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ABSTRACT
Background and objective In order for computers
to extract useful information from unstructured text, a
concept normalization system is needed to link relevant
concepts in a text to sources that contain further
information about the concept. Popular concept
normalization tools in the biomedical field are dictionary-
based. In this study we investigate the usefulness of
natural language processing (NLP) as an adjunct to
dictionary-based concept normalization.
Methods We compared the performance of two
biomedical concept normalization systems, MetaMap and
Peregrine, on the Arizona Disease Corpus, with and
without the use of a rule-based NLP module.
Performance was assessed for exact and inexact
boundary matching of the system annotations with those
of the gold standard and for concept identifier matching.
Results Without the NLP module, MetaMap and
Peregrine attained F-scores of 61.0% and 63.9%,
respectively, for exact boundary matching, and 55.1%
and 56.9% for concept identifier matching. With the aid
of the NLP module, the F-scores of MetaMap and
Peregrine improved to 73.3% and 78.0% for boundary
matching, and to 66.2% and 69.8% for concept
identifier matching. For inexact boundary matching,
performances further increased to 85.5% and 85.4%,
and to 73.6% and 73.3% for concept identifier
matching.
Conclusions We have shown the added value of NLP
for the recognition and normalization of diseases with
MetaMap and Peregrine. The NLP module is general and
can be applied in combination with any concept
normalization system. Whether its use for concept types
other than disease is equally advantageous remains to
be investigated.

INTRODUCTION
Most biomedical knowledge comes only in unstruc-
tured form, such as in scientific articles and reports.
The sheer volume of these textual sources requires
computer processing to extract usable information.
An important step in the information extraction
task is the recognition and normalization of rele-
vant concepts in a text.1 Concept or named-entity
recognition aims at finding text strings that refer to
entities, and marking each entity with a semantic
type, like ‘gene’, ‘drug’, or ‘disease’. Concept nor-
malization goes beyond entity recognition. It
assigns a unique identifier to the recognized
concept, which links it to a source that contains
further information about the concept, such as its
definition, its preferred name and synonyms, and
its relationships with other concepts.
Much research has been done in concept recog-

nition, but fewer studies addressed the more

difficult task of concept normalization. Concept
normalization systems are often dictionary-based,
that is, they try to find concept occurrences in a
text by matching text strings with concept names
and their corresponding identifiers in a dictionary.
The dictionary is composed of entries from one or
more knowledge sources, such as Gene Ontology,2

Entrez Gene,3 or the Unified Medical Language
System (UMLS).4 Typically, dictionary-based
systems use little or no linguistic information to
find concepts, and the potential added value of
such information is largely unknown.
In this study, we investigate the usefulness of

natural language processing (NLP) techniques to
improve biomedical concept normalization. We
present a set of rules that utilize NLP information,
and show that these rules substantially improve the
performance of two concept normalization systems,
MetaMap5 and Peregrine,6 in recognizing and nor-
malizing diseases in biomedical text.

BACKGROUND
Compared to the number of named-entity recogni-
tion systems, the number of concept normalization
systems in the biomedical field is small. Reported
systems include MetaMap,5 Mgrep,7 Negfinder,8

Peregrine,6 and Whatizit.9 All of these systems use
a dictionary to find concepts in text and map them
to concept identifiers. Several systems, such as
MetaMap, perform some lexical analysis in the
normalization process, but part-of-speech (POS)
and chunking information are mostly not
considered.
Concept normalization is generally considered a

