further explore the potential mechanism behind the

prognostic model affecting the process of HCC, so as to provide a

new target and therapy for the clinical treatment of HCC,

improving systemic treatment efficacy and thus prolong the

overall survival time of HCC patients.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.

Author contributions

YP and AL contributed to the concept and design of study.

GW and YP performed the experiment and wrote the

manuscript. XQ and YP are responsible for the statistical

analysis. XQ and YP assisted in writing the manuscript. YL,

YZ, and XW revised and checked the manuscript. All authors

read and approved the final manuscript.

Funding

This work was supported by Science and Technology

Program of Guangzhou (NO. 202002030075); and President’s

Fund of Integrated Hospital of Traditional Chinese Medicine

(1202103008).

Acknowledgments

The authors thank all researchers and teams managing the

TCGA, CIBERSORT, and GSEA databases.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abou-Alfa, G. K., Meyer, T., Cheng, A. L., El-Khoueiry, A. B., Rimassa, L., Ryoo, B. Y.,
et al. (2018). Cabozantinib in patients with advanced and progressing hepatocellular
carcinoma. N. Engl. J. Med. 379, 54–63. doi:10.1056/NEJMoa1717002

Antonio, N., Bønnelykke-Behrndtz, M. L., Ward, L. C., Collin, J., Christensen, I.
J., Steiniche, T., et al. (2015). The wound inflammatory response exacerbates growth
of pre-neoplastic cells and progression to cancer. Embo J. 34, 2219–2236. doi:10.
15252/embj.201490147

Araldi, R. P., Sant’ana, T. A., Módolo, D. G., De Melo, T. C., Spadacci-Morena, D.
D., De Cassia Stocco, R., et al. (2018). The human papillomavirus (HPV)-related
cancer biology: An overview. Biomed. Pharmacother. 106, 1537–1556. doi:10.1016/j.
biopha.2018.06.149

Barry, K. C., Hsu, J., Broz, M. L., Cueto, F. J., Binnewies, M., Combes, A. J., et al.
(2018). A natural killer-dendritic cell axis defines checkpoint therapy-responsive
tumor microenvironments. Nat. Med. 24, 1178–1191. doi:10.1038/s41591-018-
0085-8

Bingle, L., Brown, N. J., and Lewis, C. E. (2002). The role of tumour-associated
macrophages in tumour progression: Implications for new anticancer therapies.
J. Pathol. 196, 254–265. doi:10.1002/path.1027

Bruix, J., Qin, S., Merle, P., Granito, A., Huang, Y. H., Bodoky, G., et al. (2017).
Regorafenib for patients with hepatocellular carcinoma who progressed on
sorafenib treatment (RESORCE): A randomised, double-blind, placebo-
controlled, phase 3 trial. Lancet 389, 56–66. doi:10.1016/S0140-6736(16)32453-9

Brunner, A. L., Beck, A. H., Edris, B., Sweeney, R. T., Zhu, S. X., Li, R., et al. (2012).
Transcriptional profiling of long non-coding RNAs and novel transcribed regions
across a diverse panel of archived human cancers. Genome Biol. 13, R75. doi:10.
1186/gb-2012-13-8-r75

Calderaro, J., Couchy, G., Imbeaud, S., Amaddeo, G., Letouzé, E., Blanc, J. F., et al.
(2017). Histological subtypes of hepatocellular carcinoma are related to gene
mutations and molecular tumour classification. J. Hepatol. 67, 727–738. doi:10.
1016/j.jhep.2017.05.014

Caruso, R. A., Bellocco, R., Pagano, M., Bertoli, G., Rigoli, L., Inferrera, C., et al.
(2002). Prognostic value of intratumoral neutrophils in advanced gastric carcinoma
in a high-risk area in northern Italy.Mod. Pathol. 15, 831–837. doi:10.1097/01.MP.
0000020391.98998.6B

Chen, D. S., andMellman, I. (2017). Elements of cancer immunity and the cancer-
immune set point. Nature 541, 321–330. doi:10.1038/nature21349

Chen, G., and Goeddel, D. V. (2002). TNF-R1 signaling: A beautiful pathway.
Science 296, 1634–1635. doi:10.1126/science.1071924

Chen, G., Yang, G., Long, J., Yang, J., Qin, C., Luo, W., et al. (2021a).
Comprehensive analysis of autophagy-associated lncRNAs reveal potential
prognostic prediction in pancreatic cancer. Front. Oncol. 11, 596573. doi:10.
3389/fonc.2021.596573

