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Surveillance is critical in containing globally increasing antimicro-
bial resistance (AMR). Affordable methodologies to prioritize AMR
surveillance efforts are urgently needed, especially in low- and
middle-income countries (LMICs), where resources are limited.
While socioeconomic characteristics correlate with clinical AMR
prevalence, this correlation has not yet been used to estimate
AMR prevalence in countries lacking surveillance. We captured
the statistical relationship between AMR prevalence and socioeco-
nomic characteristics in a suite of beta-binomial principal compo-
nent regression models for nine pathogens resistant to 19 (classes
of) antibiotics. Prevalence data from ResistanceMap were com-
bined with socioeconomic profiles constructed from 5,595 World
Bank indicators. Cross-validated models were used to estimate
clinical AMR prevalence and temporal trends for countries lacking
data. Our approach provides robust estimates of clinical AMR prev-
alence in LMICs for most priority pathogens (cross-validated q2 >
0.78 for six out of nine pathogens). By supplementing surveillance
data, 87% of all countries worldwide, which represent 99% of the
global population, are now informed. Depending on priority path-
ogen, our estimates benefit 2.1 to 4.9 billion people living in coun-
tries with currently insufficient diagnostic capacity. By estimating
AMR prevalence worldwide, our approach allows for a data-driven
prioritization of surveillance efforts. For carbapenem-resistant
Acinetobacter baumannii and third-generation cephalosporin-resistant
Escherichia coli, specific countries of interest are located in the Mid-
dle East, based on the magnitude of estimates; sub-Saharan Africa,
based on the relative prevalence increase over 1998 to 2017; and the
Pacific Islands, based on improving overall model coverage and
performance.

antimicrobial resistance | surveillance | global health | carbapenem-
resistant Acinetobacter baumannii | third-generation cephalosporin-
resistant Escherichia coli

Antimicrobial resistance (AMR) increases morbidity, mortal-
ity, and health-care expenditures worldwide. Surveillance has

a key role in supporting policies and stewardship to contain AMR.
Surveillance strategies are implemented globally through surveil-
lance networks such as the World Health Organization’s (WHO)
Global Antimicrobial Surveillance System (GLASS) (1), regional
and national surveillance programs, and small-scale efforts within
hospitals and laboratories. These fragmented data have been ag-
gregated to describe national AMR trends in Europe (2) and
across the globe through initiatives such as ATLAS (Antimicrobial
Testing Leadership and Surveillance) (3), ResistanceOpen (4),
and ResistanceMap (5). To date, ResistanceMap is the most
comprehensive resource, with data from 14.3 million tested iso-
lates covering 74 countries during the period 1998 to 2017.
As setting up and maintaining surveillance are expensive in

terms of direct costs, human resources, and infrastructure, the status
of clinical AMR in low- and middle-income countries (LMICs)
remains largely unknown. This lack of information limits the sup-
port for empirical and targeted treatment guidelines, risking further
exacerbation of AMR levels due to inappropriate antibiotic usage.

Affordable alternative ways to systematically estimate AMR prev-
alence in LMICs are thus urgently needed.
While many countries lack structural data on clinical AMR,

their socioeconomic status is more extensively characterized.
The World Bank collates information on 10,000+ standardized
metrics across all world countries over time (6). Various previous
works showed significant correlations between AMR prevalence
and socioeconomic factors for a large number of countries, in-
cluding LMICs (19 to 103 countries per study) (7–15). Examples
of socioeconomic determinants of AMR prevalence are the in-
come status of individual countries (8), the extent of their
out-of-pocket health expenditure (7), and poor governance and
corruption (11). Recently, these correlations were utilized to
complete the historical record for 52 countries and forecast their
national trends toward 2030 for eight priority pathogens (13).
However, no previous study has yet leveraged these correlations
to systematically estimate AMR prevalence in regions where no
historical data are available.
To fill current gaps in the global prevalence map of clinical

AMR, we developed a statistical model able to predict AMR
prevalence based on exhaustive, unbiased socioeconomic World
Bank profiles. Here we show that the model, trained and evaluated
through robust cross validation, has high predictive accuracy for