more difficult task than concept recognition. This
is reflected in the variety of named-entity recogni-
tion challenges in the biomedical domain, for
example, BioCreative10 and BioNLP11 (recognition
of proteins and genes in scientific literature), and
TREC12 and i2b213 (drugs, diseases, and treatments
in electronic patient records), whereas normaliza-
tion challenges have been few. Substantial work on
gene normalization has been done in a series of
gene normalization tasks that were part of the
BioCreative competitions.14–16 In BioCreative I and
II, the gene normalization task consisted of finding
the identifiers of genes and gene products men-
tioned in sets of abstracts from four model organ-
isms: yeast, fly, mouse (BioCreative I), and human
(BioCreative II). In the gene normalization task in
BioCreative III, systems had to assign identifiers to
all named genes in full-text articles without being
limited to a particular organism. For all tasks,
unique gene identifiers had to be provided at the
document level, rather than for individual gene
mentions. The different systems participating in
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these challenges used a wide variety of methods, including
pattern matching, machine learning, and lexical resources
lookup.14–16 Heuristic rules were mostly developed and imple-
mented in an ad-hoc and custom manner. Hybrid use of rule-
based and machine learning methods was observed in system
descriptions.15 16 For example, GNAT,17 the top-performing
gene normalization system in BioCreative II, combines diction-
ary matching and machine learning to recognize gene mentions;
the machine-learning component of such programs requires a
subsequent step to match predicted mentions to identifiers. In
the next steps, recognized gene names are validated by means of
several dedicated filters to remove false positives, while ambigu-
ous mentions are disambiguated by comparing the current text
with several sources of background information existing for
each candidate gene. Another example of a high-performance
gene normalization system is GeNo.18 This system also com-
bines dictionary-based and machine-learning based gene name
detection, using approximate string matching to link gene men-
tions with dictionary identifiers. It employs automatic term
variant generation and false positive filtering. The system fully
relies on publicly available data and resources. GeNo did not
participate in BioCreative, but was shown to have a perform-
ance on par with GNAT. Another top-ranking system in
BioCreative I and II was the proprietary ProMiner gene normal-
ization system.19 ProMiner employs a strictly dictionary-based
approach, relying on well-curated dictionaries and approximate
string matching.

Species name recognition is an important subtask in many
systems participating in the BioCreative III challenge. Some of
the systems employed LINNAEUS, an open source species nor-
malization system.20 LINNAEUS follows a dictionary-based
approach, using a time-efficient implementation of regular
expressions for document tagging. Post-processing includes
acronym detection, filtering of common words, and
disambiguation.

Many algorithms and methods have been proposed to solve
common problems encountered in concept recognition and
concept normalization tasks.21 For instance, to solve the
problem of gene mention coordination, multiple conditional
random fields (CRFs) and n-gram language models were used.22

CRFs were also used in another study to decompose complex
coordinated entity expressions into constituent conjuncts, to
determine the missing elements, and thus to reconstruct expli-
citly all the single named entity mentions.23 Rule-based proce-
dures for resolving simple conjunctions of gene mentions have
also been used.17 24 25 Many papers addressed the problem of
abbreviation detection and expansion.26–29 Proposed approaches
range from simple rule-based algorithms to sophisticated
machine-learning methods. Term variation is another common
problem that concept normalization systems have to deal with.
Methods that have been proposed include approximate string
matching, heuristic pattern matching rules, enhanced dictionar-
ies, etc.30–32 Finally, a common problem addressed in many
systems is the removal of false-positive mentions that result
from the recognition stage. One often used approach is to filter
out terms that have an ambiguous meaning in common
English,33 but more sophisticated methods (eg, scoring the simi-
larity between the semantic profile of a concept and the docu-
ment in which it occurs18) have also been proposed.

There are only a few corpora in the biomedical domain that
incorporate concept annotations, notably the Arizona Disease
Corpus (AZDC),34 the BioCreative gene normalization
corpora,14–16 the Colorado Richly Annotated Full-Text
Corpus,35 and the Gene Regulation Event Corpus.36 Among

these, AZDC is the only one that includes information about
concept boundaries and UMLS concept identifiers, and that is
publicly available. Based on the AZDC corpus, very recently the
larger NCBI (National Center for Biotechnology Information)
corpus was developed,37 but this corpus only contains annota-
tions of disease mentions, not concept identifiers. Therefore, we
used AZDC as the gold standard corpus (GSC) for our
experiments.