Chen, L., Chen, W., Zhao, C., and Jiang, Q. (2021b). LINC01224 promotes
colorectal cancer progression by sponging miR-2467. Cancer Manag. Res. 13,
733–742. doi:10.2147/CMAR.S281625

Chen, T., Liu, R., Niu, Y., Mo, H., Wang, H., Lu, Y., et al. (2021c). HIF-1α-
activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma
progression via the miR-411-5p/KPNA2/AKT pathway. Cell. Death Dis. 12, 1152.
doi:10.1038/s41419-021-04449-2

Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., et al. (2016).
Cancer statistics in China, 2015. Ca. Cancer J. Clin. 66, 115–132. doi:10.3322/caac.
21338

Frontiers in Genetics frontiersin.org23

Peng et al. 10.3389/fgene.2022.916024

https://doi.org/10.1056/NEJMoa1717002
https://doi.org/10.15252/embj.201490147
https://doi.org/10.15252/embj.201490147
https://doi.org/10.1016/j.biopha.2018.06.149
https://doi.org/10.1016/j.biopha.2018.06.149
https://doi.org/10.1038/s41591-018-0085-8
https://doi.org/10.1038/s41591-018-0085-8
https://doi.org/10.1002/path.1027
https://doi.org/10.1016/S0140-6736(16)32453-9
https://doi.org/10.1186/gb-2012-13-8-r75
https://doi.org/10.1186/gb-2012-13-8-r75
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1016/j.jhep.2017.05.014
https://doi.org/10.1097/01.MP.0000020391.98998.6B
https://doi.org/10.1097/01.MP.0000020391.98998.6B
https://doi.org/10.1038/nature21349
https://doi.org/10.1126/science.1071924
https://doi.org/10.3389/fonc.2021.596573
https://doi.org/10.3389/fonc.2021.596573
https://doi.org/10.2147/CMAR.S281625
https://doi.org/10.1038/s41419-021-04449-2
https://doi.org/10.3322/caac.21338
https://doi.org/10.3322/caac.21338
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.916024


Chen, Z. A., Tian, H., Yao, D. M., Zhang, Y., Feng, Z. J., Yang, C. J., et al.
(2021d). Identification of a ferroptosis-related signature model including
mRNAs and lncRNAs for predicting prognosis and immune activity in
hepatocellular carcinoma. Front. Oncol. 11, 738477. doi:10.3389/fonc.2021.
738477

Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al.
(2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates
programmed necrosis and virus-induced inflammation. Cell. 137, 1112–1123.
doi:10.1016/j.cell.2009.05.037

Choi, M. E., Price, D. R., Ryter, S. W., and Choi, A. M. K. (2019). Necroptosis: A
crucial pathogenic mediator of human disease. JCI Insight 4, 128834. doi:10.1172/
jci.insight.128834

Christofferson, D. E., Li, Y., and Yuan, J. (2014). Control of life-or-death decisions
by RIP1 kinase. Annu. Rev. Physiol. 76, 129–150. doi:10.1146/annurev-physiol-
021113-170259

Cui, Y., Zheng, Y., Lu, Y., Zhang, M., Yang, L., Li, W., et al. (2022).
LINC01224 facilitates the proliferation and inhibits the radiosensitivity of
melanoma cells through the miR-193a-5p/NR1D2 axis. Kaohsiung J. Med. Sci.
38, 196–206. doi:10.1002/kjm2.12467

Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., et al. (2005).
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for
ischemic brain injury. Nat. Chem. Biol. 1, 112–119. doi:10.1038/nchembio711

El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C.,
et al. (2017). Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation
and expansion trial. Lancet 389, 2492–2502. doi:10.1016/S0140-6736(17)
31046-2

Fang, Y., and Fullwood, M. J. (2016). Roles, functions, and mechanisms of long
non-coding RNAs in cancer. Genomics Proteomics Bioinforma. 14, 42–54. doi:10.
1016/j.gpb.2015.09.006

Finn, R. S., Qin, S., Ikeda, M., Galle, P. R., Ducreux, M., Kim, T. Y., et al. (2020).
Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl.
J. Med. 382, 1894–1905. doi:10.1056/NEJMoa1915745

Fritsch, M., Günther, S. D., Schwarzer, R., Albert, M. C., Schorn, F., Werthenbach,
J. P., et al. (2019). Caspase-8 is the molecular switch for apoptosis, necroptosis and
pyroptosis. Nature 575, 683–687. doi:10.1038/s41586-019-1770-6

Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007). Increased regulatory
T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular
carcinoma patients. Gastroenterology 132, 2328–2339. doi:10.1053/j.gastro.2007.
03.102