Significance

While antimicrobial resistance is an urgent global problem,
substantial clinical surveillance gaps exist in low- and middle-
income countries (LMICs). We fill the gaps in the global prev-
alence map of nine pathogens, resistant to 19 (classes of) an-
tibiotics (representing 75 unique combinations), based on the
robust correlation between countries’ socioeconomic profiles
and extensive surveillance data. Our estimates for carbapenem-
resistant Acinetobacter baumannii and third-generation
cephalosporin-resistant Escherichia coli benefit over 2.2 billion
people in countries with currently insufficient diagnostic capac-
ity. We show how structural surveillance investments can be
prioritized based on the magnitude of prevalence estimated
(Middle Eastern countries), the relative prevalence increase over
1998 to 2017 (sub-Saharan African countries), and the improve-
ment of model performance achievable with new surveillance
data (Pacific Islands).
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some of the most critical pathogens (Acinetobacter baumannii,
Enterobacter aerogenes/cloacae, Enterococcus faecalis, Enterococcus
faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aer-
uginosa, Staphylococcus aureus, and Streptococcus pneumoniae) (16).

Methods
Data Description. We obtained the entire World Bank database of 10,489
standardized metrics on 9 April 2019. We used a subset of 5,595 indicators,
excluding those with limited coverage or variation (SI Appendix, section S1),
to construct 3,948 World Bank profiles, each reflecting the socioeconomic status
of one unique country–year combination. For 710 of these profiles, resistance
rates for at least one pathogen were available from ResistanceMap (5). Re-
sistance rates are reported as the fraction of all invasive isolates, cultured from
blood or cerebrospinal fluid, that exceeds susceptibility breakpoints set by
the Clinical and Laboratory Standards Institute (CLSI) (∼40% of all isolates in
ResistanceMap) or by the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) (∼60% of all isolates in ResistanceMap). We obtained data
for 75 unique combinations of pathogens and (classes of) antibiotics on
9 October 2019, representing AMR prevalence in 74 countries during the
period 1998 to 2017 (SI Appendix, Fig. S1).

Model Development. We performed a principal component regression to
develop a suite of candidate models per pathogen in an iterative manner.
Principal components of the 5,595 indicators were computed with the
nonlinear iterative partial least squares algorithm, enabling imputation of
incomplete datasets such as the World Bank database. We used the entire
dataset of 3,948 World Bank profiles to ensure our models’ applicability to
countries without AMR prevalence data and selected the first 30 principal
components for model development, as these retained the underlying var-
iability structure of the full set of indicators well (Mantel test with a P value
of 0.001). Using all country–year combinations for which resistance data
were available, beta-binomial vector generalized linear models were de-
veloped per pathogen. These models handle overdispersion in the data
while accounting for variation in the number of isolates tested. In addition
to the principal components, we incorporated year of isolation as a con-
tinuous predictor, including its quadratic component, and antibiotic (class) as
a categorical predictor. The most parsimonious models were then identified
using a backward Akaike Information Criterion-based stepwise reduction of
the full models. To identify countries with a relatively large influence on the
model, we performed a grouped Cook’s distance analysis. As a cutoff for
disproportionate influence, we used the median point of the F distribution,
F0.5(p,n − p), with P being the number of predictors and n being the number
of countries with data. If the highest Cook’s distance exceeded the cutoff,
we repeated the procedure without the respective country. Otherwise, the
suite of candidate models was finalized for the specific pathogen. SI Ap-
pendix, section S1 extensively describes the computational procedure.

Model Selection and Performance. Per pathogen, the candidate model with
the highest Bhattacharyya coefficient was selected for application (17). This
coefficient reflects the overlap between the socioeconomic profiles used in
model development and those for which prevalence is to be estimated.
Consequently, the model with the highest Bhattacharyya coefficient should
result in the most accurate estimates. Moreover, we analyzed the extent of
geographical autocorrelation present in the surveillance data and in our
prevalence estimates to ensure that no artificial (lack of) autocorrelation
was introduced by our models (SI Appendix, section S7).

The predictive performance of the selectedmodels was quantified by their
predictive correlation coefficient q2, obtained via a five times repeated
fivefold groupwise cross validation. Antibiotics were balanced between the
folds, and all records from the same country were always included in the
same fold. This ensures that individual countries are never represented in
multiple folds, effectively forcing the testing of more distant records and
thus reducing optimism in error estimates. Cross-validation results were
further used in a logistic recalibration to assess their level of over- or
underfitting and potential bias and, in the computation of a calibration belt,
to identify specific ranges of over- or underestimation (18).