The AZDC was used before by Leaman et al34 to test the per-
formance of one dictionary-based system and two statistical
systems (BANNER34 and JNET38). The dictionary-based system
yielded an F-score of 62.2%, while BANNER and JNET
achieved F-scores of 77.9% and 77.2%, respectively.
Chowdhury and Faisal39 developed another machine-learning
based system, BNER, and tested it on the same corpus, achiev-
ing an F-score of 81.1%. Both these studies were targeted at
concept recognition, not at concept normalization.

METHODS
Corpus
The AZDC has been developed at the Arizona State University.
It was released in 2009.34 The corpus has been annotated with
disease concepts, including UMLS codes, preferred concept
names, and start and end points of disease mentions inside the
sentences. The whole corpus consists of 2784 sentences, taken
from 793 Medline abstracts, and 3455 disease annotations.
Annotations have been mapped to a concept unique identifier
(CUI) in the UMLS metathesaurus. Each annotation belongs to
one of the following semantic types defined in the UMLS:
disease or syndrome, neoplastic process, congenital abnormality,
acquired abnormality, experimental model of disease, injury or
poisoning, mental or behavioral dysfunction, pathological func-
tion, sign or symptom.

We divided the corpus into two parts: one-third of the sen-
tences were used for developing the NLP module, the other
two-thirds for testing.

Concept normalization systems
We evaluated two concept normalization systems, MetaMap and
Peregrine. Both systems were downloaded from their official
websites with default configurations and parameters, and no
attempt was made to optimize their performance.

MetaMap (http://metamap.nlm.nih.gov/) is a dictionary-based
system for normalizing concepts from the UMLS metathesaurus
in biomedical texts.5 It makes use of a minimal-commitment
parser, which splits texts into chunks in which concepts are
identified. MetaMap also performs word-sense disambiguation
(WSD). MetaMap is dictionary-based and cannot be trained.
MetaMap Transfer (MMTx) is a distributable version of
MetaMap written in Java. We used the 2011 version, which
includes V.2011AA of the UMLS metathesaurus.

Peregrine (https://trac.nbic.nl/data-mining/) is a dictionary-
based concept recognition and normalization tool, developed at
the Erasmus University Medical Center (http://www.
biosemantics.org). Peregrine finds concepts by dictionary
look-up, and performs WSD.6 Rewrite and suppression rules
are applied to the terms in the dictionary to enhance precision
and recall.40 In our experiments, we used Peregrine with
V.2011AB of the UMLS metathesaurus.

NLP module
The NLP module that we have developed consists of a
number of rules that combine the annotations of a concept
normalization system with POS and chunking information. We
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used the OpenNLP tool suit (http://opennlp.apache.org/) to
obtain the necessary POS and chunking information. The
OpenNLP tool suit is based on a maximum entropy model.
An OpenNLP Unstructured Information Management
Architecture (UIMA) wrapper has been developed by JULIE
Lab (http://www.julielab.de). The wrapper divides the
OpenNLP package into small modules that perform sentence
detection, tokenization, POS tagging, and chunking, which
makes it easy to configure the pipeline for different pur-
poses.41 The rules in the NLP module are divided into five
submodules, which address specific tasks and are described in
the following. A detailed description of the rules is available
as online supplementary material.
1. Coordination. This submodule performs coordination reso-

lution. The approach is straightforward and extends the one
described by Baumgartner et al.24 For instance, in the fol-
lowing sentence from the AZDC: ‘We calculated age related
risks of all, colorectal, endometrial, and ovarian cancers in
nt943+3 A–T MSH2 mutation carriers (…)’, MetaMap and
Peregrine both recognize ‘ovarian cancers’ as a concept, but
miss ‘colorectal cancers’ and ‘endometrial cancers’. Using
POS and chunking information, this module reformats the
coordination phrase and feeds the reformatted text into the
concept normalization systems for proper annotation of the
concepts.