Gao, B., Jeong, W. I., and Tian, Z. (2008). Liver: An organ with predominant
innate immunity. Hepatology 47, 729–736. doi:10.1002/hep.22034

Gao, W., Chen, X., Chi, W., and Xue, M. (2020). Long non-coding RNA
MKLN1-AS aggravates hepatocellular carcinoma progression by functioning
as a molecular sponge for miR-654-3p, thereby promoting hepatoma-derived
growth factor expression. Int. J. Mol. Med. 46, 1743–1754. doi:10.3892/ijmm.
2020.4722

Gaur, U., and Aggarwal, B. B. (2003). Regulation of proliferation, survival and
apoptosis by members of the TNF superfamily. Biochem. Pharmacol. 66,
1403–1408. doi:10.1016/s0006-2952(03)00490-8

Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019). The role of
necroptosis in cancer biology and therapy. Mol. Cancer 18, 100. doi:10.1186/
s12943-019-1029-8

Gong, Y. N., Guy, C., Crawford, J. C., and Green, D. R. (2017). Biological events
and molecular signaling following MLKL activation during necroptosis. Cell. Cycle
16, 1748–1760. doi:10.1080/15384101.2017.1371889

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next
generation. Cell. 144, 646–674. doi:10.1016/j.cell.2011.02.013

He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor
interacting protein kinase-3 determines cellular necrotic response to TNF-alpha.
Cell. 137, 1100–1111. doi:10.1016/j.cell.2009.05.021

Hong, Y. P., Li, Z. D., Prasoon, P., and Zhang, Q. (2015). Immunotherapy for
hepatocellular carcinoma: From basic research to clinical use. World J. Hepatol. 7,
980–992. doi:10.4254/wjh.v7.i7.980

Hou, J., Ju, J., Zhang, Z., Zhao, C., Li, Z., Zheng, J., et al. (2019). Discovery of
potent necroptosis inhibitors targeting RIPK1 kinase activity for the treatment of
inflammatory disorder and cancer metastasis. Cell. Death Dis. 10, 493. doi:10.1038/
s41419-019-1735-6

Hsu, H., Xiong, J., and Goeddel, D. V. (1995). The TNF receptor 1-associated
protein TRADD signals cell death and NF-kappa B activation. Cell. 81, 495–504.
doi:10.1016/0092-8674(95)90070-5

Hu, Y., Zhang, X., Zai, H. Y., Jiang, W., Xiao, L., Zhu, Q., et al. (2020). lncRNA
DUXAP8 facilitates multiple malignant phenotypes and resistance to PARP
inhibitor in HCC via upregulating FOXM1. Mol. Ther. Oncolytics 19, 308–322.
doi:10.1016/j.omto.2020.10.010

Jenne, C. N., and Kubes, P. (2013). Immune surveillance by the liver. Nat.
Immunol. 14, 996–1006. doi:10.1038/ni.2691

Jiao, D., Cai, Z., Choksi, S., Ma, D., Choe, M., Kwon, H. J., et al. (2018).
Necroptosis of tumor cells leads to tumor necrosis and promotes tumor
metastasis. Cell. Res. 28, 868–870. doi:10.1038/s41422-018-0058-y

Jin, C., Li, R., Deng, T., Li, J., Yang, Y., Li, H., et al. (2021). Identification and
validation of a prognostic prediction model of m6A regulator-related LncRNAs in
hepatocellular carcinoma. Front. Mol. Biosci. 8, 784553. doi:10.3389/fmolb.2021.
784553

Kudo, M., Finn, R. S., Qin, S., Han, K. H., Ikeda, K., Piscaglia, F., et al. (2018).
Lenvatinib versus sorafenib in first-line treatment of patients with unresectable
hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 391,
1163–1173. doi:10.1016/S0140-6736(18)30207-1

Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D.,
et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl.
J. Med. 372, 2509–2520. doi:10.1056/NEJMoa1500596

Levrero, M., and Zucman-Rossi, J. (2016). Mechanisms of HBV-induced
hepatocellular carcinoma. J. Hepatol. 64, S84–S101. doi:10.1016/j.jhep.2016.02.021

Li, F., Zhang, R., Li, S., and Liu, J. (2017). IDO1: An important immunotherapy
target in cancer treatment. Int. Immunopharmacol. 47, 70–77. doi:10.1016/j.intimp.
2017.03.024

Li, G., Liu, K., and Du, X. (2018). Long non-coding RNA TUG1 promotes
proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p
and upregulating SOX4 expression. Yonsei Med. J. 59, 226–235. doi:10.3349/ymj.
2018.59.2.226

Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., et al.
(2008). Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359,
378–390. doi:10.1056/NEJMoa0708857

Lv, H., Lv, G., Chen, C., Zong, Q., Jiang, G., Ye, D., et al. (2021). NAD(+)
metabolism maintains inducible PD-L1 expression to drive tumor
immune evasion. Cell. Metab. 33, 110–127. e5. doi:10.1016/j.cmet.2020.
10.021

Mak, T. W., and Yeh, W. C. (2002). Signaling for survival and apoptosis in the
immune system. Arthritis Res. 4 (Suppl. 3), S243–S252. doi:10.1186/ar569

Martens, S., Bridelance, J., Roelandt, R., Vandenabeele, P., and Takahashi, N.
(2021). MLKL in cancer: more than a necroptosis regulator. Cell. Death Differ. 28,
1757–1772. doi:10.1038/s41418-021-00785-0

Mccormick, K. D., Ghosh, A., Trivedi, S., Wang, L., Coyne, C. B., Ferris, R. L., et al.
(2016). Innate immune signaling through differential RIPK1 expression promote
tumor progression in head and neck squamous cell carcinoma. Carcinogenesis 37,
522–529. doi:10.1093/carcin/bgw032

Mcglynn, K. A., Petrick, J. L., and London, W. T. (2015). Global epidemiology of
hepatocellular carcinoma: An emphasis on demographic and regional variability.
Clin. Liver Dis. 19, 223–238. doi:10.1016/j.cld.2015.01.001

Micheau, O., and Tschopp, J. (2003). Induction of TNF receptor I-mediated
apoptosis via two sequential signaling complexes. Cell. 114, 181–190. doi:10.1016/
s0092-8674(03)00521-x

Munn, D. H., and Mellor, A. L. (2016). Ido in the tumor microenvironment:
Inflammation, counter-regulation, and tolerance. Trends Immunol. 37, 193–207.
doi:10.1016/j.it.2016.01.002

Nishino, M., Ramaiya, N. H., Hatabu, H., and Hodi, F. S. (2017). Monitoring
immune-checkpoint blockade: response evaluation and biomarker development.
Nat. Rev. Clin. Oncol. 14, 655–668. doi:10.1038/nrclinonc.2017.88

Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics,
2002. Ca. Cancer J. Clin. 55, 74–108. doi:10.3322/canjclin.55.2.74

Peng, S., Wang, R., Zhang, X., Ma, Y., Zhong, L., Li, K., et al. (2019). EGFR-TKI
resistance promotes immune escape in lung cancer via increased PD-L1 expression.
Mol. Cancer 18, 165. doi:10.1186/s12943-019-1073-4

Qin, L. X. (2012). Inflammatory immune responses in tumor microenvironment
and metastasis of hepatocellular carcinoma. Cancer Microenviron. 5, 203–209.
doi:10.1007/s12307-012-0111-1

Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M.,
Matrisian, L. M., et al. (2014). Projecting cancer incidence and deaths to 2030:
the unexpected burden of thyroid, liver, and pancreas cancers in the
United States. Cancer Res. 74, 2913–2921. doi:10.1158/0008-5472.CAN-14-
0155