Model Application. We estimated the prevalence of clinical AMR for all
country–year combinations not represented in ResistanceMap, but with
sufficient World Bank data. National estimates were combined with mea-
sured data and aggregated into human population-weighted mean values,
both at the global scale and per World Bank–assigned income class. This
allowed the assessment of supernational time trends of clinical AMR over

the period 1998 to 2017. We also calculated the mean yearly increase factor
for individual countries.

To quantify how overall predictions might improve by adding new sur-
veillance data, we generated a set of 30 fictitious isolates per country, the
threshold number for CLSI antibiogram reporting and the minimum number
of isolates required for inclusion in ResistanceMap (5). Each set of isolates
reflected that country’s most recent estimate for the specific combination of
pathogen and antibiotic (class). By adding one of these sets to the existing
resistance data and retraining and reapplying the model for the respective
pathogen, we quantified the relative reduction in the total (summed) pre-
diction error. We distinguished between direct effects, i.e., error reductions
for the country with new surveillance data, and indirect effects, i.e., error
reductions for other countries due to overall model improvement.

Literature Review. To corroborate our estimates of carbapenem resistance
(CR) prevalence in Acinetobacter baumannii (AB) and third-generation
cephalosporin resistance (3GCR) prevalence in Escherichia coli (EC), we
reviewed the available literature for reviews and meta-analyses of resistant
invasive isolates in the 10 countries where our estimates were highest.
SI Appendix, section S2 contains a detailed description of the procedure
followed. We identified 11 studies on CR in AB that fulfilled our criteria and
3 on 3GCR in EC. References to underlying studies were assessed if they
explicitly included blood or cerebrospinal fluid isolates. Through this cross-
referencing, 17 additional local studies were identified for CR in AB, but
none were identified for 3GCR in EC.

Results
Robustness and Performance. We modeled the statistical associa-
tion between antibiograms from the ResistanceMap repository
and exhaustive socioeconomic profiles from the World Bank
database. We checked model accuracy through a robust cross-
validation procedure. Overall, the models showed high predic-
tive accuracy, with q2 values between 0.78 and 0.86 for six out of
nine pathogens. The predictive accuracy was lower for Pseudomonas
auruginosa (q2 = 0.58) and Staphylococcus aureus (q2 = 0.56)
(Fig. 1A). The performance for the (predominantly) community-
associated pathogen Streptococcus pneumoniae was substantially
less (q2 = 0.27).
Prediction errors were largest for Enterobacter aerogenes/

cloaecae and Enterococcus faecium and for E. coli estimates in
Iran and Indonesia specifically (Fig. 1B). E. aerogenes/cloaecae
and E. faecium are represented in ResistanceMap by a relatively
small number of 13 and 46 countries, respectively (SI Appendix,
Fig. S1C). Consequently, while accurately predicting clinical
AMR prevalence in similar countries, performance is lower for
target countries with divergent characteristics. Indeed, prediction
errors increase when the socioeconomic profiles of target coun-
tries lie further from the countries used in model development (SI
Appendix, Fig. S3A).
To assess the stability of our estimates under the influence of

model parameterization uncertainty, we constructed a multivar-
iate normal distribution per model with their fitted coefficients
as the mean and their variance–covariance matrix as the variance
(13). From these, we drew 1,000 sets of possible coefficients, with
each computing a new estimate per target country. Uncertainty
intervals for each target country’s most recent estimates are
shown in SI Appendix, Table S7. Stable rankings of all countries
indicate little impact of parameter uncertainty on the overall
prioritization of surveillance when based on our estimates
(Spearman’s ρ > 0.93 for all pathogens; SI Appendix, Table S8).
However, estimates for Indonesia, Iran, Russia, and Brazil were
more volatile, i.e., disproportionally influenced by parameter
uncertainty. This volatility can, at least partly, be explained by
the major contributions of population- and gross domestic
product-related indicators to the first principal components (SI
Appendix, Fig. S5).
To further examine the validity of our models, we conducted a

calibration analysis per pathogen. These analyses indicated lim-
ited over- or underfitting for all pathogens except S. pneumoniae
and no systematic bias for all pathogens except S. pneumoniae
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and K. pneumoniae (SI Appendix, Fig. S3). The prevalence of
resistance in K. pneumoniae was slightly overestimated over the
full range of prevalence values. Our models further tend to
overestimate the higher prevalence of resistance for most path-
ogens and underestimate the lower prevalence of resistance for
some pathogens (SI Appendix, Fig. S4). Despite these deviations
at the limits of the resistance prevalence spectrum, calibration
analyses confirmed that for the majority of pathogens we can
provide actionable insights for surveillance prioritization.
Here we highlight the implications for two priority pathogens:

