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Abstract
We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylog-

eny using continuous-time Markov models of sequence evolution. Easily incorporated into

Python bioinformatics pipelines, Pyvolve can simulate sequences according to most stan-

dard models of nucleotide, amino-acid, and codon sequence evolution. All model parame-

ters are fully customizable. Users can additionally specify custom evolutionary models, with

custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient

framework not only for simulating sequences under a wide variety of conditions, but also for

developing and testing new evolutionary models. Pyvolve is an open-source project under

a FreeBSD license, and it is available for download, along with a detailed user-manual and

example scripts, from http://github.com/sjspielman/pyvolve.

Introduction
The Python programming language has become a staple in biological computing. In particular,
the molecular evolution community has widely embraced Python as standard tool, in part due
to the development of powerful bioinformatics modules such as Biopython [1] and DendroPy
[2]. However, Python lacks a robust platform for evolutionary sequence simulation.

In computational molecular evolution and phylogenetics, sequence simulation represents a
fundamental aspect of model development and testing. Through simulating genetic data
according to a particular evolutionary model, one can rigorously test hypotheses about the
model, examine the utility of analytical methods or tools in a controlled setting, and assess the
interactions of different biological processes [3].

To this end, we introduce Pyvolve, a sequence simulation Python module (with dependen-
cies Biopython [1], SciPy, and NumPy [4]). Pyvolve simulates sequences along a phylogeny
using continuous-time Markov models of sequence evolution for nucleotides, amino acids, and
codons, according to standard approaches [5]. The primary purpose of Pyvolve is to provide a
user-friendly and flexible sequence simulation platform that can easily be integrated into
Python bioinformatics pipelines without necessitating the use of third-party software.
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Furthermore, Pyvolve allows users to specify and evolve custom evolutionary models and/or
states, making Pyvolve an ideal engine for novel model development and testing.

Substitution models and frameworks in Pyvolve
Pyvolve is specifically intended to simulate gene sequences along phylogenies according to
Markov models of sequence evolution. Therefore, Pyvolve requires users to provide a fixed
phylogeny along which sequences will evolve. Modeling frameworks which are included in
Pyvolve are detailed in Table 1.

Pyvolve supports both site-wise and branch (temporal) heterogeneity. Site-wise heterogeneity
can be modeled with Γ or Γ+I rates, or users can specify a custom rate-distribution. Further,
users can specify a custom rate matrix for a given simulation, and thus they can evolve sequences
according to substitution models other than those shown in Table 1. Similarly, users have the
option to specify a custom set of states to evolve, rather than being limited to nucleotide, amino-
acid, or codon data. Therefore, it is possible to specify arbitrary models with corresponding cus-
tom states, e.g. states 0, 1, and 2. This general framework will enable users to evolve, for instance,
states according to models of character evolution, such as the Mk model [6].

Similar to other simulation platforms (e.g. Seq-Gen [7], indel-Seq-Gen [8], and INDELible
[9]), Pyvolve simulates sequences in groups of partitions, such that different partitions can
have unique evolutionary models and/or parameters. Although Pyvolve enforces that all parti-
tions within a single simulation evolve according to the same model family (e.g. nucleotide,
amino-acid, or codon), Python’s flexible scripting environment allows for straight-forward
alignment concatenation. Therefore, it is readily possible to embed a series of Pyvolve simula-
tions within a Python script to produce highly-heterogeneous alignments, for instance where
coding sequences are interspersed with non-coding DNA sequences. Moreover, Pyvolve allows
users to specify, for a given partition, the ancestral sequence (MRCA) to evolve.

In addition, we highlight that Pyvolve is among the first open-source simulation tools to
include the mutation-selection modeling framework introduced by Halpern and Bruno in ref.
[10] (we note that the simulation software SGWE [11] also includes this model). Importantly,
although these models were originally developed for codon evolution [10, 12], Pyvolve imple-
ments mutation-selection models for both codons and nucleotides. We expect that this imple-
mentation will foster the continued development and use of this modeling framework, which
has seen a surge of popularity in recent years [13–19].