Frontiers in Genetics frontiersin.org24

Peng et al. 10.3389/fgene.2022.916024

https://doi.org/10.3389/fonc.2021.738477
https://doi.org/10.3389/fonc.2021.738477
https://doi.org/10.1016/j.cell.2009.05.037
https://doi.org/10.1172/jci.insight.128834
https://doi.org/10.1172/jci.insight.128834
https://doi.org/10.1146/annurev-physiol-021113-170259
https://doi.org/10.1146/annurev-physiol-021113-170259
https://doi.org/10.1002/kjm2.12467
https://doi.org/10.1038/nchembio711
https://doi.org/10.1016/S0140-6736(17)31046-2
https://doi.org/10.1016/S0140-6736(17)31046-2
https://doi.org/10.1016/j.gpb.2015.09.006
https://doi.org/10.1016/j.gpb.2015.09.006
https://doi.org/10.1056/NEJMoa1915745
https://doi.org/10.1038/s41586-019-1770-6
https://doi.org/10.1053/j.gastro.2007.03.102
https://doi.org/10.1053/j.gastro.2007.03.102
https://doi.org/10.1002/hep.22034
https://doi.org/10.3892/ijmm.2020.4722
https://doi.org/10.3892/ijmm.2020.4722
https://doi.org/10.1016/s0006-2952(03)00490-8
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1080/15384101.2017.1371889
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2009.05.021
https://doi.org/10.4254/wjh.v7.i7.980
https://doi.org/10.1038/s41419-019-1735-6
https://doi.org/10.1038/s41419-019-1735-6
https://doi.org/10.1016/0092-8674(95)90070-5
https://doi.org/10.1016/j.omto.2020.10.010
https://doi.org/10.1038/ni.2691
https://doi.org/10.1038/s41422-018-0058-y
https://doi.org/10.3389/fmolb.2021.784553
https://doi.org/10.3389/fmolb.2021.784553
https://doi.org/10.1016/S0140-6736(18)30207-1
https://doi.org/10.1056/NEJMoa1500596
https://doi.org/10.1016/j.jhep.2016.02.021
https://doi.org/10.1016/j.intimp.2017.03.024
https://doi.org/10.1016/j.intimp.2017.03.024
https://doi.org/10.3349/ymj.2018.59.2.226
https://doi.org/10.3349/ymj.2018.59.2.226
https://doi.org/10.1056/NEJMoa0708857
https://doi.org/10.1016/j.cmet.2020.10.021
https://doi.org/10.1016/j.cmet.2020.10.021
https://doi.org/10.1186/ar569
https://doi.org/10.1038/s41418-021-00785-0
https://doi.org/10.1093/carcin/bgw032
https://doi.org/10.1016/j.cld.2015.01.001
https://doi.org/10.1016/s0092-8674(03)00521-x
https://doi.org/10.1016/s0092-8674(03)00521-x
https://doi.org/10.1016/j.it.2016.01.002
https://doi.org/10.1038/nrclinonc.2017.88
https://doi.org/10.3322/canjclin.55.2.74
https://doi.org/10.1186/s12943-019-1073-4
https://doi.org/10.1007/s12307-012-0111-1
https://doi.org/10.1158/0008-5472.CAN-14-0155
https://doi.org/10.1158/0008-5472.CAN-14-0155
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.916024


Robinson, M. W., Harmon, C., and O’farrelly, C. (2016). Liver immunology and
its role in inflammation and homeostasis. Cell. Mol. Immunol. 13, 267–276. doi:10.
1038/cmi.2016.3

Sánchez-Paulete, A. R., Teijeira, A., Cueto, F. J., Garasa, S., Pérez-Gracia, J. L.,
Sánchez-Arráez, A., et al. (2017). Antigen cross-presentation and T-cell cross-
priming in cancer immunology and immunotherapy. Ann. Oncol. 28 (12), xii74.
doi:10.1093/annonc/mdx237

Schmitt, A. M., and Chang, H. Y. (2016). Long noncoding RNAs in cancer
pathways. Cancer Cell. 29, 452–463. doi:10.1016/j.ccell.2016.03.010

Seehawer, M., Heinzmann, F., D’artista, L., Harbig, J., Roux, P. F., Hoenicke, L.,
et al. (2018). Necroptosis microenvironment directs lineage commitment in liver
cancer. Nature 562, 69–75. doi:10.1038/s41586-018-0519-y

Si, Y., Yang, Z., Ge, Q., Yu, L., Yao, M., Sun, X., et al. (2019). Long non-coding
RNAMalat1 activated autophagy, hence promoting cell proliferation and inhibiting
apoptosis by sponging miR-101 in colorectal cancer. Cell. Mol. Biol. Lett. 24, 50.
doi:10.1186/s11658-019-0175-8

Sia, D., Jiao, Y., Martinez-Quetglas, I., Kuchuk, O., Villacorta-Martin, C., Castro
De Moura, M., et al. (2017). Identification of an immune-specific class of
hepatocellular carcinoma, based on molecular features. Gastroenterology 153,
812–826. doi:10.1053/j.gastro.2017.06.007

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M.,
Desrichard, A., et al. (2014). Genetic basis for clinical response to CTLA-4
blockade in melanoma. N. Engl. J. Med. 371, 2189–2199. doi:10.1056/
NEJMoa1406498

Song, Y., Jin, X., Liu, Y., Wang, S., Bian, F., Zhao, Q., et al. (2021). Long
noncoding RNA ZFPM2-AS1 promotes the proliferation, migration, and
invasion of hepatocellular carcinoma cells by regulating the miR-576-3p/
HIF-1α axis. Anticancer. Drugs 32, 812–821. doi:10.1097/CAD.
0000000000001070

Spiegel, A., Brooks, M. W., Houshyar, S., Reinhardt, F., Ardolino, M., Fessler, E.,
et al. (2016). Neutrophils suppress intraluminal NK cell-mediated tumor cell
clearance and enhance extravasation of disseminated carcinoma cells. Cancer
Discov. 6, 630–649. doi:10.1158/2159-8290.CD-15-1157