1) carbapenem-resistant Acinetobacter baumannii (CRAB), the
leading cause of hospital-associated infections, and 2) Escherichia
coli resistant to third-generation cephalosporins (3GCREC),
widely responsible for both community- and hospital-acquired
infections. Both are classified as critical priority pathogens by
WHO (16). An overview of the final models of all pathogens is
included in SI Appendix, Table S1.

Filling Geographical Gaps.We improved the coverage of the global
prevalence map of clinical AMR from 24% (CRAB; Fig. 2A) and
29% (3GCREC; Fig. 2D) to 87% of all 235 countries and areas
specified by the United Nations (19). The remaining 13% are
overseas territories or disputed areas with limited World Bank

information. Our estimates represent populations of ∼2.5 (CRAB)
and 2.2 (3GCREC) billion people, increasing coverage to 99% of
the global population. Most of the added population lives in low-
income (0.7 billion) and lower middle-income (1.2 billion for
CRAB; 0.9 billion for 3GCREC) countries.
Per pathogen, SI Appendix, Table S7 provides our most recent

national estimates for countries not included in ResistanceMap.
Estimates of CR in AB and 3GCR in EC were generally highest
in countries located in the (Greater) Middle East, most notably
in Iran, with 100% and 73% prevalence in 2017, respectively.
Iran has been enrolled in GLASS since 2016 but submitted few
isolates to the GLASS call for 2017 data: 10 E. coli blood iso-
lates, indicating 90% prevalence of 3GCR (95% confidence in-
terval [CI] 60 to 100%), and 8 A. baumannii blood isolates
indicating 100% prevalence of CR (95% CI 68 to 100%), both in
line with our estimates (1). Our literature review yielded four
meta-analyses assessing CRAB in Iran, reporting aggregate re-
sistance ranging from 55 to 91% (SI Appendix, Table S2). These
percentages are lower than our 100% estimate but reflect long-
term pooled prevalence rates of isolates with a mixed origin
sampled between 1995 and 2018. In fact, one local study from
Iran that included only invasive isolates (n = 59; collected in
2012 to 2013) reported 100% resistance to both imipenem and
meropenem (20). Further, we identified a recent meta-analysis
of E. coli resistance against the fourth-generation cephalosporin
cefepime, reporting 62% resistance (95% CI 57–67%), based on
347 isolates from survey years 2012 to 2014 (SI Appendix, Table
S3) (21). These estimates are highly concordant with our esti-
mates for the same period, i.e., 62% in 2012 to 75% in 2014.
Our 2017 estimates of the prevalence of CR in AB also fill

important gaps for other Middle Eastern countries, including
Lebanon (92% prevalence estimated), Jordan (86%), Egypt
(85%), Syria (83%), and Sudan (77%); for 3GCR in EC they are
Yemen (61%), Afghanistan (60%), Syria (57%), and Sudan
(56%). A comprehensive review of countries of the Arab League
reported values similar to, albeit somewhat lower than, our
predictions for CR in AB: 77 to 91% in Lebanon (three local
studies, 2010 to 2015), 64% in Jordan (one local study, 2009 to
2010), 70 to 96% in Egypt (two local studies, 2012 to 2016), 71%
in Syria (one local study, 2008 to 2011), and 89% in Sudan (one
local study, 2011 to 2014) (22). For 3GCR in EC, 53 to 62%
resistance derived from local Syrian data (four studies) was in
line with our prediction of 57%, while 35% resistance for Sudan
(one study) was lower than our estimate of 56% (22).
Altogether, our highest estimates of carbapenem resistance in

invasive A. baumannii and third-generation cephalosporin re-
sistance in invasive E. coli are consistent with the sparse local
data available from the open literature (SI Appendix, Tables S2
and S3).