2. Abbreviation. This submodule combines the abbreviation
expansion algorithm of Schwartz and Hearst,26 with POS
and chunking information to improve the recognition of
abbreviations. We chose the Schwartz and Hearst algorithm
because it is very easy to implement and to combine with
other rules, and has shown consistently good performance
in different studies.24 25 For an instance of abbreviation
errors, in the sentence ‘Deficiency of aspartylglucosamini-
dase AGA causes a lysosomal storage disorder
Aspartylglucosaminuria AGU’, the concept normalization
systems annotated ‘Deficiency of aspartylglucosaminidase’
and ‘Aspartylglucosaminuria’ as disease concepts, in agree-
ment with the gold standard annotations, but they did not
recognize the abbreviations. Since ‘AGA’ is used as the abbre-
viation of ‘aspartylglucosaminidase’, an enzyme, it should
not be annotated as a disease concept, but ‘AGU’ should be
identified as such. This was accomplished by means of a rule
that checks whether the last noun in a noun phrase is an
abbreviation of all preceding tokens in the noun phrase.

3. Term variation. Dictionary-based systems can only find con-
cepts if the terms by which these concepts are denoted in
text are part of the dictionary. Although UMLS covers some
term variation, many variations are missing. The submodule
in question uses a shallow parsing based approach, similar to
Ferrucci et al.42 It contains a number of rules that adjust
noun phrases and feed the adjusted phrase into the concept
normalization system again, to check whether it refers to a
concept. For instance, if a noun phrase includes a prepos-
ition, such as ‘deficiency of hex A’, which is not part of the
UMLS, the word order is changed into ‘hex A deficiency’,
which is contained in the UMLS.

4. Boundary correction. This submodule contains several rules
that correct the start and end positions of concepts identified
by the systems, based on POS and chunking information.
For instance, if the POS of the start or end token from a
concept annotation is a verb, preposition, conjunction, or
interjection, it then uses POS information to adjust the
concept start or end position. By applying these rules, an
erroneous annotation such as ‘phenylketonuria Is’, contrived

from ‘classical phenylketonuria is an autosomal recessive
disease’, could be corrected to ‘phenylketonuria’.

5. Filtering. This submodule has two rules that suppress con-
cepts although they had been identified by the system. The
first rule removes a concept if the concept annotation in the
text has no overlap with a noun phrase because in our
experience, most UMLS concepts in biomedical abstracts
belong to a noun phrase, or at least overlap with it. The
second rule removes a concept if it is part of a concept filter
list, a common approach to increase precision as used by
many systems in the BioCreative competitions.14–16 Our list
contains 23 generic concepts (eg, ‘disease’, ‘abnormality’)
that were wrongly annotated by Peregrine in the training set.
The rules in the NLP module were developed on the basis of

an error analysis of the Peregrine annotations of the training set.
The annotations of MetaMap were not used for this
development.

Performance evaluation
The annotations of the concept normalization systems were
compared with the gold standard annotations by exact and
inexact matching, both of the concept boundaries (following
the same procedure as in Leaman et al34 and Chowdhury and
Faisal39) and of the concept identifiers. For exact boundary
matching, an annotation was counted as true positive if it was
identical to the gold standard annotation, that is, if both annota-
tions had the same start and end location in the corpus. If a
gold-standard annotation was not given, or not rendered exactly
by the system, it was counted as false negative; if an annotation
found by the system did not exactly match the gold standard, it
was counted as false positive. For concept identifier matching,
the same rules applied as for exact boundary matching, with the
additional requirement that for a true positive outcome the
concept identifiers had to match; if not, the annotations were
counted as false positive as well as false negative. Performance
was evaluated in terms of precision, recall, and F-score.

The performance of the systems was also tested by using two
methods of inexact boundary matching: one-side boundary
matching (ie, at least one boundary of the system annotation
had to match the gold standard annotation) and overlap match-
ing (ie, at least one word of the system annotation had to
overlap with the corpus annotation). Inexact concept identifier
matching followed the same rules as inexact boundary matching,
but in addition required the concept identifiers to match.