Stratton, M. R., Campbell, P. J., and Futreal, P. A. (2009). The cancer genome.
Nature 458, 719–724. doi:10.1038/nature07943

Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., et al. (2012). Mixed lineage
kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.
Cell. 148, 213–227. doi:10.1016/j.cell.2011.11.031

Suski, J. M., Braun, M., Strmiska, V., and Sicinski, P. (2021). Targeting cell-cycle
machinery in cancer. Cancer Cell. 39, 759–778. doi:10.1016/j.ccell.2021.03.010

Szymonowicz, K. A., and Chen, J. (2020). Biological and clinical aspects of HPV-
related cancers. Cancer Biol. Med. 17, 864–878. doi:10.20892/j.issn.2095-3941.2020.
0370

Tan, S., Zhao, J., Sun, Z., Cao, S., Niu, K., Zhong, Y., et al. (2020). Hepatocyte-
specific TAK1 deficiency drives RIPK1 kinase-dependent inflammation to promote
liver fibrosis and hepatocellular carcinoma. Proc. Natl. Acad. Sci. U. S. A. 117,
14231–14242. doi:10.1073/pnas.2005353117

Teschendorff, A. E., Lee, S. H., Jones, A., Fiegl, H., Kalwa, M., Wagner, W., et al.
(2015). HOTAIR and its surrogate DNA methylation signature indicate
carboplatin resistance in ovarian cancer. Genome Med. 7, 108. doi:10.1186/
s13073-015-0233-4

Thomson, A.W., and Knolle, P. A. (2010). Antigen-presenting cell function in the
tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766. doi:10.1038/
nri2858

Toulmonde, M., Penel, N., Adam, J., Chevreau, C., Blay, J. Y., Le Cesne, A., et al.
(2018). Use of PD-1 targeting, macrophage infiltration, and Ido pathway activation
in sarcomas: A phase 2 clinical trial. JAMA Oncol. 4, 93–97. doi:10.1001/jamaoncol.
2017.1617

Tzartzeva, K., Obi, J., Rich, N. E., Parikh, N. D., Marrero, J. A., Yopp, A., et al.
(2018). Surveillance imaging and alpha fetoprotein for early detection of
hepatocellular carcinoma in patients with cirrhosis: A meta-analysis.
Gastroenterology 154, 1706–1718. doi:10.1053/j.gastro.2018.01.064

Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., et al.
(2015). Genomic correlates of response to CTLA-4 blockade in metastatic
melanoma. Science 350, 207–211. doi:10.1126/science.aad0095

Vandevoorde, V., Haegeman, G., and Fiers, W. (1997). Induced expression of
trimerized intracellular domains of the human tumor necrosis factor (TNF)
p55 receptor elicits TNF effects. J. Cell. Biol. 137, 1627–1638. doi:10.1083/jcb.
137.7.1627

Wallach, D., Arumugam, T. U., Boldin, M. P., Cantarella, G., Ganesh, K. A.,
Goltsev, Y., et al. (2002). How are the regulators regulated? The search for
mechanisms that impose specificity on induction of cell death and NF-kappaB

activation by members of the TNF/NGF receptor family. Arthritis Res. 4 (Suppl. 3),
S189–S196. doi:10.1186/ar585

Wang, C., Qiu, J., Chen, S., Li, Y., Hu, H., Cai, Y., et al. (2021). Prognostic model
and nomogram construction based on autophagy signatures in lower grade glioma.
J. Cell. Physiol. 236, 235–248. doi:10.1002/jcp.29837

Weinlich, R., and Green, D. R. (2014). The two faces of receptor interacting
protein kinase-1. Mol. Cell. 56, 469–480. doi:10.1016/j.molcel.2014.11.001

Weinlich, R., Oberst, A., Beere, H. M., and Green, D. R. (2017). Necroptosis in
development, inflammation and disease. Nat. Rev. Mol. Cell. Biol. 18, 127–136.
doi:10.1038/nrm.2016.149

Welch, D. R., Schissel, D. J., Howrey, R. P., and Aeed, P. A. (1989). Tumor-
elicited polymorphonuclear cells, in contrast to "normal" circulating
polymorphonuclear cells, stimulate invasive and metastatic potentials of
rat mammary adenocarcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 86,
5859–5863. doi:10.1073/pnas.86.15.5859