Filling Temporal Gaps. To obtain insights into temporal trends of
resistance, i.e., globally and per World Bank–assigned income
class, we aggregated national estimates and measurements into
(population-weighted) mean yearly prevalence values. The global
prevalence of CR in AB increased from below 40% in 1998 to
over 60% in 2008, after which it stabilized, fluctuating between
60% and 70% over the last decade (Fig. 3A). Trends across in-
come classes were similar, although the relative increase in low-
income countries was larger, as the steepest increases were esti-
mated in low- and lower middle-income countries (Fig. 3B). This
particularly relates to countries in sub-Saharan Africa, e.g., Angola
(yearly increase with a factor of 1.58), Cameroon (factor of 1.36),
Burkina Faso, and Equatorial Guinea (factor of 1.35).
In contrast with CR in AB, the prevalence of 3GCR in EC has

steadily increased since surveillance started (Fig. 3C). With an
average 1.0% yearly increase, global resistance rose from 34 to
54% over the period 1998 to 2017. Moreover, trends were in-
discriminate of income class or geography (Fig. 3D).

Fig. 1. Performance and robustness of the models constructed: (A) square
correlation coefficient q2, derived via a five times repeated fivefold group-
wise cross validation and (B) distribution of prediction errors at the scale of
the linear predictors. HAI: (predominantly) hospital-associated pathogens;
CAI: (predominantly) community-associated pathogens; Both: pathogens
associated with both hospital and community. Classification is based on
WHO’s description of priority pathogens list.
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The Benefits of New Surveillance Data. The introduction of struc-
tural surveillance in a given country may have both direct and
indirect benefits mediated by the model, as new local data might
improve estimates for other similar countries. This notion en-
ables us to identify countries where surveillance could best im-
prove overall estimates of CR in AB (Fig. 4A) and 3GCR in EC
(Fig. 4B). Based on the principal components included in the
respective models, an agglomerative hierarchical clustering anal-
ysis identified clusters of similar countries (Roman numerals in
Fig. 4). Their composition is shown in SI Appendix, Tables S4 and
S5. Estimates for Indonesia (singleton v in Fig. 4A; singleton xix in
Fig. 4B) and Iran (singleton vi in Fig. 4A; singleton xx in Fig. 4B)
were least accurate, as indicated by the direct error reduction
achievable with new surveillance data (orange bars in Fig. 4).
Since these countries do not cluster, new data generated in Iran or
Indonesia will marginally improve estimates for other countries. In
contrast, cluster xii in Fig. 4A and, to a lesser extent, cluster xv in
Fig. 4B represent a group of data-poor countries where new sur-
veillance data could substantially improve the parameter space
covered by the models (purple bars in Fig. 4). These clusters
consist of various smaller (predominantly) island states.

Discussion
Our global maps of national resistance prevalence provide data-
driven criteria for the prioritization of surveillance efforts in
LMICs. First, surveillance might be prioritized in countries where
high resistance rates are expected. Our analyses of carbapenem-
resistant A. baumannii and third-generation cephalosporin-
resistant E. coli indicate such countries are often located in the
(Greater) Middle East (Fig. 2). While acknowledging that the
calibration results indicate that our models have a slight tendency
to overestimate resistance prevalence at the upper limit of the

spectrum (SI Appendix, Fig. S4), estimates for CRAB and
3GCREC were consistent with available literature (SI Appendix,
section S2). As such, our results support concerns raised on the
alarming potential for AMR to develop into a “perfect storm” in
parts of the Middle East that are burdened by conflict, such as
Syria, Yemen, and Iraq (23).
Model performance for the community-associated pathogen S.