Basic Usage of Pyvolve
The basic framework for a simple simulation with the Pyvolve module is shown in Fig 1. To
simulate sequences, users should input the phylogeny along which sequences will evolve, define
evolutionary model(s), and assign model(s) to partition(s). Pyvolve implements all evolutionary
models in their most general forms, such that any parameter in the model may be customized.
This behavior stands in contrast to several other simulation platforms of comparable scope to

Table 1. Substitution models included in Pyvolve.

Modeling Framework Available Models

Nucleotide GTR [20] and all nested variants (e.g. HKY85 [21] and TN93 [22])

Amino acid JTT [23], WAG [24], LG [25], mtMAM [26], mtREV24 [27], DAYHOFF [28], AB [29]

Mechanistic codon GY-style [30, 31] and MG-style [32]

Empirical codon ECM (restricted and unrestricted) [33]

Mutation-selection Halpern-Bruno model [10], for both nucleotides and codons

doi:10.1371/journal.pone.0139047.t001
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Pyvolve. For example, some of the most commonly used simulation tools that implement codon
models, including INDELible [9], EVOLVER [34], and PhyloSim [35], do not allow users to
specify dS rate variation in codon models. Pyvolve provides this option, among many others.

In the example shown in Fig 1, stationary frequencies are not explicitly specified. Under this
circumstance, Pyvolve will assume equal frequencies, although they would normally be pro-
vided using the key “state_freqs” in the dictionary of parameters. Furthermore, Pyvolve
contains a convenient module to help specify state frequencies. This module can read in fre-
quencies from an existing sequence and/or alignment file (either globally or from specified
alignment columns), generate random frequencies, or constrain frequencies to a given list of
allowed states. In addition, this module will convert frequencies between alphabets, which is
useful, for example, if one wishes to simulate amino-acid data using the state frequencies as
read from a file of codon sequence data.

Validating Pyvolve
We carefully assessed that Pyvolve accurately simulates sequences. To this end, we simulated
several data sets under a variety of evolutionary models and conditions and compared the
observed substitution rates with the simulated parameters.

To evaluate Pyvolve under the most basic of conditions, site-homogeneity, we simulated
both nucleotide and codon data sets. We evolved nucleotide sequences under the JC69 model
[36] across several phylogenies with varying branch lengths (representing the substitution rate),
and we evolved codon sequences under a MG94-style model [32] with varying values of dN/dS.
All alignments were simulated along a two-taxon tree and contained 100,000 positions. We sim-
ulated 50 replicates for each branch length and/or dN/dS parameterization. As shown in Fig 2A
and 2B, the observed number of changes agreed precisely with the specified parameters.

We additionally validated Pyvolve’s implementation of site-wise rate heterogeneity. We sim-
ulated an alignment of 400 codon positions, again under an MG94-style model [32], along a bal-
anced tree of 214 taxa with all branch lengths set to 0.01. This large number of taxa was
necessary to achieve accurate estimates for site-specific measurements. To incorporate site-spe-
cific rate heterogeneity, we specified four dN/dS values of 0.2, 0.4, 0.6, and 0.8, to be assigned in
equal proportions to sites across this alignment. We counted the observed dN/dS values for each
resulting alignment column using a version of the Suzuki-Gojobori algorithm [37] adapted for
phylogenetic data [38]. Fig 2C demonstrates that Pyvolve accurately implements site-specific
rate heterogeneity. The high variance seen in Fig 2C is an expected result of enumerating substi-
tutions on a site-specific basis, which, as a relatively small data set, produces substantial noise.

Fig 1. Example code for a simple codon simulation in Pyvolve. This example will simulate an alignment
of 100 codons with a dN/dS of 0.75 and a κ (transition-tranversion mutational bias) of 3.25. By default,
sequences will be output to a file called “simulated_alignment.fasta”, although this file name can be changed,
as described in Pyvolve’s user manual.

doi:10.1371/journal.pone.0139047.g001
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Finally, we confirmed that Pyvolve accurately simulates branch heterogeneity. Using a four-
taxon tree, we evolved codon sequences under an MG94-style model [32] and specified a dis-
tinct dN/dS ratio for each branch. We simulated 50 replicate alignments of 100,000 positions,
and we computed the observed dN/dS value along each branch. Fig 2D shows that observed
branch dN/dS values agreed with the simulated values.