Wu, L., Zhang, X., Zheng, L., Zhao, H., Yan, G., Zhang, Q., et al. (2020).
RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and
hepatocarcinogenesis. Cancer Immunol. Res. 8, 710–721. doi:10.1158/2326-6066.
CIR-19-0261

Xia, X., Zhang, H., Xia, P., Zhu, Y., Liu, J., Xu, K., et al. (2021). Identification of
glycolysis-related lncRNAs and the novel lncRNA WAC-AS1 promotes glycolysis
and tumor progression in hepatocellular carcinoma. Front. Oncol. 11, 733595.
doi:10.3389/fonc.2021.733595

Xu, Z., Peng, B., Liang, Q., Chen, X., Cai, Y., Zeng, S., et al. (2021). Construction of
a ferroptosis-related nine-lncRNA signature for predicting prognosis and immune
response in hepatocellular carcinoma. Front. Immunol. 12, 719175. doi:10.3389/
fimmu.2021.719175

Yamamoto, K., Imamura, H., Matsuyama, Y., Kume, Y., Ikeda, H., Norman,
G. L., et al. (2010). AFP, AFP-L3, DCP, and GP73 as markers for monitoring
treatment response and recurrence and as surrogate markers of
clinicopathological variables of HCC. J. Gastroenterol. 45, 1272–1282.
doi:10.1007/s00535-010-0278-5

Yu, J. I., Choi, C., Ha, S. Y., Park, C. K., Kang, S. Y., Joh, J. W., et al. (2017). Clinical
importance of TERT overexpression in hepatocellular carcinoma treated with
curative surgical resection in HBV endemic area. Sci. Rep. 7, 12258. doi:10.1038/
s41598-017-12469-2

Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., et al. (2009). RIP3, an
energy metabolism regulator that switches TNF-induced cell death from apoptosis
to necrosis. Science 325, 332–336. doi:10.1126/science.1172308

Zhang, P. F., Gao, C., Huang, X. Y., Lu, J. C., Guo, X. J., Shi, G. M., et al. (2020).
Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and
may cause resistance to anti-PD1 therapy in hepatocellular carcinoma.Mol. Cancer
19, 110. doi:10.1186/s12943-020-01222-5

Zhang, Z., Zhou, C., Chang, Y., Zhang, Z., Hu, Y., Zhang, F., et al. (2016). Long
non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-
catenin pathway to promote growth and metastasis in colorectal cancer. Cancer
Lett. 376, 62–73. doi:10.1016/j.canlet.2016.03.022

Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., et al. (2012). Mixed lineage
kinase domain-like is a key receptor interacting protein 3 downstream component
of TNF-induced necrosis. Proc. Natl. Acad. Sci. U. S. A. 109, 5322–5327. doi:10.
1073/pnas.1200012109

Zheng, Y., Kong, F., Liu, S., Liu, X., Pei, D., Miao, X., et al. (2021). Membrane
protein-chimeric liposome-mediated delivery of triptolide for targeted
hepatocellular carcinoma therapy. Drug Deliv. 28, 2033–2043. doi:10.1080/
10717544.2021.1983072

Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019). Mortality,
morbidity, and risk factors in China and its provinces, 1990-2017: A systematic
analysis for the global burden of disease study 2017. Lancet 394, 1145–1158. doi:10.
1016/S0140-6736(19)30427-1

Zhou, P., Lu, Y., Zhang, Y., and Wang, L. (2021). Construction of an immune-
related six-lncRNA signature to predict the outcomes, immune cell infiltration, and
immunotherapy response in patients with hepatocellular carcinoma. Front. Oncol.
11, 661758. doi:10.3389/fonc.2021.661758

Zhou, X. D., Tang, Z. Y., Yang, B. H., Lin, Z. Y., Ma, Z. C., Ye, S. L., et al. (2001).
Experience of 1000 patients who underwent hepatectomy for small hepatocellular
carcinoma. Cancer 91, 1479–1486. doi:10.1002/1097-0142(20010415)91:8<1479::
aid-cncr1155>3.0.co;2-0
Zhu, A. X., Kang, Y. K., Yen, C. J., Finn, R. S., Galle, P. R., Llovet, J. M., et al.