pneumoniae was much lower compared to the other pathogens.
This might indicate that resistance prevalence in pathogens pre-
dominantly acquired within the community correlate less well with
countries’ socioeconomic characteristics than resistance preva-
lence in hospital-associated pathogens and that other factors
might play a role. A more likely explanation is the fact that vac-
cination against pneumococcal disease reduces resistance preva-
lence in S. pneumoniae, both through direct action and indirectly
by lowering antibiotic consumption (24, 25), and global immuni-
zation initiatives such as GAVI (Global Alliance for Vaccines and
Immunization), providing vaccines to LMICs, have successfully
weakened plausible correlations between pneumococcal conju-
gate vaccine coverage and countries’ socioeconomic status (26).
In contrast, vaccines for the other pathogens studied are not
available.
Second, in addition to countries with high estimated AMR,

surveillance efforts might be prioritized in countries where AMR
is estimated to increase rapidly. Our prevalence trends highlight
various countries in sub-Saharan Africa as being important
(Fig. 3), especially for carbapenem-resistant A. baumannii, and
support previous calls for systematic surveillance to inform em-
pirical treatment guidelines in this region of the world (27). In
contrast to CR in AB, the prevalence of 3GCR in EC has in-
creased steadily and indiscriminate of geography (Fig. 3D).
Globally, we estimate an average yearly prevalence increase of

Fig. 2. Global coverage and prevalence of carbapenem resistance in A. baumannii and third-generation cephalosporin resistance in E. coli. (A) Coverage of
CRAB measurements (24% of countries and areas; 66% of global population) increases by supplementing with estimates (87% of countries; 99% of global
population). (B) Measured and estimated CRAB for the most recent year available or possible. (C) Coverage of 3GCREC measurements (29% of countries and
areas; 70% of global population) increases by supplementing with estimates (87% of countries; 99% of global population). (D) Measured and estimated
3GCREC for the most recent year available or possible.
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1.0%, as its global prevalence rose from 34 to 54% over the
period 1998 to 2017 (Fig. 3C). Recently, Alvarez-Uria and col-
leagues forecasted a global trend with a similar slope of 0.83%,
but with a 13% higher intercept (28). This is likely due to the
high (∼80%) resistance prevalence in India, which, with its low
per capita income and large population size, had a major influ-
ence on their global estimate. In our model, however, India’s
unique profile makes it less informative for other countries, re-
ducing its impact on the global mean estimate.
Third, prioritization of surveillance efforts might focus on

improving model predictions. The Pacific Islands form an in-
teresting cluster of countries where surveillance of AMR has
been limited so far (29) but where new surveillance data would
most improve overall model performance (Fig. 4). In addition to
these regions, Latin America and the Caribbean (LAC) form
another extensive region largely absent from ResistanceMap.
While they did not explicitly emerge as priority countries, LAC
countries of interest for CRAB are Colombia (79% resistance
estimated), El Salvador (74%), and Guatemala (67%). Countries
of interest for 3GCREC are Haiti (55%), Brazil (52%), and
Guatemala (45%). Although most LAC countries participate in
the long-running Latin American Antimicrobial Resistance
Surveillance Network (ReLAVRA), the sample type and origin
of isolates were not reported to ReLAVRA before 2018. Since
our research specifically focuses on AMR in invasive clinical
isolates, these data could not be included. Nevertheless, follow-
ing extensive curation, aggregation, and harmonization, addi-
tional data from other (supra)national surveillance networks
(30), as well as from alternative sources like academic institutes,
pharmaceutical companies, and private laboratories (31), should

be harnessed to further fill the global map of clinical AMR and
increase the reliability of our estimates.
It is widely acknowledged that laboratory-based surveillance is

prone to selection bias, especially in LMICs, where access to
quality microbiology diagnostics is poor and routine diagnostics
are often limited to treatment failures and specialized tertiary
care facilities (32). These limitations propagate into our preva-
lence estimates, and they should thus be interpreted as an ap-
proximation of the true prevalence in a country. Future unbiased
surveillance will likely require novel approaches, e.g., population-
based surveillance (33, 34), for which the necessary resources and
infrastructure are not yet in place. Our predictive framework
provides a means to support the prioritization of investments
required for this.
Comparisons across countries are complicated by discrep-

ancies between CLSI and EUCAST susceptibility break points,
with the latter generally more stringent and thus resulting in
higher resistance rates (35). Any potential bias introduced into
our models by these discrepancies could be reduced by further
international harmonization of methods and breakpoints (36).
Our approach has several limitations. While our estimates of

AMR prevalence can support national surveillance strategies,
subnational heterogeneity in resistance prevalence reduces their
local usefulness, especially in large and highly populated coun-
tries such as India (37). Due to its generic nature, however, our
approach inherently allows for assessments at a more local scale,
provided that both socioeconomic indicators and clinical AMR
data are available at such a local level. The benefit of expanding
our approach subnationally is further emphasized by the fact that
parameter uncertainty specifically affects prevalence estimates in