An error analysis was carried out on a sample of 100 ran-
domly selected errors that were made by each concept normal-
ization system after applying the NLP module. Errors were
grouped into five categories, following the task categorization of
the five NLP submodules.

Processing pipeline
All systems and the NLP module were integrated in the UIMA
framework,43 which was easily accomplished since they either
were available as a UIMA component41 or had a web service
interface. A UIMA processing pipeline was implemented, which
first read the AZDC test set by the UIMA Collection Reader.
Then the test set was annotated by MetaMap and Peregrine.
Because the AZDC includes nine UMLS semantic types, only
the annotated concepts belonging to these types were consid-
ered for evaluation. Subsequently, the NLP submodules post-
processed the annotation results. Some rules, such as the coord-
ination rules, not only processed the annotations but also modi-
fied the original input sentence. The modified text was then fed
into the concept normalization systems for re-annotation.
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Finally, the system annotations before and after post-processing
by the NLP submodules were evaluated separately against the
gold standard annotations.

RESULTS
Performance of the concept normalization systems without
and with NLP
shows the Tables 1 performance of the two concept normaliza-
tion systems on the AZDC test set. Without the NLP module,
MetaMap achieved an F-score of 61.0% for exact boundary
matching, and 55.1% for concept identifier matching. The
F-scores of Peregrine were 63.9% for exact boundary matching
and 56.9% for concept identifier matching. With the aid of the
NLP module, the F-scores of MetaMap and Peregrine increased
by 12.3 and 14.1 percentage points, respectively, for exact
boundary matching, and by 11.1 and 12.9 percentage points for
concept identifier matching. For both MetaMap and Peregrine,
there is a larger increase in precision than in recall (table 1).

For inexact, one-side boundary matching, MetaMap and
Peregrine, without the NLP module, reached F-scores of 79.5%
and 77.7%, respectively (table 1). With the NLP module, these
F-scores increased to 85.5% and 85.4%. The performances for
concept identifier matching increased from 65.3% to 73.6%
and from 64.9% to 73.3%, respectively. The F-scores for
overlap matching showed only minimal improvement (<1 per-
centage point, data not shown).

Performance of NLP submodules
Tables 2 shows the incremental performance improvement for
the various NLP submodules, based on exact boundary match-
ing. The baseline was the performance of MetaMap and

Peregrine without any submodules. The coordination module,
abbreviation module, and boundary correction module each
contributed 3.0–3.5 percentage points to the betterment of per-
formance. The smallest contribution to raising the F-score was
by the filtering module, with the two rules in this module
equally contributing to the performance improvement.

Error analysis
We randomly selected 100 errors that MetaMap and Peregrine,
together with the NLP module, each made on the test set, and
manually classified them into different error types (Tables 3).
The error profiles of MetaMap and Peregrine were very similar.
The majority of errors were due to term variation and boundary
errors. For instance, the term ‘α-Gal A deficiency’, referring to
the concept ‘α-galactosidase deficiency’, was not found as the
term does not occur in UMLS. Boundary errors mainly occurred
because of nested annotations in the gold standard. For
example, in ‘Therefore, we screened eight familial gastric cancer
kindreds of British and Irish origin (...)’, both ‘familial gastric
cancer’ and ‘gastric cancer’ were annotated in the gold standard,
whereas the systems only annotated ‘gastric cancer’. Filtering
errors were mainly due to concepts that were inconsistently
annotated by the gold standard. For example, in ‘Because of the
variable expression of nm23-H1 in different tumors (...)’,
‘tumors’ was annotated by the gold standard, but it was not in
‘In neuroblastoma, higher levels of p19/nm23 (...) were
observed in advanced stage tumors compared with limited stage
disease’. Coordination and abbreviation errors were relatively
few. For example, in the sentence ‘the majority of familial
breast/ovarian cancer’, the gold standard annotated ‘familial
breast cancer’ and ‘familial ovarian cancer’, whereas the coord-
ination module recognized ‘breast cancer’ and ‘ovarian cancer’
but failed to include ‘familial’. An abbreviation error occurred
in the sentence ‘One of five PWS/AS patients analyzed to date
has an identifiable, rearranged HERC2 transcript derived from
the deletion event.’ The systems did not annotate ‘PWS’
(Prader–Willi syndrome) and ‘AS’ (Angelman syndrome), which