(2019). Ramucirumab after sorafenib in patients with advanced
hepatocellular carcinoma and increased α-fetoprotein
concentrations (REACH-2): A randomised, double-blind, placebo-
controlled, phase 3 trial. Lancet. Oncol. 20, 282–296. doi:10.1016/S1470-
2045(18)30937-9

Frontiers in Genetics frontiersin.org25

Peng et al. 10.3389/fgene.2022.916024

https://doi.org/10.1038/cmi.2016.3
https://doi.org/10.1038/cmi.2016.3
https://doi.org/10.1093/annonc/mdx237
https://doi.org/10.1016/j.ccell.2016.03.010
https://doi.org/10.1038/s41586-018-0519-y
https://doi.org/10.1186/s11658-019-0175-8
https://doi.org/10.1053/j.gastro.2017.06.007
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1097/CAD.0000000000001070
https://doi.org/10.1097/CAD.0000000000001070
https://doi.org/10.1158/2159-8290.CD-15-1157
https://doi.org/10.1038/nature07943
https://doi.org/10.1016/j.cell.2011.11.031
https://doi.org/10.1016/j.ccell.2021.03.010
https://doi.org/10.20892/j.issn.2095-3941.2020.0370
https://doi.org/10.20892/j.issn.2095-3941.2020.0370
https://doi.org/10.1073/pnas.2005353117
https://doi.org/10.1186/s13073-015-0233-4
https://doi.org/10.1186/s13073-015-0233-4
https://doi.org/10.1038/nri2858
https://doi.org/10.1038/nri2858
https://doi.org/10.1001/jamaoncol.2017.1617
https://doi.org/10.1001/jamaoncol.2017.1617
https://doi.org/10.1053/j.gastro.2018.01.064
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1083/jcb.137.7.1627
https://doi.org/10.1083/jcb.137.7.1627
https://doi.org/10.1186/ar585
https://doi.org/10.1002/jcp.29837
https://doi.org/10.1016/j.molcel.2014.11.001
https://doi.org/10.1038/nrm.2016.149
https://doi.org/10.1073/pnas.86.15.5859
https://doi.org/10.1158/2326-6066.CIR-19-0261
https://doi.org/10.1158/2326-6066.CIR-19-0261
https://doi.org/10.3389/fonc.2021.733595
https://doi.org/10.3389/fimmu.2021.719175
https://doi.org/10.3389/fimmu.2021.719175
https://doi.org/10.1007/s00535-010-0278-5
https://doi.org/10.1038/s41598-017-12469-2
https://doi.org/10.1038/s41598-017-12469-2
https://doi.org/10.1126/science.1172308
https://doi.org/10.1186/s12943-020-01222-5
https://doi.org/10.1016/j.canlet.2016.03.022
https://doi.org/10.1073/pnas.1200012109
https://doi.org/10.1073/pnas.1200012109
https://doi.org/10.1080/10717544.2021.1983072
https://doi.org/10.1080/10717544.2021.1983072
https://doi.org/10.1016/S0140-6736(19)30427-1
https://doi.org/10.1016/S0140-6736(19)30427-1
https://doi.org/10.3389/fonc.2021.661758
https://doi.org/10.1002/1097-0142(20010415)91:8<1479::aid-cncr1155>3.0.co;2-0
https://doi.org/10.1002/1097-0142(20010415)91:8<1479::aid-cncr1155>3.0.co;2-0
https://doi.org/10.1016/S1470-2045(18)30937-9
https://doi.org/10.1016/S1470-2045(18)30937-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.916024

	Construction and validation of a necroptosis-related lncRNAs prognosis signature of hepatocellular carcinoma
	Introduction
	Methods
	Data acquisition and preprocessing
	Identification of DEGs
	Identification of prognostic-related lncRNAs (PRlncRNAs)
	Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis
	Consensus clustering analysis
	Construction and validation of the prognostic risk signature
	Construction and validation of a predictive nomogram
	Tumor immune cells infiltration (TICL) and correlation analysis between high- and low-risk subgroups
	Estimation of tumor immune microenvironment (TIME)
	Differential expression of immune checkpoint molecules between high- and low-risk subgroups and correlation analysis
	Gene set enrichment analysis (GSEA)
	Evaluation of sorafenib sensitivity in high- and low-risk subgroups
	Cell culture
	RNA extraction and quantitative real-time PCR (qRT–PCR)
	Statistical analysis

	Results
	Data acquisition and establishment of co-expression network
	Identification of DEGs
	GO and KEGG analysis of PRlncRNAs
	Development and validation of prognostic PRlncRNA signature
	Subgroup analysis
	Correlation between clinicopathological features and risk score
	The nomogram system improved the prognostic risk score model
	Significant enrichment pathways of high- and low-risk groups
	Analysis of tumor immune microenvironment and tumor immune cell infiltration
	Patients with high risk were insensitive to sorafenib
	The prognostic model predicted differential expression of immune checkpoint
	The differential expression of PRlncRNAs in cell lines and HCC tissues

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