A B

C D

Fig. 3. Temporal trends of resistance worldwide (black), in low-income countries (LIC; blue), lower middle-income countries (LMC; yellow), upper middle-
income countries (UMC; green), and high-income countries (HIC; orange) over the period 1998 to 2017. (A and C) Human population-weighted mean re-
sistance prevalence of carbapenem resistance in A. baumannii and third-generation cephalosporin-resistance in E. coli, respectively. (B and D) Tukey box and
whisker plots of mean yearly increase factors in all countries without systematic national surveillance for CRAB and 3GCREC, respectively. Positive outliers,
based on the global box whisker plots, are labeled with their ISO3 code (International Organization for Standardization alpha-3 code). AGO: Angola; AND:
Andorra; BEN: Benin; BFA: Burkina Faso; BMU: Bermuda; BRA: Brazil; CMR: Cameroon; GNQ: Equatorial Guinea; IDN: Indonesia; MOZ: Mozambique; SMR: San
Marino; TLS: Timor-Leste; TOG: Togo.
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emerging economies with large population sizes (SI Appendix,
Table S7).
We leveraged the full extent of the World Bank database in a

principal component regression, reducing its high dimensionality
while retaining the underlying variability structure. This comes
with limitations of interpretability. Because principal compo-
nents are obtained from only the World Bank indicators, the
constraints imposed on their coefficients have no direct rela-
tionship with how they might affect prevalence rates, obscuring
univariate relationships between underlying indicators and AMR
prevalence (38). Additionally, by applying our models predic-
tively we inherently assumed that the correlations found for
predominantly upper middle- and high-income countries are
universally valid. This also limits the applicability of our approach
to pathogens that are globally relevant and therefore broadly in-
cluded in surveillance programs. Consequently, priority pathogens
that specifically burden LMICs, e.g., fluoroquinolone-resistant
Salmonella species (16), would require a more regional or local
approach since truly global data are not, and will not, become
available.
As AMR forms the quintessential One Health issue, indicators

from other domains might improve prevalence estimates (39).
The flexibility of our approach allows for integration of such
indicators in future analyses when sufficient data become avail-
able. Interesting candidates are metagenomics data from human
sewage (40, 41) and climatic parameters such as temperature,
which correlates with clinical AMR (42). Furthermore, antibiotic

consumption was no predictor in our models. Although it is
commonly considered one of the key drivers of AMR (43, 44),
data scarcity would either require extensive imputation (13) or
substantially reduce the number of complete records available
for model development. Instead, we considered antibiotic con-
sumption a midpoint indicator, thus assuming international
variability in antibiotic consumption to be intrinsically captured
by our socioeconomic profiles. This assumption is supported by a
sensitivity analysis using antibiotic consumption data available
from ResistanceMap (45) (SI Appendix, section S6) and by pre-
vious studies showing antibiotic consumption parallel socioeco-
nomic indicators such as the Human Development Index and
aging of the population (46), gross domestic product per capita
(43), out-of-pocket health expenditure, population by age group,
population density, and GDP (13).
The prevalence of AMR in clinical priority pathogens is un-

known in many regions of the world, and more than 2 billion
people live in countries without data on even the most surveyed
pathogens. The majority of these countries are LMICs. Our
improved global maps of clinically relevant AMR provide a
means to close this knowledge gap in a most efficient way.

Data Availability. All study data are included in the article and
SI Appendix.
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Fig. 4. Potential reduction of the total (summed) prediction error in all estimated resistance rates for 2017, should resistance data for 2017 become available
for the specific country. Hierarchical clustering of all countries based on the set of principal components used in the respective models, with gradient in-
dicating number isolates available from ResistanceMap tested for carbapenem resistance in A. baumannii (A) or third-generation cephalosporin resistance in
E. coli (B). Gray: no data. Roman numerals indicate clusters of countries based on a dissimilarity threshold of 25 (total within-cluster sum of squares), with their
composition listed in SI Appendix, Tables S4 and S5, respectively. Bars represent indirect (purple) and direct (orange) reductions of the summed prediction
error over all estimated resistance rates for 2017, should surveillance data from 2017 become available for the specific country.
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