Table 1 Performance (in %) of MetaMap and Peregrine, with and without the NLP module, on the AZDC test set for exact and inexact
matching of concept boundaries and identifiers

System

Exact matching Inexact matching

Boundaries Identifiers Boundaries Identifiers

Precision Recall F-score Precision Recall F-score Precision Recall F-score Precision Recall F-score

MetaMap 60.9 61.1 61.0 55.0 55.2 55.1 79.3 79.7 79.5 65.1 65.5 65.3
MetaMap+NLP 76.1 70.7 73.3 68.7 63.9 66.2 89.1 82.2 85.5 76.1 71.3 73.6
Peregrine 63.5 64.3 63.9 56.6 57.3 56.9 77.1 78.4 77.7 64.6 65.3 64.9
Peregrine+NLP 82.2 74.2 78.0 73.5 66.4 69.8 89.6 81.6 85.4 76.7 70.2 73.3

AZDC, Arizona Disease Corpus; NLP, natural language processing.

Table 2 Performance (in %) of MetaMap and Peregrine with
incremental contributions of the NLP submodules on the AZDC test
set for exact boundary matching

NLP
submodules

MetaMap Peregrine

Precision Recall F-score Precision Recall F-score

Baseline 60.9 61.1 61.0 63.5 64.3 63.9
+Coordination 63.4 64.4 64.0 67.5 67.0 67.2
+Abbreviation 66.7 67.7 67.2 70.7 70.8 70.7
+Term
variation

68.9 69.3 69.1 74.3 71.8 73.0

+Boundary
correction

73.7 70.7 72.2 78.8 74.2 76.4

+Filtering 76.1 70.7 73.3 82.2 74.2 78.0

AZDC, Arizona Disease Corpus; NLP, natural language processing.

Table 3 Distribution across five error types of 100 randomly
selected errors of each system on the AZDC test set

System Coordination Abbreviation
Term
variation Boundary Filtering

MetaMap
+NLP

12 13 28 24 23

Peregrine
+NLP

11 14 28 26 21

AZDC, Arizona Disease Corpus; NLP, natural language processing.
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had been defined (and correctly annotated) in a preceding
sentence.

DISCUSSION
We have investigated the use of NLP to improve the perform-
ance of two concept normalization systems. By applying a set of
post-processing rules that utilize POS and chunking information,
the F-scores of MetaMap and Peregrine on AZDC improved by
12.3 and 14.1 percentage points, respectively, for exact bound-
ary matching, and by 11.1 and 12.9 percentage points, respect-
ively, for concept identifier matching. For inexact matching, the
improvement was smaller but still in the order of 6–8 percent-
age points. To our knowledge, this is the first study that assesses
the performance of systems in normalizing disease concepts.

Concept recognition performed substantially better than
concept normalization, even if the boundaries matched exactly.
This may partially be explained by the fact that the systems
assigned the wrong CUI to ambiguous terms. However, on
closer inspection it turned out that the gold-standard annotators
often took into account the context in which a term was used
and assigned a more specific CUI than the systems. For instance,
in the sentence ‘A DNA-based test for the HFE gene is commer-
cially available, but its place in the diagnosis of hemochroma-
tosis is still being evaluated’, the systems assigned the concept
‘hemochromatosis’ (C0018995), whereas the GSC annotated
the concept ‘hereditary hemochromatosis’ (C0392514). It
should be noted that ‘hemochromatosis’ is not part of the list of
terms in the UMLS corresponding with the concept C0392514.
Thus, this concept is not even considered by the disambiguation
algorithms of the systems. Knowledge-based disambiguation
approaches that can take into account the concept relationships
defined in the UMLS may be able to solve these disambiguation
problems.