Conclusions
Because Pyvolve focuses on simulating the substitution processes using continuous-time Mar-
kov models along a fixed phylogeny, it is most suitable for simulating gene sequences,

Fig 2. Pyvolve accurately evolves sequences under homogenous, site-wise rate heterogeneity, and branch-specific rate heterogeneity. A)
Nucleotide alignments simulated under the JC69 [36] model along two-taxon trees with varying branch lengths, which represent the substitution rate. Points
represent the mean observed substitution rate for the 50 alignment replicates simulated under the given value, and error bars represent standard deviations.
The red line indicates the x = y line. B) Codon alignments simulated under an MG94-style [32] model with varying values for the dN/dS parameter. Points
represent the mean dN/dS inferred from the 50 alignment replicates simulated under the given dN/dS value, and error bars represent standard deviations.
The red line indicates the x = y line. C) Site-wise heterogeneity simulated with an MG94-style [32] model with varying dN/dS values across sites. Horizontal
lines indicate the simulated dN/dS value for each dN/dS category. D) Branch-wise heterogeneity simulated with an MG94-style [32] model with each branch
evolving according to a distinct dN/dS value. Horizontal lines indicate the simulated dN/dS value for each branch, as shown in the inset phylogeny. The
lowest dN/dS category (dN/dS = 0.1) was applied to the internal branch (shown in gray). All code and data used to validate Pyvolve’s performance and
generate this figure are available in S1 File.

doi:10.1371/journal.pone.0139047.g002
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benchmarking inference frameworks, and for developing and testing novel Markov models of
sequence evolution. For example, we see a primary application of Pyvolve as a convenient sim-
ulation platform to benchmark dN/dS and mutation-selection model inference frameworks
such as the ones provided by PAML [34], HyPhy [39], Phylobayes [17], or swMutSel [16].
Indeed, the Pyvolve engine has already successfully been applied to investigate the relationship
between mutation-selection and dN/dSmodeling frameworks and to identify estimation biases
in certain dN/dSmodels [18]. Moreover, we believe that Pyvolve provides a convenient tool for
easy incorporation of complex simulations, for instance those used in approximate Bayesian
computation (ABC) or MCMCmethods [40], into Python pipelines.

Importantly, Pyvolve is meant primarily as a convenient Python library for simulating sim-
ple Markov models of sequence evolution. For more complex evolutionary scenarios, including
the simulation of entire genomes, population processes, or protein folding and energetics, we
refer the reader to several more suitable platforms. For example, genomic process such as
recombination, coalescent-based models, gene duplication, and migration, may be best simu-
lated with softwares such as ALF [41], CoalEvol and SGWE [11], or EvolSimulator [42]. Simu-
lators which consider the influence of structural and/or biophysical constraints in protein
sequence evolution include CASS [43] or ProteinEvolver [44]. Similarly, the software REvolver
[45] simulates protein sequences with structural domain constraints by recruiting profile hid-
den Markov models (pHMMs) to model site-specific substitution processes.

We additionally note that Pyvolve does not currently include the simulation of insertions
and deletions (indels), although this functionality is planned for a future release. We refer read-
ers to the softwares indel-Seq-Gen [8] and Dawg [46] for simulating nucleotide sequences, and
we suggest platforms such as INDELible [9], phyloSim [35], or πBuss [47] for simulating cod-
ing sequences with indels.

In sum, we believe that Pyvolve’s flexible platform and user-friendly interface will provide a
helpful and convenient tool for the biocomputing Python community. Pyvolve is freely avail-
able from http://github.com/sjspielman/pyvolve, conveniently packaged with a comprehensive
user manual and several example scripts demonstrating various simulation conditions. In addi-
tion, Pyvolve is distributed with two helpful Python scripts that complement Pyvolve simula-
tions: one which implements the Suzuki-Gojobori [37] dN/dS counting algorithm adapted for
phylogenetic data [38], and one which calculates dN/dS from a given set of mutation-selection
model parameters as described in ref. [18]. Pyvolve is additionally available for download from
the Python Package Index (e.g. via pip).

Supporting Information
S1 File. This file contains all scripts and data used to validate Pyvolve.
(ZIP)
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