Usage of the NLP module gives a larger increase in precision
than in recall (cf. table 1), even though most rules are aimed at
finding missed concepts. This can partly be explained by the fil-
tering submodule, which by its nature can only improve preci-
sion, but also some of the other submodules improve precision
more than recall. The reason is that if a rule finds a missed
concept it often suppresses one or more erroneous concepts
that were initially found by the system, thus improving
precision.

Peregrine gave a slightly better performance than MetaMap
when exact matching was used for evaluation, but for inexact
matching the performances were similar, both for concept recog-
nition and for concept identification. The two systems used dif-
ferent UMLS versions (2011AA and 2011AB), but the
differences between these versions are very small and unlikely to
be the cause of performance differences. Since the NLP module
was developed on the basis of the errors made by Peregrine, one
might suspect a performance bias in favor of this system in com-
bination with the NLP module. However, when we determined
the performance on the training set, the F-score turned out to be
only 1.9 percentage points higher than on the test set, indicating
hardly any overtraining. For MetaMap, this difference was 1.7
percentage points. With the use of the NLP module, Peregrine
and MetaMap showed a comparable gain in performance.

Many of the rules in our NLP module have not been used
before in their specific form, but similar rules have previously
been proposed in many different studies. The combination of
different types of rules in one system, showing the contribution
of each submodule to total performance, and their application
to disease normalization, a task which has not been addressed

before, is novel in our study. The submodules are general and
may be combined, as a whole or separately, with other concept
normalization systems.

In developing the NLP module, we manually constructed
rules and did not use machine-learning techniques, as did pre-
vious studies that used the AZDC for system development and
evaluation.34 39 These machine-learning based systems achieved
comparable or slightly better performance for concept recogni-
tion as our rule-based systems, but did not address the normal-
ization task. Moreover, we believe our approach offers several
benefits. First, machine-learning based systems are often not
transparent, whereas the man-made rules are comprehensible.
This is likely to ease error detection and correction, incremen-
tal rule improvement, and adaptation to other domains. Also,
the rules combine input from heterogeneous systems in a very
flexible way, which may be more difficult to achieve by
machine learning methods that have a fixed knowledge repre-
sentation model. Furthermore, machine learning methods
require sufficiently large GSCs for training. Although this
requirement apparently was met in the case of AZDC, this
may not be true for other application areas. We also need a
GSC for developing our rules, but the size can be relatively
small because human experts also bring in background knowl-
edge that can compensate for scarce data. Finally, although we
did not put it to the test, it is conceivable that machine-
learning based concept recognition may still benefit from our
NLP module because it may capture patterns not well handled
by machine learning. Whether this would also translate into
better concept normalization would also depend on the nor-
malization step that needs to follow machine-learning based
concept recognition.

The error analysis indicated that about half of the errors that
remain after applying the NLP module can be denoted as term
variation and filtering errors. While further improvement of the
submodules dealing with these errors may be possible, it is more
likely that improved dictionaries and disambiguation methods
will help to reduce these types of errors. In this respect, further
work on the generation of term variants would be useful. We
also noticed that shallow parsing sometimes provides insufficient
information to resolve errors in complex sentences. Such infor-
mation may possibly derive from deep parsing, but exploring
the usefulness of these techniques for our purposes will be left
to future research.

We have shown the added value of the NLP module for the
recognition and normalization of diseases with MetaMap and
Peregrine. The module is general and can be applied in combin-
ation with any concept normalization system. Whether its use
for the normalization of other concept types, such as genes or
drugs, is equally advantageous still remains to be investigated.
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